

C68t

Adjustahle table or Astronomy expleined und practical defimitions given to the Navigator The arue Vavigator Astronominally. Mathematically \& Mechnnically defined. This denise of rntarv motion of the plane of the Earth to theplane of the Sun, by the hue light and dignitr of Thtures law, enablat the Niriviner bo see the true Phi:losoply of obtaziung a Shijus parition on owr part of the Globe wisible to the heavenly bodies. in a Snlar Year The Phemomena of the champes afthe seasons and the chaug's ar the Maon, and is mugnetic phenomenon as a Fred law by the Positive and Vegative forces as seen, are unchanqpable in their /avof'nction to the Sun and Earth. The whole field of dectination is spread out, and the true methad, of Zenith distrnces apd_ _1ltithder cuppained, by references contained and worked out in this devise, for obtainng lutitude br Sen or Laral. The object of this little diagram is to show the mechanical form of finding a ships latioude br the nse of n proper Instrunent to meashlue the distance of a Henvenly bodv either north or sonth of che Eardhr Ligantor by Altuitude and Zenith distance without reference to Horizdly. Rcbiaction or Horziontol parslax and by finding a carrect decaiminimenen amimimy dy. Ir "hiny or subm
distance.

Plate III.

Cornell University Library

> The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

IMPROVED

OR

TRUE NAVIGATOR,

Astronomically, Mathematically, and Mechanically Arranged,

BY WHICH

THE TRUE MOTIONS OF THE EARTH AND PLANETS TO THE SUN ARE DEMONSTRAFED, AND THE REVOLUTIONS OF THE SEASONS IN A SOLAR YEAR ACCURATELY DEFINED, FROM WHICH ARE OBTAINED the undeviating rules for finding latitude AND LONGITUDE, AT SEA OR ON LAND.

ILLUSTRATED BY ENGRAVINGS,

SHOWING THE

True Position of the Earth and Planets at their Equinoxes and Solstices, by Plates I. and II.,

And their Rotation and Deolination, by Plates III. and IV.

Plate V. Demonstrates Local Attraction and the Laws of Atmospherio Eleotricity.

Plates VI., VII., and VIII., the Eclipses for the Years 1859, 1860, and 1861.

HALE COL HE.

NEW YORK:
PUBLISHED BY THE AUTHOR.
1859.

Entered according to Act of Congress, in the year 1858, by
HALL COLBY,
in the Clerk's Office of the District Court of the United States for the Southern District of New York.

1

STEREOTYPEDAND PRINTED
By C. A. Alford,
15 Vandewater-st., New York.

TESTIMONIALS.

January, 1859.
The undersigned have examined Hall Couby's Compend of Astronomy and Navigation ; we consider his method of illustration both new and useful, in a praetical point of view, giving polarity and order, physically and mechanically, to the motions of the earth, and planets to the sun. We reeommend his Magnetic Theory of the polarity of the heavenly bodies to the consideration of all institutions of learning, testing their claims as set forth in his orrery, and in his plates and engravings-the nautical portion being for three years. We believe it will be found fully competent for the purposes of obtaining latitude and longitude at sea-the whole being designed for practical use and not for speculation. We are glad to see this work put in the way of distribution.

Henry Eagle,
Captain U.S. N.
Charles Boggs,
Commander U.S. N.
Joseph J. Comstock,
Merchant Steam Marine.
H. S. Knight,

Ship "New World."
R. K. Corning,

Bark "Benefactor," China
W. L. Hudson, U. S. Navy.

Jos. H. Toone,
Ship-Master.
Capt. S. M'Gowan,
Steamship "Illinois."
Wm. Ottiwell,
First Officer "Kathay."
Capt. James Hall,
Late of Russian Steam Corvette, "Japanese."

HALL COLBY'S MAGNETIC ORRERY,

AND ITS CLAIM.

The Author published his Map of the Solar System in 1846; in this map he claimed the discovery of the Magnetic Polarity of the Heavenly Bodies, and their magnetic affnity to the Sun, in the mechanical arrangements of their polar forces, and their polar position at the Equinoxes, Solstices, and their Eclipses, changes of the Moon, \&e. All of which were definitely arranged in his Map in 1846; and in 1847 the Magnetic Orrery was constructed and exhibited to prove the Law of Action, as claimed in the Map, to be a negative and positive force or law.

The adjustment of the Magnetic Orrery is simply to adjust the magnetic needle N . and S ., oausing the circle or wire to have a N. E. and S. W. direction across the gilt ball, representing the Sun and Sun's equator. The engraving on the base on which it stands, shows the Earth at the Equinoxes and Solstices, and its maximum changes and angles of the poles, and consequent change of seasons.

The suspended globe representing the Earth, being put on the hook or pivot, will, by being moved carefully from a west or winter solstice to a summer solstice, on the east side of the Sun, pass across the Sun's equator, giving a Node of the Sun and Earth, and constitutes a vernal equinox. By this device magnetically arranged the peculiar and wonderful law of the planetary system may be seen, negatively and positively worked out.
By this device is also illustrated the universality and sovereignty of that law which is called positive and negative, or which may be otherwise designated as oxygen and hydrogen, known to be the inherent property of matter-and more definitely proved by means of chemical analysis, to be the inherent property of water.
The following testimonials are from men of more than ordinary talent:
Collegiate Institute, Roohester, 1846.
The Plan or Map of the Solar System, by Hall Colby, is finely adapted to present to the oye of the learner in Astronomy clear and distinct views of the distances, revolutions, eclipses, \&cc., of the heavenly bodies. If it shall be used in connection with a globe, it will only become a more important anxiliary in the hand of the teacher, in commnnicating a great amount of interesting and important knowledge. Chester Dewey, President.

Having examined Hall Colby's Magnetic Orrery, Chart, \&cc., of the Solar System. The Orrery is a rare invention, and may be so considered by any navigator or teacher of science, it having the capacity of exemplifying nature, or the natural phenomena of Astronomy. By the Orrery may be seen and illustrated the complicated motions of the Earth in her seasons. It also defines most beantifully the nodes of the Sun and Earth at the Equinoxes, and defines their position of axes and planes, solstices, \&c. In short, all the mechanical order of the solar system seems to be the gift of the Orrery. The magnetic arrangements combined give it a foree superior to any thing I have ever seen. The instrument being so lucid, I think a vast amount of correct knowledge may be obtained by its introduction to all seminaries of learning.

Wm. L. Hudson, U. S. N.
February 18th, 1854.
The undersigned has cursorily examined Colby's Magnetic Orrery and Chart of the Solar System, and is of the opinion that they justify the recommendations given of them by Captain Hudson and Professor Dewey.

Horaoe Webstrr.
Free Aoademy, N. Y., 21st February, 1854.
Having examined Mr. Colby's Map and Magnetic apparatus, I am free to say that I fully coincide in the opinions of their utility in a practical point of view, as expressed by Captain Hudson. T. Strong,

Professor of Mathematics and Natural Philosophy in Rutger's College.

Teenton, New Jersey, June, 1858.
Hall Colby-Dear Sir: I have examined with much attention and interest your Magnetic Orrery, designed to illustrate the physical laws of the planetary system.

If your opinions as to the sublime theory of the polarity of the Sun and Earth and Moon, and of the Planets and Comets, are correct and can be sustained-and the workings of your Orrery certainly go very far toward establishing their correctness-then it will settle one of the most profound principles in nature, and your discovery will constitate one of the nost important made in Astronomy for the last three thousand years.

Wishing you all success due to your long and indefatigable labors, I subscribe myself, Your friend,
F. W. Phelps,

Principal of the New Jersey State Normal School.
 explains

appurent $\rightarrow 5=r i s$

 "fipn. $8^{\text {th }}$ flap $\cdot 21.22^{\text {d }}$ verseschange ated seasons.

Introonction to Astronomu and idabigation.

The term Astronomy, like most terms of science, is derived from the ancient Greek language. Astronomia, astronomy, is compounded of astron, a star or constellation, and nomos, a law, the law of the stars. It may be defined the science which treats of the leavenly bodies.

Astronomy is a science of great antiquity. Its early history has too many allegorical representations to admit of a satisfactory elucidation. It is, however, probable, that some scanty knowledge of this science must have been nearly coeval with the existence of man. The grandeur of the delightful canopy extended over his head, must liave attracted the curiosity of the most careless and rude wanderer of the forest, much more of the attentive shepherd. Beside, the most common concerns of life are in some measure regulated by a partial knowledge of astronomy.

Both the Chaldeans and Egyptians claimed a very high antiquity; and equally claimed the honor of being the first cultivators of astronomy. It may not be easy, at this late day, to determine which has the best founded claim. Most authors seem agreed in fixing the origin of this science either in Chaldea or Egypt. The shepherds, who "watched their flocks by night," on the beautiful plains of Babylon, or in the extended vale of the Nile, could not be careless spectators of the varying aspects of the heavens. The tower of Belus was the boast of the Chaldeans. This is thought by some to have been an astronomical observatory. They gloried in their astronomer, Zoroaster, placed by them five hundred years before the destruction of Troy. The Egyptians, with equal ostentation, vaunted of their priests. The colleges of these they considered as the depositories of every species of knowledge. In the monument of Osymandyas, it is said, there was a golden circle of three hundred and sixty-five cubits in circumference, divided into three hundred aud sixty-five equal parts, according to the days of the year, with the leliacal rising and setting of the stars for each day. It is proper to state, that, whatever may be thought of the tower of Belus, or the circle of Osymandyas, both the Chaldeans and Egyptians were extremely well situated for astronomical observations, being almost always favored with a pure atmosphere, and a sky of delightful serenity. A very favorable opinion of the Egyptians must be formed from the position which they gave to their
pyramids, the faces of these being accurately directed to the four cardinal points of the heavens.

Beside the Chaldeans and Egyptians, the Arabians may justly claim a high antiquity in astronomical knowledge. The land of U_{z}, famous for the afflictions of Job, was without doubt a district of Arabia. Authors are agreed that the book of Job is very ancient-is murivaled in antiquity, except, perhaps, by the books of Moses. From the familiar manner in which Arcturus, Orion, and Pleiades are introduced in that book, it may be ascertained that, not only were names given to some of the stars, but constellations had been designated and named, so as to become objects of general notoriety.

Among other relations of this kind may be reckoned what is mentioned by Josephus in his Antiquities, who, in speaking of the progress that had been made in astronomy by Seth and his posterity, before the deluge, asserts that they engraved the principles of the science on two pillars, one of stone and the other of brick, called the pillars of Seth; and that the former of these was entire in his time. He also ascribes to the antediluvians a knowledge of the astronomical cycle of six hundred years, which Mantucla, in his "Histoire des Mathematiques," thinks, with much greater reason, was an invention of the Chaldeans; and that whatever information was possessed by the Jewish annalist, with respect to this memorable period, was probably obtained either from that people, or from some ancient writings which no longer exist.

Astronomy is a science useful and sublime in the highest degree. It is useful, not only on its own account, but as the foundation of other arts and sciences; and sublime, as it elevates the soul above the little objects of this world to scenes of infinite grandeur.

Navigation, as an art or a science, is dependent on the principles of astronomy. The varying compass would not form a sure guide to the mariner on the pathless ocean, were it not for corrections derived from obscrvation on the hearenly bodies. Geography is equally dependent. By astronomy are ascertained the figure and magnitude of the earth. The knowledge of latitnde and longitnde, the situation and distance of places the most remote, the true bearing of countries in respect to each other, and their magnitude or extension, are most accurately obtained by astronomical principles. But above all, astronomy affords the most enlarged and sublime views of the Creator's works. In the vast expanse of the universe, the astronomer beholds the stars, which bespangle and adorn our canopy, magnified into so many suns, surrounded with worlds of unknown extent, constituting systems multiplied beyond the utmost bound of human imagination, and measured only by the omnipresence of Jehovah; all moving in harmony, in subjection to his omnipotent control. "The heavens declare the glory of God, and the firmament showeth his handy work." "An undevout astronomer is mad."

There have been three great systems of astronomy-the Ptolemaic, the Brahean, and the Copernican. The former two, however, thongh dignified by the name of systems, are more properly denominated hypotheses.

The Ptolemaic system takes its name from Clandius Ptolemens, or Ptolemy, who flourished at Alexandria or Pelusium, in Egypt, in the second century of the Christian era, in the reigns of Adrian and Antoninus, the Roman emperors. In this system, the Earth was supposed at rest in the center of the universe, around which the Moon, Mercury, Venus, the Sun, Mars, Ju-
piter, and Saturn revolved. Above the planets this hypothesis placed the firmament of stars and the two crystaline spheres, all included in the primum mobile, giving motion to the whole. Still higher, according to some, he conceived, was placed the empyrean heaven, or heaven of heavens; all revolving round the Earth, from east to west, in twenty-four hours, according to the ideas of the illiterate in all ages.

The different phases of Mercury and Venus, their superior conjunctions without oppositions, and the apparent retrograde motion of all the primary planets, show the absurdity of this hypothesis.

Tycho Brahe was a native of Sweden, being born at Knudstorp, in the year 1546 ; though, from education and residence in Denmark, considered a Dane. This celebrated astronomer was acquainted with the Copernican system, published before his time. But, rejecting some of its most simple principles, because he thought them irreconcilable to the literal meaning of some texts of Scripture, he adopted some of the greatest absurdities of Ptolemy, in other respects making his system agree with the rules of modern astronomy.

In his system the Earth is supposed at rest, the Sun and Moon revolving round it as the center of their motion, while the other planets revolve around the Sun, and are carried with it about the Earth.

By this hypothesis the phases of Mercury and Venus may be explained. But no satisfactory explanation can be given by it of the opposition of the superior planets. Both the Ptolemaic and Brahean systems are contrary to the modern principles of calculating and projecting eclipses.

The Copernican system is now universally adopted by astronomers as the true solar system. Some of the ancient Egyptians discovered the revolution of Mercury and Venus round the Sun. The general principles of the system were afierward tanght privately by Pythagoras to his disciples, five hundred years before the Christian era. But, being afterward rejected, it was nearly lost, till revived by Copernicus, a native of Thorn, in Polish Prussia. In the center of this system is placed the Sun, around which the primary planets revolve from west to east. The Earth turns on its axis. The Moon revolves round the Earth. The other secondary planets perform their revolutions aronnd their primaries from west to east, at different distances and at different times, the satellites of Herschel only excepted. Beyond these, at an immense distance, are the fixed stars, as centers to other systems.

Some authors inform us that Copernicus finished his great work in 1530; but did not venture it in print till near the time of his death, which happened on the 22d of May, 1543. He died suddenly, by the rupture of a blood-vessel, soon after completing his 70th year, and a few days atter revising the first proof of his work.

Copernicus was an accurate mathematician, and applied his nseful knowledge to the improvement of astronomy. Perplexed with the epicycles and eccentrics by which Ptolemy attempted to account for the irregular motion of the heavenly bodies, he searched the lore of antiquity. "He tried to find among the ancient philosophers a more simple arrangement of the universe. He found that many of them had supposed Venus and Mercury to move round the Sun; that Nicetas, according to Cicero, made the Earth revolve on its axis, and by this means freed the celestial sphere from that inconceivable velocity, which must have been attributed to it to accomplish its diurnal revolution. He learned from Aristotle and Plutarch that the

Pythagoreans had made the Earth and planets move round the Sun, which they placed in the center of the universe. These luminous ideas struck him. He applied them to the astronomical observations, which time had multiplied, and had the satisfaction to see them yield, withont difficulty, to the theory of the motion of the Earth. The diurnal revolution of the heavens was only an illusion due to the rotation of the Earth, and the procession of the equinoxes is reduced to a slight motion of the terrestrial axis. The circles imagined by Ptolemy, to explain the alternate, direct, and retrograde motions of the planets, disappeared. Copernicus only saw in these singular phenomena the appearances prodnced by the motion of the Earth round the Sun with that of the planets; and he determined, hence, the respective dimensions of their orbits, which till then were unknown. Finally, every thing in this system announced that beautiful simplicity in the operations of nature, which delights so much when we are fortunate enough to discover it. Copernicus published it in his work "On the Celestial Revolutions." Not to shock received prejudices, he presented it under the form of an hypothesis. "Astronomers," said he, iu his dedication to Paul III., "being permitted to imagine circles to explain the motion of the stars, I thought myself equally entitled to examine, if the supposition of the motion of the Earth would render the theory of these appearances more exact and simple."

A DEFINITION OF ASTRONOMICAL TERMS.

Altitude is an arc of a vertical circle intercepted between the center of a heavenly body and the horizon.

Amplitude is the distance of a heavenly body from the east or west point of the horizon, measured on an arc of that circle, the body being in it, or referred to it by a verticle.

Antipodes, inhabitants living at opposite points of the Earth's surface, under opposite meridians and in opposite parallels.

Antoci, inhabitants living under the same meridian, but in opposite parallels, north and south.

Aphelion, the point in the orbit of a planet farthest distant from the Sun.
Apsis, the aphelion or perihelion point. The line connecting these is called the line of the apsides.

Arc of a circle, a part or portion of the circumference.
Asteroids, four sinall planets between Mars and Jupiter.
Axis, an imaginary line on which the Sun or a planet revolves.
Azimuth, the distance of a heavenly body from the north or south point of the horizon, when the body is in that circle, or referred to it by a verticle.

Centrifugal force, that by which a revolving body endeavors to recede from the center of its motion.

Centripetal force, that which attracts a revolving body to the center.
Comet, a celestial body moving round the Sun in an orbit very eccentric.
Conjunction, the meeting of heavenly bodies in the same longitude, on the same side of the Earth. though they may not be in the same latitude.

Constellation, a number of stars contained in an assumed figure.
Cosines, cotangents, and cosecants are sines, tangents, and secants of the complement of an arc.

Cycle, a period of time.
Declination, the angular distance of a heavenly body from the equator.
Dichotomized, divided into two parts.
Disk of the Sun or a planet, the hemisphere presented to an observer appearing like a plain circle.

Eccentricity, the distance in a planet's orbit between one of the foci and the center.
Eclipse, a partial or total obscuration of a heavenly body.
Ecliptic, a great circle in which the Earth performs its annual revolution round the Sun, or in which the Sun appears to revolve round the Earth.

Elongation, the angular distance of a heavenly body from the center of its motion; as a planet from the Sun, or a secondary from its primary.

Epact, the excess of the solar above the lunar year of 354 days, or twelve mean lunations. Equator, a great circle of the Earth drawn round the center from east to west.
Equinox, a point in the ecliptic where it is cut by the equator. There are two equinoxes, the vernal and the autumnal.

Focus, a point in the elliptical orbit of a planet, round which it revolves.
Foci, the plural of focus, two points in the transverse axis of a planet's orbit.
Gataxy, the milky way.
Geocentric motion, the apparent motion of a planet as seen from the Earth.
Gibbous, convex, protuberant; applied to the Moon between the first quarter and the full,
or between the full and last quarter; also applied to some of the planets.
Globe, a sphere representing the Earth or visible heavens.
Golden number, a period of nineteen years; the cycle of the Moon.
Heliocentric motion, the motion of a planet as seen from the Sun.

Hemisphere, half of a sphere or globe.
Horizon, a great circle of the Earth, 90° from the zenith of a place, the plane of which divides the Earth into upper and lower hemispheres. This is denominated the rational horizon. The sensible horizon is the circle which bounds our sight.

Inclination, the angular distance between the orbit of a planet and the ecliptic.
Latitude of a heavenly body, its distance north or south from the ecliptic.
Latitude on the Earth, the distance north or south from the equator.
Libration of the Moon, a periodical irregularity in her motion hy which exactly the same face is not always presented to the Earth.

Limits in a planet's orbit, two points farthest distant from the nodes.
Longitude of a heavenly body, its distance on the ecliptic from the first of Aries to the intersection of a secondary passing through the body. It is reckoned eastward 360°.

Longitude on the Earth, the distance east or west from a fixed meridian.
Meridian, a great circle of the sphere, encompassing the Earth from north to south. Half of this is sometimes called a meridian.

Nadir, the point in the heavens directly under the observer, and opposite to the zenith.
Nebulce, telescopic stars cloudy in appearance.
Node, a point at which the orbit of a planet crosses the plane of the ecliptic. The intersection where the planet passes to the north is denominated the ascending node; where it passes to the sonth, the descending node; above being often used for north, and below for south, in astronomical terms.

Oblate spheroid, a spherical body flatted at the poles.
Obliquity, iuclination, the angular distance of a circle from the ecliptic.
Oblique sphere, a position of the sphere in which the equator and parallels cross the horizon in an oblique direction.

Opposition, opposite part of the heavens. Two bodies are said to be in opposition when their distance of longitude is 180°, though they may not be in the same degree of celestial latitude.

Orbit, the figure described by a planet in its revolution round the Sun, or its primary.
Parallax, the angular difference between the true and apparent place of a heavenly body.
Parallel sphere, a position of the sphere in which the parallels of latitude and the equator appear parallel to the horizon.

Penumbra, the partial shadow of the Moon.
Perihelion, the point in the orbit of a planet nearest to the Sun.
Phases, the different appearances of the Moon, Mercury, and Venus, as the illuminated side is differently presented to a spectator.

Phenomenon, appearance, often a novel appearance.
Phenomena, plural of phenomenon.
Planet, a heavenly body revolving round the Snn, or some primary planet.
Plane of a planet's orbit, that imaginary surface in which it lies, or a supposed even surface between every part of its circumference.

Polar circles, two circles drawu round the Earth from east to west, parallel to the equator, about $23^{\circ} 28^{\prime}$ from the poles.

Poles of a planet or the Sun, the extremities of its axis.
Precession of the equinoxes, their retrograde motion in the heavens.
Primary planets, those which perform their revolutions immediately round the Sun.
Projectile force, that which impels a body in a right line.
Quadrature, a quarter, a point in the celestial sphere 90° from the Sun.
Quadrant, the fourth part of a circle.
Radius, a right line from the center of a circle to the circumference.
Refraction, the turning of a ray of light from a straight course.
Retrograde motion, apparent motion from east to west.
Right angle, 90°. When a line falls on another line, making the angles on each side equal, each is a right angle.

Right ascension, the distance of a heavenly body from the first of Aries on the equator, or referred to that circle by a secondary. It is reckoned from the first of Aries to the point where the secondary, passing through the body, cuts the equator.

Secondary planets, satellites, or moons, small planets revolving round some of the primary planets.

Secondary to a great circle, a great circle crossing it at right angles.
Sidereal revolution, the time of a planet's revolving from a star to the same star again.
Sine, a line drawn from one end of an arc perpendicular to the radius.

Solstices, two points in the ecliptic, 90° from the eqninozes.
Star, a luminous heavenly body shining by its own light.
Synodical revolution, the time intervening between the conjunction of a planet with the Sun, and the succeeding conjunction of the same bodies.

Syzygy, the conjunction or opposition of a planet with the Sun, as the change or full of the Moon.
Tangent, a right line touching the circumference of a circle perpendicular to the radius.
Tide, the alternate ebbing and flowing of the sea.
Transverse, the longest axis of an ellipse.
Tropical revolution, the time intervening between a planet's passing a node and coming to the same node again.
Tropics, two circles parallel to the equator, at the distance of about $23^{\circ} 28^{\prime}$.
Twoilight (crepusculum), the partial light before sumrise in the morning and after sunset in the evening.

Vector radius, a line from a planet, in any part of its orbit, to the Sun.
Vertical circles, circles cutting the horizon at right angles, and passing through the zenith and nadir of a place.
Zenith, the point in the heavens directly over the observer. The zenith and nadir are the poles of the horizon.

Zodiacal light, a pyramid or triangular beam of light, rounded a little at the vertex, appearing before the twilight of the morning and after the twilight of the evening.

Zodiac, a broad circle in the heavens between two lines on each side of the ecliptic, and parallel to it at 8° distance.

Zone, literally a belt or girdle; a large division of the Earth's surface.

CHARACTERS.

planets.

¢	Mercury.	7	Ceres.
¢	Venus.	$\hat{8}$	Pallas.
\oplus	Earth.	2	Jupiter.
¢	Mars.	5	Saturn.
景	Vesta.	H	Herschel.
¢	Jnno.		

	signs.		
φ	Aries.	\bumpeq	Libra.
४	Taurus.	TII	Scorpio.
III	Gemini.	7	Sagittarins.
¢	Cancer.	13	Capricornus.
Ω	Leo.	M	Aquarius.
T0	Virgo.	H	Pisces.

S Sign.

- Degree.
, Minute.
" Second.
"' Third.
$=$ Equality.

ASTR0N0MY GENERALLY;

OR,

THE SOLAR SYSTEM.

The Sun with his attendant planets and comets constitute the solar system.

Conceive a large gilt ball suspended in open space, with several smaller balls moving around it from west to east, at different distances and with unequal velocity; imagine those nearest the large ball to have the swiftest motion, and that the movement of the others is more and more slow as you pass to those most remote; imagine further, that several of the revolving balls have others moving round them, and carried with them, or round the central ball, and that all these motions are perpetual, and you will have some imperfect idea of the solar system. The idea will be more complete, if occasionally a ball with a fiery train, or tail, be conceived moving with great velocity in a direction nearly to the central ball; but that, passing round this, it recedes with retarded motion, the train increasing as it draws toward the center, and diminishing as it recedes.

It is important that every instrnctor in astronomy should be furnished with an orrery. To give a clear view of the whole, as suspended and revolving in infinite space, is an object deserving the assiduous care of the well-informed teacher.

Of the Sun.
The Sun is the great source of light and heat to the bodies of the solar system. It is an object pre-eminent-of inconceivable utility and grandeur. Diffusing its rays to an immense distance, and filling a sphere of incomprehensible extent, it gives life and motion to innumerable objects. In some humble measure it resembles its divine Author. The most minute beings are not overlooked; the greatest are snbject to his control.

The Sun is considered in the lower focus of the planetary orbits. But if the center of the Sun be considered the focus of Mercury's orbit, the common center of gravity between Mercury and the Sun will be the focus of Venus's orbit; and the common center of gravity between Mercury, Venus, and the Sun will be the focus of the Earth's orbit. Thus the attraction of the planets nearest the Sun will, in a small degree, affect the foci of those more remote. Except the foci of Saturn and Herschel, however, those of all the orbits will not be sensibly removed from the center of the Sun. Nor will the foci of Saturn and Herschel be sensibly different from the common center of gravity between Jupiter and the Sun.

Though stationary in respect to surrounding objects, the Sun is not destitute of motion. It revolves on its axis from west to east in 25 d .15 h .16 m ., or, according to some authors, in $25^{\circ} \mathrm{d} .10 \mathrm{~h}$. The Sun's rotation is known from the revolution of its spots.

The form of the Sun is globular. This is demonstrable from its always appearing a flat, bright circle, whatever side is presented to the observer. The diameter of the Sun is 883,246 miles; its circumference, $2,774,897$ miles. The Sun is $1,364,115$ times larger than the Earth. Thus, surpassing in greatness the globe we inhabit more than one and a third million times, it swells beyond our conception. Some imperfect idea of the immense magnitude of the Sun may be formed by one or two computations. A celestial courier, passing at the rate of forty miles an hour, would be about one liundred and ninety Julian years in circumambulating the Sun. If the Sun were a hollow globe, and the Earth placed at its center, the Moon, at its present distance from the earth, 240,000 miles, might revolve uninterrupted, being but little more than half way from the center to the circumference of the Sun. Such a hollow globe might, therefore, contain within itself a brilliant system of revolving worlds.

The physical construction of the Sun has excited much inquiry and speculation. From time immemorial, an opinion seems to have prevailed that the Sun was a globe of fire. Some say, "The Sun shines, and his rays, collected by concave mirrors, or convex lenses, burn, consume, and melt the most solid bodies, or else convert them into ashes or gas; wherefore, as the force of the solar rays is diminished by their diverging, in a duplicate ratio of the distances reciprocally taken, it is evident their force and effect are the same, when collected by a burning lens or mirror, as if we were at such a distance from the Sun where they were equally dense. The Sun's rays, therefore, in the neighborhood of the Sun, produce the same effects as might be expected from the most vehement fire; consequently, the Sun is a tiery substance." The force of this reasoning would lead us to conclnde that, however antiquated or repudiated the opinion may be that the Sun is a globe of fire, its surface must resemble a vast combustion.

But if heat come from the Sun, or the moving cause of heat originate in that luminary, why is it always cold in the upper regions of the air, though, nearer the Sm than the surface of the Earth? And why are the tops of lofty mountains covered with perpetual snow, even under the equator? The reply is, that animal heat is generated in the lungs from the oxygen of the atmosphere; that air is a bad conductor of heat, and of course a good defense against cold, or rather preservative of heat, preventing its escape from the body. The more dense the air is, therefore, the warmer is any situation.

The density of the atmosphere is considered as decreasing in a geometrical proportion npward from the surface of the Earth. If the decrease be not always thus proportioned, it is well ascertained by experiments on the tops of lofty mountains, that the air becomes very rare in high regions. Hence the supply of heat from the oxygen of the atmosphere, and the security against cold, or the preservation of heat from the non-conducting power of the air, are greatly diminished. This must affect sensation, and in some degree the thermometer. But this is not the only cause, perhaps not the principal canse, why high regions of the air are cold. According to ehemists, all bodjes, even those to us the most frigid, radiate heat. Hence, on
the common surface of the Earth, uot the great mass of the globe only, but other bodies innumerable, with which we are surrounded, supply us with heat. But the elevated observer on the top of Chimborazo or Himalaya is retired, in some measure, above the influence of the Earth and the bodies on its surface. He must exhaust his own treasure of heat, while, except immediately from the Sun, he can receive next to nothing in return. It may be added that heat, or caloric, is by very many considered a fluid put in action by the Sun's rays. If so, it may be confined near the surface of the Earth, or be far short of the atmosphere in height. On the modern. theory of caloric, therefore, elevation must greatly diminish, rather than increase the heat.

The highest elevatiou to which luman beings can ascend, though quite a proportion in regard to the leight of the atmosphere, vanishes, when compared with the distance of the Sun. What are four or five miles in comparison to ninety-five millions! No mountain is so elevated, no balloon can ascend so high as to make any perceptible difference in respect to the distance of the Surn.

In regard to the ancient theory, it is worthy of notice that the powerful attraction of the Sun is incompatible with its being a mass of flame only, and the spots on its surface are conclusive that in part, at least, it must be composed of other matter.

The celebrity of Dr. Herschel, and the ingenuity of his hypothesis respecting the Sun, make this hypothesis deserve some particular consideration. Rejecting the terms spots, nuclei, penumbroe, faculo, and luouli, he adopts openings, shallows, ridges, nodules, corrugations, indentations, and pores. Openings, he says, are those places where, by the accidental removal of the luminous clouds of the Sun, its own solid body may be seen; and this not being lucid, the openings, through which we see it, may by a common telescope be mistaken for mere black spots.

Shallows are extensive and level depressions of the luminous solar clouds, generally surrounding the openings to a considerable extent. Being less luminous than the rest of the Sun, they seem to have some very imperfect resemblance to penumbræ, which occasioned them formerly to be so called.

Ridges are elevations of luminous matter, extended in rows of irregular arrangement.

Nodules are also elevations of luminous matter, but confined in extent to a small space. Those ridges and nodules being brighter than the general surtace of the Sun, and slightly differing from it in color, have been called luculi and faculoc.

Corrugations are a remarkable unevenness or asperity peculiar to the luminous clouds, extending over the whole apparent surface of the Sun. The depressed parts of the corrugations being less luminous than those more elevated, the disk of the Sun has a variegated or " mottled" appearance.

Indentations are the low or depressed parts of the corrugations.
Pores are very small openings about the middle of the indentations.
By a number of observations, he would evince that the appearances, called spots in the Sun, are real openings in the luminous clouds of the solar atmosphere.

His next series of observations is adduced to prove that the appearances which have been called penumbroe are real depressions or shallows. Following these are others, alleged to show that ridges are elevations above the
luminous solar clouds; that nodules are small but highly elevated luminous places; that corrugations consist of elevations and depressions; that indentations are dark places of the corrugations; and that pores are the low places of indentations. He hence infers that the several phenomena, above enumerated, could not appear if the Sun's shining matter were a liquid; since, by the laws of hydrostatics, the openings, shallows, indentations, and pores would instantly be filled up, and ridges and nodules could not preserve their elevation a single moment. But many openings have been known to last during a whole revolution of the Sun; and elevations large in extent have continued for several days. Much less can this shining matter be an elastic fluid of an atmospheric nature; because this would be still more ready to assume a level by filling up the low places. It must, therefore, exist in the manner of luminous, empyreal, or phosphoric clouds, suspended in the higher regions of the solar atmosphere.
"It appears highly probable," says Dr. Brewster, "and consistent with other discoveries, that the dark, solid nucleus of the Sun is the magazine from which its heat is discharged, while the luminous or phosphorescent mantle, which that heat freely pervades, is the region whence its light is generated." The high authority of these men does not free their hypotheses from objection. If the spots are openings only in the luminous clouds of the Sun, why are they stationary for so long a time, except as they partake of the Sun's rotation? and why should heat be emitted from the dark body of the Sun, and not from its luminous mantle, when that mantle has so much the appearance of flame, from which heat is generally diffused on the earth? But inrestigations into the nature of the Sun must be attended with so mnch uncertainty that, perhaps, no theory on the subject can be free from objection.

Much light has been thrown upon heat or caloric by the improvements of modern chemistry. But satisfactory conclusions concerning its nature cannot be drawn. Lord Bacon considered leat " the effect of an intestine motion, or mutual collision of the particles of the body heated, an expansive undulatory motion in the minute parts of the body." Count Rumford's experiments seemed to show that caloric "was imponderable, and capable of being produced ad infinitum from a finite quantity of matter." He concluded, that "it must be an effect arising from some species of corpuscular action among the constituent parts of the body." Other chemists consider it " an elastic fluid."

Mr. Dick, a Scotch author of much ingenuity, in his "Christian Philosopher," has a note on the planet Mercury, deserving consideration. "From a variety of facts, which have been observed in relation to the production of caloric, it does not appear probable that the degree of heat on the surfaces of different planets is inversely proportional to the square of their respective distances from the Sun. It is more probable that it depends chiefly on the distribution of the substance of caloric on the surfaces, and throughont the atmospheres of these bodies, in different quantities, according to the different situations they occupy in the solar system; and that these different quantities of caloric are put into action by the influence of the solar rays, so as to produce that degree of sensible heat requisite for each respective planetary globe. On this hypothesis, which is corroborated by a great variety of facts and experiments, there may be no more sensible heat felt on the surface of the planet Mercury than on the surface of Herschel, although
one of these bodies is nearly fifty times nearer the Sun than the other. We have only to suppose that a small quantity of caloric exists in Mercury and a larger quantity in Herschel, proportionate to his distance from the center of the system. On this gronnd we have no reason to believe either that the planets nearest the Sun are parched with excessive heat, or that those that, are most distant are exposed to all the rigor of insufferable cold; or that the different degrees of temperature which may be found in these bodies render them untit for being the abodes of sensitive and intellectual beings."

This theory of caloric is modern and popular; but, like others on the same subject, does not command unqualified assent. If heat be a fluid only, why is it radiated by all bodies? and why, reflected, does it pass from object to object in rays, a manner so dissimilar to the movement of other fllids? It may be that the learned world must be content, as in attraction, with knowing the operations of heat, without being able to investigate its nature.

Any uncertainty respecting caloric must rest on the physical construction of the Sun, the prime agent of heat in whatever way produced. From what has been said of solar clouds, it must be apparent that some authors consider the Sun surrounded by an atmosphere of vast extent. They ground their opinion prucipally on the authority of Dr. Herschel, supported by his observations. "The height of the atmosphere he computes to be not less than eighteen hundred forty-three, nor more than two thousand seven hundred sixty-five miles, consisting of two regions; that nearest the Sun being opaque, and probably resembling the clonds of our Earth; the outermost emitting vast quantities of light, and forming the apparent luminous globe we behold."

Harriot, an Englishman, or Fabricius, a German, first discovered the spots on the Sun about the year 1610. According to some authors, they were first seen by Galileo or Scheiner. An account of his observations of them was published by Fabricius in 1611. The spots are various in shape and magnitnde. Some lave been observed large enough to cover the whole eastern continent, Europe, Asia, and Africa; some to cover the surface of the whole Earth; and one was observed by Dr. Merschel, in 1799, computed to be more than fifty thousand miles in diameter. In most of them there is a very dark nucleus, surrounded by an umbra, or fainter shade. A distinct and well-defined boundary intervenes between the numba and nucleus. The part of the umbra nearest the dark nucleus is generally brighter than that portion which is more distant.
\AA spot on the Sun appears at the Earth to perform a revolution round the Sun from west to east in a little more than twenty-seven davs-a period longer than the time in which the Sun revolves on its axis. The excess is occasioned by the motion of the Earth in its orbit. The spots on the Sun are generally confined to a zone extending about 35° each way from the solar equator. None have been seen nearer the poles than the solar latitude of $39^{\circ} 5^{\prime}$.

The Sun rarely appears pure and unsullied by spots. Sometimes, however, none are seen on his disk for several years in succession. From the year 1676 to the year 1684, not a single spot was seen on the Sun.

Of Mercury.

Mercury is the planet nearest the Sun-so it is still considered, after the
most accurate modern discoveries. It shines by a very brilliant and whitc light; but the short period in which it can be viewed, and the position of its body seen through the mists of the horizon, have prevented important discoveries being made on its surface. Of all the planets Mercury is the most swift in its motion. On this account the name was given to it by the ancients, after " the nimble messenger of the gods." It was "represented by the figure of a youth with wings at his head and feet; whence is derived $\not \boxed{\sigma}$, the character by which it is commonly represented," So great is the velocity of this planet, that it performs more than two revolutions to one of Venus, and, commencing at a conjunction, would pass the Earth three times before it would complete a period, the synodic revolution of Mercury, as seen by us, being 115 d .21 h .3 m .34 s .

The mean diameter of the Sun, as seen from Mercury, is $1^{\circ} 22^{\prime}$. His mean distance from the Sun is to that of the Earth about as 4 to 10.3. The intensity of the light and heat of the Sun at Mercury must be about as 6.6 to 1 at the Earth, being inversely as the squares of the distances.

The heat of the Sun at Mercury was found, by Sir Isaac Newton, sufficient to make water boil. Hence, beings constitnted like the inhabitants of this Earth, cannot endure the climate of Mercury, if Sir Isaac was right, and the degree of heat be in proportion to the proximity of the planet to the Sun. But, from what has been before considered, the circumstances of caluric and atmosphere may be so diversified; they may be so rare at the surface of Mercury, as to render the climate of this planet not only tolerable, but salubrions-a comfortable abode tor animal life. This, bowever, we know, that, with infinite ease, the Deity could form constitutions suited to any situation or climate, destined by him for the creatures of his care.

The surface of Mercury contains nearly thirty-two millious of square miles. It may therefore sustain a population far more numerous than the present inhabitants of the Earth.

According to Dr. Herschel, Mercury is equally luminous in every part of his body, having neither dark spots nor uneven edge, but a disk well defined in every part. Mr. Schroeter, on the contrary, pretends to have discovered in this planet not dark spots only, but mountains. On the authority of the latter observer rests the discovery of a revolution of Mercury on his axis.

ELEMENTS OF MERCURY.

- Diameter, 3,180 miles.

Mean diameter, as seen from the Sun, $16^{\prime \prime}$.
Inclination of its orbit to the ecliptic, $7^{\circ} 0^{\prime} 1^{\prime \prime}$.
Tropical revolution, 87 d .23 h .14 m .33 s.
Hourly motion in orbit, 110,113 miles.
Diurnal rotation, according to Schroeter, 24 h. 5 m. 28 s.
Mean distance from the Sun, $37,000,000$ miles.
Eccentricity, 7,557,630 miles.

Of Venus.

Venus is to us among the most brilliant of the luminaries seen in the nocturnal heavens. She appears west of the Sun from her inferior to her superior conjunction, and, rising before him, is called Phosphor, Lucifer, or the morning star. Appearing east of the Sun from her superior to her inferior conjunction, she sets after him, and is called Hesperus, Vesper, or
the evening star. She is in rotation east or west of the Sun about 292 days; but, obscured by his light when near that luminary, she is not visible quite so long. It is said that, before the time of Pythagoras, the morning and evening stars were supposed to be different, and that he first discovered them to be the same.

The apparent motion of Venus round the Sun is retarded by the motion of the Earth in its orbit, both being in the same direction. Her real revolution is performed in 224 d .16 h .49 m .15 s . ; her apparent or synodic, in 583 d .22 h .7 m .20 s . She appears, therefore, east or west of the Sun longer than the whole time of a revolution in her orbit.

The bright side of Venus is turned nearly or quite toward us at her superior conjunction; but she is then invisible, being near the Sun, or hidden behind his body. When visible, and the illuminated part nearly round before or after that conjunction, she appears small, on account of her great distance.

Venus shines with a light extremely pleasant. Her silver brightness far surpasses that of the Moon, and is unequaled by any of the heavenly luminaries, except sometimes by Jupiter, or by Sirius, the most brilliant of the "starry train." Venus may occasionally be seen in the daytime by the naked eye. The obstruction of her morning and evening light frequently causes shadows, well defined, like those of a new moon.

Dr. Herschel observed spots on Venus. To him she appeared much brighter round her limb than at the intervening line between the enlightened and dark part of her disk. From this he concluded that Venus, like the Earth, had an atmosphere, and that it was more luminous than the body of the planet. The height of this atmosphere, according to the computation of some, is about fifty miles. Such computation, however, ought to be received with great allowance for uncertainty. The surface of the planet being enveloped in her atmosphere may be the reason that so few spots have been seen on her disk.
"Mr. Schroeter," says Dr. Brewster, "seems to have been very successful in his observations upon Venus; but the results which he has obtained are more different than could have been wished from the observations of Dr. Herschel. He discovered several mountains in this planet, and found that, like those of the Moon, they were always highest in the southern hemisphere; their perpendicular heights being nearly as the diameters of their respective planets. From the 11th of December, 1789, to the 11th of January, 1790 , the southern hemisphere of Venus appeared much blunted with an enlightened mountain, in the dark hemisphere, nearly twenty-two miles high." He states the result of four mountains measured by him:

$$
\left.\begin{aligned}
& \text { First, } \\
& \text { Second, . . . } \\
& 22.05 \text { miles. }
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Third, } \\
& \text { Fourth, } \\
& \hline 10.84
\end{aligned}
$$

The bluntness and sharpness, alternately apparent in the horns of Venus, arise, he supposes, from the shadows of high mountains.

From the changes which appear in her dark spots, and, as inferred by Mr. Schroeter, from the illumination of her cusps when she is near her inferior conjunction, the atmosphere of Venus is considered very dense.

The diameter of Venus has been considered about 220 uniles shorter than that of the Earth. Bnt it appears from the measnrements of Dr. Herschel that her apparent mean diameter, reduced to the distance of the Earth, is
$18{ }^{\prime \prime} .79$, that of the Earth being 17 ".3. "This result," says Dr. Brewster, "is rather surprising; but the observations have the appearance of accuracy."

ELEMENTS OF VENUS.

Inclination of her orbit to the ecliptic, $3^{\circ} 23^{\prime} 32^{\prime \prime}$. Diameter, 7,687 miles. Mean diameter, as seen from the Sun, $23^{\prime \prime} .3$. Tropical revolution, 224 d. 16 h .46 m .15 s . Sidereal revolntion, 224 d. 16 h .49 m .15 s. Hourly motion in orbit, 79,226 miles. Diurnal rotation, 23 h .20 m .59 s .
Mean distance from the Sun, $68,000,000$ miles.

Of Mercury and Venus.

Mercury and Venus are both constant attendants on the Sun ; in the one part of their course, being the harbingers of the morning; in the other, brightening the vail of evening with their setting splendor. Often seen in conjunction with the Sun, but never in opposition, they form a demonstration of the trith of the Copernican system.

The inferior conjunction of Mercury or Venus is, when the planet comes between the Earth and the Sun, or so near the connccting line between them as the obliquity of its orbit will admit. It is, when referred to the ecliptic, in the same longitude with the Sun, though it may be farther north or south. The superior conjunction of either of these planets is, when the planet, in that part of its orbit most distant from the Earth, comes into the same longitude with the Sun. It is then either hidden behind the great luminary, or passes by it on the north or south.

Mercury and Venns are called inferior planets, because their orbits are nearer the Sun than the orbit of the Earth.

When an inferior planet is at its greatest elongation, a line passing from the Earth through the planet is a tangent to the planet's orbit. The greatest elongation of Mercury is $28^{\circ} 20^{\prime}$; of Venus, $47^{\circ} 48^{\prime}$. The orbit of these planets being elliptical, the greatest elongation on one side of the Sun may not be equal to that on the other side.

Mercury, like Venus, is alternately morning and evening star, though not gencrally thus known. Like Venus, being west of the Sun from the into ferior to the superior conjunction, it rises before him in the morning; from the superior to the inferior, east of the Sun, it sets after him in the evening.

The apparent motion of the inferior planets is greatest at the conjunetions. From the greatest elongation on one side to the greatest elongation on the other, through the superior conjunction, their geocentric motion is direct; through the inferior conjunction, this motion is retrograde. At their greatest elongation, they appear stationary in respect to the Sun. A small part of the orbit nearly coinciding with the tangent line, and the eye of the observer being in that line, the motion of the planet must be either toward such observer or from him, and, of course, must be imperceptible.

The retrograde motion of Mercury, in regard to the fixed stars, does not commence when the planet is at the greatest elongation east, nor does it continne till the planet is at the greatest elongation west of the Sun. For at these greatest elongations, the planet will appear to move forward with the same velocity as the Sun appears to advancc by the motion of the Earth in
its orbit. The stationary appearance, in relation to a fixed star, must be, when the geocentric westerly motion of the planet counterbalances the Sun's apparent easterly motion.
Venus, like Mercury, has her stationary appearance, her direct and retrograde motion.
We are told by Ryan, in his "Grammar of Astronomy," that "the different phases or appearances of Venus were first discovered by Galileo, in 1611, which fulfilled the prediction of Copernicus, who foretold, before the discovery of the telescope, that the phases of the inferior planets would be one day discovered to be similar to those of the Moon. The accomplishment of this prediction affords some of the strongest and most convincing proofs of the truth of the Copernican system.

One half of each of the planets is illuminated by the Sun. Thus it has been miniformly said by authors. On strict examination, however, it will be seen that a fraction more than a hemisphere is illumined, the Sun being a much larger body than any of the planets. The enlightened side of Mercury and Venus are turned from the Earth at their inferior conjunctions. In these conjunctions, when at or very near their nodes, they appear as dark spots passing over the Sun's disk. At other times, invisible to us, they pass the Sun unobserved. They appear nearly full at their superior conjunctions; but never completely so, as their enlightened side is never turned directly toward us, except at the nodes, when they are hidden behind the body of the Sun.

Of the Earth.

Next to Venus, in the solar system, is the Earth. This is the planet by far the most worthy of our attention; though astronomy forbids us fully to adopt the language of the poet:

> "Through worlds unnumbered, though the God be known, 'Tis ours to trace him only in our own."

The Earth affords sustenance to innumerable animated beings which people its surface. It is our habitation in life, and kindly covers our remains when the parting spirit has taken its flight. In its peaceful bosom our dust must slumber, till called forth by "the voice of the archangel and the trump of God."

The Earth is spherical in its form. It is not, however, a complete globe. Elevated at the equator, and flattened at the poles, its form is an oblate spheroid, resembling, in some degree, the well-known English turnip.

Of the rotundity of the Earth any person may satisfy himself. The clouds at a distance appear to rise from the horizon, or to sink below that circle, which they could not do were the Earth an extended plain. If, in a level country, a person travel north for many miles, he will find, by accurate observation, the north star rising, and discover other stars unseen at his former station. If he go south, these stars will be depressed, and southern stars will rise to his view.

The masts and sails of a ship at sea are seen by a spectator on land, when the holl is hidden behind the convex surface of the water. Were the surface level, the hull, being largest, would first appear.

The ontline of the Earth's shadow, seen in partial eclipses of the Moon, is circular. This it could not be were not the Earth of a spherical form.

For, as it presents different sides to the Sun in different eclipses, and even in the same eclipse, the outline of the shadow would be different, in conformity to the original.

The spherical figure of the Earth is placed beyond all doubts by its having been many times circumnavigated.

The true form of the Earth, its spheroidical figure, was first discovered by the pendulum, a longer line being required to vibrate seconds toward the poles than at the equator. Some diversity in the proportion of the diameters is found in different authors. This is not wonderful in a case requiring so much nicety of observation. The excess of the eqnatorial diameter over the polar has been stated at twenty-four, thirty-four, and thirty-seven miles. In "Rees's Cyclopedia," the equatorial diameter is reckoned at 7,977 , the polar at 7,940, considered by the author but " an approximation to a true estimation." In the "Practical Navigator" of Dr. Bowditch, the diameter is considered 7,964 . Thus the mean diameter will be considered in this compend.

The errors of antiquity, of childhood, and ignorance, in considering the Earth an extended plain, or unbounded in its dimensions, are corrected by philosophy. Its true form is now well-known to the scientific world. But the astronomical student is in danger of verging to the opposite extreme. When he considers the Earth as a planct, greatly inferior in magnitude to several wandering orbs of his own solar system-immensely less than the Sun ; and the Sun but a speck in the Creator's works-he seems to contract its true dimensions, and to be insensible that still, to its inhabitants, it is a globe of vast magnitude ; of which, and its kindred orbs, it may be truly said, "these little things are great to little man." Considering the diameter of the Earth 7,964 miles, the circumference is about 25,020 miles, and the superficial contents, or surface, $199,259,280$ square miles.

The equator is an imaginary circle encompassing the Earth from east to west; the plane of the circle dividing it into northern and southern hemispheres.

The ecliptic is a great circle, in which the Earth performs its annual revolution; or in which the Sun appears to perform an annual revolution round the Earth. It is divided into twelve equal parts, denominated the twelve signs of the ecliptic, each containing 30° : Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricornus, Aquarius, and Pisces.

The plane of the equator is inclined to the ecliptic in an angle of about 23° 28'. (See Obliquity).

The division of the Earth's surface into zones is not imaginary, but has a foundation in nature. The torrid zone comprehends all that region where the Sun is vertical at any season of the year. The temperate zones spread over the whole of the Earth's surface, from the tropics to the extreme limit of continual and successive day and night, the Arctic and the Antarctic circles being drawn at the bound, where the longest day is twenty-four hours. At that bound the Sun does not appear to set at the summer solstice, nor to rise at the winter solstice.

The frigid zones are enveloped in light and darkness in alternate succession. The Sun, at its greatest declination north, shines over the north pole to the Arctic circle. The whole northern frigid zone is then illuminated, and, by the diurnal motion of the Earth, revolves. wholly in the light. The southern frigid zone, precluded from the Sun's rays, is then involved in en-
tire darkness. When the Sun is in his greatest declination south, shining over the south pole to the Antarctic circle, the southern frigid zone is enlightened; the northern, abandoned by the Sun, is shrouded in darkness. The continuance of light or darkness in the Arctic and Antarctic regions is longer, the nearer any place is to either pole, where the day and the night continue alternately for six months; except the greater prevalence of light from refraction and other causes.

The Earth has three motions: its diurnal rotation on its axis; its annual motion in its orbit round the Sun; and the revolution of its axis round the poles of the ecliptic.

The rotation of the Earth on its axis is performed in 23 h .56 m .4 s . or one sidereal day. This is a most uniform notion. By bringing the different parts of the Earth to the Sun in succession, it produces day and night. Given to this Earth, at its creation, by an all-benevolent Oreator, it continues a constant return of blessings to his dependent creatures. This motion is from west to east. It causes the apparent revolution of the heavenly bodies in a contrary direction, from east to west.

Different parts of the Earth, in this rotation, move with unequal velocity. Greatest at the equator, it decreases toward the poles, as the cosines of the latitude decrease. A place in Borneo or the Colombian Republic, at the equator, moves about 1,042 miles an hour; Washington city, 811 miles; Boston 770 miles; London, 649 miles; St. Petersburg, 522 miles; an inhabitant of Greenland, in latitude 80°, only 181 miles. When this motion is on the side of the Earth opposite the Sun, it nearly coincides with the immense velocity of the Earth in its orbit. By this motion the centrifugal force of an object near the equator is greater than at any parallel of latitude. This, as well as its distance from the center of gravity, causes objects to be lighter at the equator than near the poles. The farmer and mechanic know that the water on a grindstone, turned swiftly round, rises toward the highest part, and flies off by increased velocity. A similar effect would be produced on the Earth, were the motion sufficiently increased. "If," says Dr. Enfield, "the diurnal motion of the Earth round its axis was about seventeen times faster than it is, the centrifugal force wonld, at the equator, be equal to the power of gravity, and all bodies there would entirely lose their weight. But if the Earth revolved still quicker than this, they would all fly off."

The circles, which the heavenly bodies appear to describe by this motion of the Earth on its axis, assume a different position as seen from different parts of the Earth's surface; the great concave of the heavens, or celestial sphere, changing its appearance, as differently viewed by the spectator.

At the equator the inhabitants have a right sphere, all the heavenly bodies appearing to rise and set at right angles to the horizon. The celestial equator passes through the zenith and nadir. The poles are in the horizon.

From the equator to the poles, the inhabitants have an oblique sphere. The apparent circles, or circles formed by the apparent motion of the heavenly bodies, are oblique to the horizon; but forming angles with it less as they are farther from the equator; till, at the poles, they become parallel to the horizon, or coincide with that circle. To a person passing from the equator toward either pole, the pole-star of his hemisphere appears to rise, and, at a distance from the equator, the stars, the same distance from his
elevated celestial pole, do not set, but appear to revolve in circles greater as they are farther distant from the pole.

The Earth makes a complete revolution round the Sinn, or from a star to the same star again, in 365 d .6 h .9 m .12 s . This is called the sidereal year. From an equinox or a solstice to the same again, it revolves in 365 d .5 h . 48 m .51 s . This is usually called the tropical year; but sometimes the equinoctial or solstitial year. It is nsually reckoned from the first degree of Aries, but may be computed from any other point of the ecliptic. The Earth performs a revolution, from the aphelion of its orbit to the same again, in 365 d. 6 h. 14 m .2 s .

The mean distance of the Earth from the Sun has been found to be about $95,000,000$ miles. This was ascertained by observations made on the transit of Venus, in the year 1761. Prior to these observations, the distance was considered much less. But their accuracy, confirmed by those on the transit of 1769 , seems now to command the full assent of the philosophic world. Taking the distance as now reckoned, it makes the diameter of the Earth's orbit $190,000,000$ miles, and the circumference $569,902,100$ miles, about equal to the elliptical orbit. The earth, moving this immense distance in a year, must travel more than 68,000 miles every hour. All the inhabitants of the Earth are carried at this inconceivable velocity, one hundred and forty times greater than that of a cannon-ball, in their perpetual movement round the Sun. Even this velocity is increased, on a part of each day, by the motion of the Earth on its axis. It may shock the credulity of those who are unaccustomed to philosophical observation, that a motion of such velocity shonld be imperceptible. But we must take notice, that terrestrial objects around the observer, even the atmosphere, move with him in the same direction; so that with the heavenly bodies only can he compare his motion. By observation on those bodies, the motion of the Earth is ascertained beyond the slightest doubt of the astronomical student. But this motion, if wonderful, is not altogether singular. The passing of a vessel on still water is imperceptible, except from meeting the air, and the apparent motion backward of surrounding objects, till it strikes the shore or other obstruction. No motion on the stillest water is so uniform and even as that of the Earth in its orbit.

The retrograde motion of the axis of the Earth round the poles of the ecliptic causes the difference between the tropical and sidereal years. The equinoxes are annually carried backward, from east to west, $50^{\prime \prime} .118$ in a year. Thus, in every year, they meet the Sun 20 minutes 24.4 seconds before the Earth arrives at the point in the heavens whence it started at the commencement of the year. This retrograde motion is called the precession of the equinoxes. With the equinoctial points move all the signs of the ecliptic. "It follows, that those stars which, in the infancy of astronomy, were in Aries, are now in Taurus; those of Taurus, in Gemini. Hence, likewise, it is, that the stars which rose or set at any particular season of the year in the times of Hesiod, Eudoxus, Virgil, or Pliny, by no means answer at this time to their descriptions." An example of the change may be seen on our celestial globes. The constellations are placed 30° from the signs to which they originally belonged. This change of place shows the motion of the equinoxes for 2,154 years. A complete revolution of the signs requires a period of 25,858 years. Hence, the pole-star, or the north pole, as it is called, will not always be the point to which the pole of the

Earth will be directed; but in something more than 12,000 years will be about 47° from the pole of the Earth, and when on the meridian will be in the zenith of some parts of New England.

How should the contemplation of these celestial motions and long periods constrain us to improve the short, fleeting moments of time assigned to us; and lead us to admire and adore the wisdom and power of Him who formed and still governs the universe with infinite ease; to whom "a thousand years are as one day!"

The Moon.

The Earth has one satellite, the Moon. This constant attendant is distant from the Earth 240,000 miles. The Moon, though inferior to most of the heavenly bodies, next to the Sun is to us by far the most interesting. By dispelling the gloom of night, she is the solace of the weary traveler; and by constantly changing her countenance, she gives variety and beauty to the nightly canopy.

The Moon performs a revolution round the Earth, from a point in the ecliptic to the same again, in 27 d .7 h .43 m .5 s ; from a star to the same again, in 27 d .7 h .43 m .12 s . It revolves from the Sun, to the Sun again, in 29 d .12 h .44 m .3 s . This is called a mean lunation, and is a synodical revolution. The Moon always presents the same face to the Earth. Hence in the same time that it performs a revolution, it must revolve on its axis, unless the different sides of the Moon present the same prospect. That there should be a uniformity of appearance in the different sides of the Moon seems very improbable. Astronomers seem agreed in the coincidence of its revolutions; or that it revolves on its axis in the same time that it performs a revolution round the Earth. If this opinion be correct, it must be considered that the side of the Moon next to the Earth is composed of matter more dense than that of the opposite side; and that the powerful attraction of the Earth causes it to revolve on its axis.

Several authors have asserted that the Moon performs a revolution in $29 \frac{1}{2}$ days; and, in immediate connection, that it turns on its axis in the same time that it performs a revolution. The latter assertion is true; but it is in the time of the sidereal revolution, 27 d .7 h .43 m .12 s , and not in the synodical, or a lunation, about $29 \frac{1}{2}$ days.

The diameter of the Moon is 2,180 miles. But it can be but 2,173 miles if its apparent diameter be $31^{\prime} 8^{\prime \prime}$, as stated by De la Lande.

The Moon, like the other planets, is opaque, shining only by the reflected light of the Sun. The side of the Moon which is next to the Sun is enlightened, the other half dark and invisible. Hence, when she comes between us and the Sun, she is not seen, her dark side being then toward us.

When she is advanced a little way in her orbit, a small part of her illumined side becomes visible in the form of a beautiful luminous crescent. This is called the new Moon. When she has performed one fourth of a lunation, her illuminated side becomes dichotomized, or one half of the bright side becomes visible. She is then said to be in her first quarter. From this time to her opposition, she is said to be gibbous, presenting still more of her illuminated side as she moves forward, or becoming more protuberant. When she becomes opposite to the Sun, nearly the whole of her enlightencd hemisphere is presented to the Earth. She is then said to be full; and is called the full Moon. It must be remembered, however, that the bright
side of the Moon is never exactly toward us, as she is never directly opposite to the Sun, except in her nodes, when she falls into the Earth's shadow, and is eclipsed. From the full to the change, the Moon passes in a retrograde order through the same phases; first gibbous, then dichotomized in her last quarter, then horned, till, coming between the Earth and the Sun, she again becomes invisible.

The dark parts of the Moon attract the attention of the most careless observer. Hence "the man in the Moon" is familiar to boyhood, and common to the unlearned. These dark parts were formerly thought to be seas, but are now considered dark cavities not reflecting the light of the Sun.

The light of the Moon is exceedingly soft and cheering; but is little in the extreme compared with that of the Sun. In this authors are agrecd. But, from their different modes of computation, they have come to different results, and made considerable difference in the disproportion between the lunar and solar lights. Dr. Hooke, accounting for the reason why the the Moon's light affords no perceptible heat, observes, "that the quantity of light which falls on the hemisphere of the full Moon is rarefied into a sphere, two hundred and eighty-eight times greater in diameter than the Moon, before it arrives at ns."

The uniformity of the Moon's visage, or its exhibiting always the same face, is subject to some alteration. Spots on the east and the west, on the north and the south of the Moon, appear and disappear in rotation. The phenomena are produced by the Moon's librations. These are of four kinds. The diurnal motion of the Earth on its axis, carrying the spectator farther north or south, canses the daily libration of the Moon.

The libration of the Moon in longitude is caused by her uniform motion round the Earth.

The libration of the Moon in latitude is caused by the inclination of her orbit to the plane of the ecliptic.

The other is a small libration, caused by the attractive force of the Earth on the spheroidical figure of the Moon.

Of Mars.

Mars, in distance from the Sun, is next to the Earth in the solar system. The red, fiery color of this planet attracted the attention of the ancients. Hence they gave it the name of their god of war. Hence also it "is usually represented by this character, \hat{o}, which is said to be rudely formed from a man holding a spear protruded, representing the god of war."

Some have thought the color of Mars may arise from his being of a nature suited to reflect the red rays of light. But the prevailing opinion is, that it arises from the extended and dense atmosphere of the planet. The color of a beam of light, passing throngh a dense medium, inclines to red; the color always being brightened in proportion to the density of the medium and the distance passed. The red, the least refrangible rays, seem more strong and vigorous than the violet, the most refrangible rays. The former will traverse an atmosphere, when the latter will be absorbed or diverted. Hence the ruddy appearance of this planet and of the Moon eclipsed; and hence the beautiful tinge of the morning and evening clouds.

In 1665 , Dr. Hooke discovered spots on Mars. From a motion perceived in these, he concluded this planet had a rotation on its axis. In $1666, \mathrm{Mr}$. Cassini observed spots on Mars. By diligent observation on these, at differ-
ent times, he ascertained that Mars performed a revolution round his axis in 24 hours 40 minutes.

ELEMENTS OF MARS.

Mean diameter, 4,189 miles.
Mean diameter, as seen from the Sun, $6^{\prime \prime}$.
Inclination of his orbit to the ecliptic, $1^{\circ} 51^{\prime} 4^{\prime \prime}$.
Tropical revolution, 686 d .22 h .57 m .58 s.
Sidereal revolution, 686 d. 23 h .30 m .35 s.
Diurnal rotation, 24 h .40 m .
Mean distance from the Sun, $144,000,000$ miles.

Of the Asteroms.

pallas.

Pallas, discovered by Dr. Olbers on the 26th of March, 1802, is in magnitude nearly the same as Ceres, but of a color less ruddy. It is surrounded with nebulosity, similar in appearance to that of Ceres, and extended to a height almost cqual. In the eccentricity of its orbit, it resembles Juno. Pallas is distinguished from all the other primary planets by the great inclination of its orbit to the plane of the ecliptic, being about 35°; nearly five times the inclination of Mercury's orbit.

Mean diameter of Pallas, according to Herschel, 80 miles.
Mean diameter of Pallas, according to Schroeter, 2,099 miles.
Mean distance from the Sun, $265,000,000$ miles.
Inclination of its orbit, $34^{\circ} 39^{\prime} 0^{\prime \prime}$.
Tropical revolution, 4 y. 7 m .11 d .
Much labor and ingenuity have been employed to show that the Asteroids are but fragments of a larger planet burst asunder by some vast explosion. The hypothesis seems not supported by conclusive arguments. Against it there are strong reasons. The idea itself of such an explosion seems extravagant beyond conception. How vast must have been the force which could throw such bodies from each other to a distance of forty millions of miles; or so as to revolve in orbits forty millions of miles distant! Immense is the explosive force of Hecla, throwing lava or cinders to the distance of one hundred and fifty miles. But how diminutive! How are all the explosions of Vesuvius and Hecla, of Etna and Cotopaxi, aunihilated in comparison! Had these Asteroids constituted but one planet since the first attention to the heavenly bodies, it would have been seeh by ancient astronomers, being sufficiently large for observation by the naked eye. It would have been enumerated among the planets. It may be added that the vast atmosphere of some of these planets, which would without doubt have been left behind in such an explosion, seems directly opposed to the idea of their having been hurled from a bursting planet.

Of Jupiter.

Beyond the Asteroids, or farther distant from the Sun, is Jupiter, the largest of the planets. Jupiter, next to Venus, is the most brilliant of the planets. He sometimes even surpasses her in brightness. The form of Jupiter is an oblate spheroid, his equatorial diameter being to his polar as 14 to 13.

The character $2 f$, by which this planet is represented by astronomers, is a zeta, the first letter of his Greek name, Zeus; the lower part cut off by a small line drawn across as a sign of abbreviation.

The most remarkable phenomena in the disk of Jupiter are a number of belts or stripes by which he is encompassed. These appear variable at different times, and even at the same time, viewed by telescopes of different powers. Yet they generally appear parallel to each other, and parallel to the equator of Jupiter. In very favorable weather, they sometines seem formed of a number of curved lines, like the strokes of an engraving. Eight or ten belts have been scen at the same time. The belts have been observed at times of different breadths, and have afterward all assumed nearly the same breadth. Bright and dark spots are frequently visible in these belts. Like the belts, the spots are subject to continual change. When a belt vanishes, the contiguous spots disappear. Some of the spots, however, seem to make periodical returns. The spot first observed by Cassini reappeared eight times between the years 1665 and 1708 . In 1713, it again reappeared in the same form and position. In 1780, May 28, the disk of Jupiter was observed by Dr. Herschel covered with snall curved belts, or rather lines not contiguous.

Different opinions are formed by astronomers respecting the canse of these appearances. By some they are considered the effect of changes in the atmosphere surrounding Jupiter, while they are regarded by others as indications of great physical revolutions on the surface of the planet. By others, again, it is supposed that the clouds of Jupiter, partaking the great velocity of his diurnal motion, are formed into strata, parallel to his equator, that the clouds reflect more light than the body of Jupiter, and that the belts are the body seen through the parallel interstices of the clouds. "But whatever be the nature of these belts," says Mr. Dick, " the sudden changes to which they are occasionally subject seem to indicate the rapid operations of some powerful physical agency-for some of these are more than five thousand miles in breadth-and, since they have been known to disappear in the space of an hour or two, and even during the time of a casual observation, agents more powerful than any with which we are acquainted must have produced so extensive an effect."

ELEMENTS OF JUPITER.

Mean diameter, 89,170 miles.
Mean diameter, as seen from the Sun, $37^{\prime \prime} .7$.
Inclination of lis orbit to the ecliptic, $1^{\circ} 18^{\prime} 51^{\prime \prime}$.
Tropical revolution, 11 y .314 d .8 h .41 m .3 s. Diurnal rotation, 9 h .55 m .37 s .
Mean distance from the Sun, 490,000,000 miles.

SATELLITES OF JUPITER.

Jupiter is attended by four satellites. They are reckoned the first, second, third, and fourth, beginning with the one nearest to the primary. These satellites were discovered by Galileo on the 8th of January, 1610, and called by him Medica sidera, Medicean stars, in honor of his patrons, the family of the Medici.

By some we are told these satellites are not to be seen by the naked eye. But Prior, in his "Lectures on Astronomy," informs us that, "with the ex-
ception of the third and fourth, they are never visible to the naked eye; instances of these two being so seen are extremely rare, although they have been known to occur." He tells us, in another place, that, "according, to Dr. Herschel, the third is the largest; the second the least; and the first and fourth are nearly of the same size. They are all of them supposed to be considerably larger than the Earth; but their dimensions are not exactly known."

Through a good telescope the satellites of Jupiter present a delightful prospect. They seem generally ranged in a straight line, parallel, or nearly parallel, to his belts. Jupiter and his satellites eclipse each other. Like the Moon, they throw their dark shadows upon their primary; and like her they fall into his shadow, and are eclipsed. These phenomena are a demonstration that those distant luminaries are in themselves opaque, and shine not by their own light, but by rays borrowed from the Sun.

The eclipses of Jupiter's satellites are of great utility to us. By these it is found that light is progressive, which, before their discovery, was supposed to be instantaneous. By them the relative distances between the Earth, the Sun, and Jupiter can be ascertained. But the greatest benefit derived from these eclipses is to geography and navigation. They afford one of the best methods yet known for ascertaining longitude. It could not have occurred to Galileo, when he first discovered these satellites, that by an act so simple he was rendering so great a benefit to mankind. Here is verified the observation of a celebrated traveler, that the Deity everywhere brings the greatest events from causes apparently the least.

$\begin{gathered} \text { Satellites. } \\ 1 \end{gathered}$	Periodical times.				Distances from primary in miles
			28	36 s.	266,000
2	3	13	17	54	423,000
3	7	3	59	36	676,000
4	16	18	5	6	1,189,000

Of Saturn.

Beyond Jupiter in the solar system is Saturn, formerly considered the most remote of the planets. He slines with a dull, pale, leaden light.
The character of Saturn, $\frac{2 \text {, is a scythe, rudely represented; according to }}{\text { a }}$ some, an old man leaning on a staff. In heathen mythology, Saturn was the father of Jupiter.
Belts and dark spots have been discovered on the disk of Saturn. Five belts, nearly parallel to the equator, were discovered by Huygens. Several nearly parallel to the ring, and more extensive in proportion to the body of the planet than those of Jupiter, were seen by Dr. Herschel. By the spots of Saturn changing their position, his diurnal rotation was deternnined by Dr. Herschel to be 10 h . 16 m .0 .44 s . Guy, in his "Astronomy," informs us, "later accounts say, 12 h. $13 \frac{1}{4} \mathrm{~m}$."
To an inhabitant of Saturn, the Sun's light and heat must be about ninety times less than they are to us.

Viewed with a good telescope, Saturn appears of a spheroidical figure. A remarkable circumstance is, the flattening at the poles does not seem to commence till the high latitude of $43^{\circ} \cdot 20^{\prime}$. According to Dr. Herschel, the proportion of his disk is:

The most remarkable phenomenon of Saturn is a ring with which he is encompassed. Something extraordinary in the appearance of this planet was discovered by Galileo. It seemed a large globe between two smaller globes. This discovery he announced in 1610. Continuing his observations till the year 1612, to his surprise the smaller globes disappeared, and the larger remained apparently alone. But after some time the smaller globes again appeared on each side of the larger globe, changing their form as he continued his observations; appearing at different times round, semicircular, oblong like an acorn, with horns toward the globe, becoming gradually so long and wide as to encompass it with an elliptical ring. "U pon this Huygens set about improving the art of grinding object-glasses, and made telescopes which magnified two or three times more than any which had been before made, with which he discovered very clearly the ring of Saturn; and having observed it for some time, he published the discovery in 1656."

The ring of Saturn is double, or rather consists of two concentric rings, detached from each other, and from the body of the planet. The two parts of the ring lie in the same plane, performing a revolution round an axis perpendicular to that plane, in 10 h .32 m .15 s . It is visible to us when the Sun is on the same side of its plane with the Earth, but at no other times. A deep shadow is cast by the ring on that part of Saturn which is opposite to the Sun. In this dark shadow, each half of the planet in succession must be enveloped for almost fifteen of our years, or during one half of Saturn's annual revolution. During the same term, each in succession must be illuminated by the double ring, the light of which is more brilliant than that of the planet itself.

The ring of Saturn is considered by Dr. Herschel not as a shining matter, or aurora borealis, as supposed by some, but solid and dense as the body of the planet.

DIMENSIONS OF THE RING.

ELEMENTS OF SATURN.
Mean diameter, 79,042 miles.
Mean diameter, as seen from the Sun, $18^{\prime \prime}$.
Inclination of his orbit to the ecliptic, $2^{\circ} 29^{\prime} 34.8^{\prime \prime}$.
Tropical revolution, 29 g .162 d .11 h .30 m .0 s.
Diurnal rotation, 10 h .16 m .
Mean distance from the Sun, $900,000,000$ miles.
Eccentricity, 50,958,399 miles.

SATELLITES OF SATURN.

Saturn has seven satellites, revolving about their primary, and accompanying him in his revolution round the Sun.

Satellites.		Periodical times.					Distances from primary in miles.
1	0 d.	22 h.	37 m.	22 s.	107,000		
2	1	8	53	8	135,000		
3	1	21	18	27	170,000		
4	2	17	41	22	217,000		
5	4	12	25	12	303,000		
6	15	22	41	13	704,000		
7	79	7	48		$2,050,000$		

The seventh satellite of Saturn is, by some, reckoned the fifth. This satellite is remarkably bright at its greatest western elongation, surpassing all the others but one in luster. Very small at other times, it entirely disappears at its greatest eastern elongation. This phenomenon was tirst observed by Cassini. It may arise from one part of the satellite being more luminous than the other parts. It was observed through all the variations of light by Dr. Herschel. He concluded that, like the satellites of Jupiter and our Moon, it revolved on its axis at the same time that it performed a revolution round its primary.
"There is not, perhaps," says Dr. Herschel, "another object in the heavens that presents us with such a variety of extraordinary phenomena as the planet Saturn; a magnificent globe, encompassed by a stupendous double ring; attended by seven satellites; ornamented with equatorial belts; compressed at the poles; turning upon its axis; mutually eclipsing its ring and satellites, and eclipsed by them; the most distant of the rings also turning upon its axis, and the same taking place with the farthest of the satellites; all the parts of the system of Saturn occasionally reflecting light to each other; the rings and the moons illuminating the night of the Saturnian; the globe and the satellites enlightening the dark parts of the rings; and the planet and the rings throwing back the Sun's beams upon the moons, when they are deprived of them at the time of their conjunctions."

Of Herschel.

Herschel, Uranus, or Georgium Sidus, was unknown as a planet to the scientific world till the year 1781. On the 13th of March, in that year, it was discovered by the celebrated astronomer whose name it usually bears in this country. Before the discovery, it had probably been seen by astronomers, but had attracted no particular attention. Prior, in his Lectures, tells us, "it had been observed by Flamstead and Mayer, but was considered by them as a fixed star, and, as such, introduced into their catalogues." Viewing the small stars near the feet of Gemini, Dr. Herschel was struck with the appearance of one, less brilliant than the rest, but surpassing them in magnitude. He suspected it to be a comet. Observing it with different telescopes, he found that, contrary to the fixed stars, its disk appeared to increase with the magnifying power of the glasses. He found also, by measuring its distance from some of the fixed stars, at different times, that it moved about $24^{\prime \prime}$ in an hour. That it was a planet, first occurred to Dr. Maskelyne.

The name of Georgium Sidus, or Georgian Star, was'given to this planet
by Dr. Herschel, in compliment to his patron George III., the then reigning king of Great Britain. It is often called Uranus, in European publications. Uranus, in heathen mythology, was the father of Saturn.

This planet is so distant, it is scarcely visible to the naked eye. In a serene sky, however, it appears like a star of the sixth magnitude, shining with a bluish-white light, and a brilliancy between the splendor of the Moon and that of Venus.

Such is the immense distance of this planet that no observations have been made upon it by which the time of its diurnal revolution can be determined.

Herschel is denoted by this character, H, , the initial of a name immortal as human science; "the horizontal bar being crossed by a perpendicular line, forming a kind of cross, the emblem of Christianity, denoting, perhaps, its discovery was made in the Christian era." The ball, however, represented as pendent from the H , may be a globe or planet, as hanging on the discovery of the astronomer Herschel.

ELEMENTS OF HERSCHEL.
Mean diameter, 35,112 miles.
Mean diameter as seen from the Sun, $4^{\prime \prime}$. Inclination of his orbit, $0^{\circ} 46^{\prime} 26^{\prime \prime}$. Tropical revolution, 83 y. 305 d .7 h .21 m . Mean distance of the planet from the Sun, $1,800,000,000$ miles.

SATELLITES OF HERSCHEL.
Six satellites have been discovered accompanying Herschel in his dark and tedious round. "It is remarkable," says Prior, "that these satellites revolve in a retrograde direction, or contrary to the order of the signs, in orbits lying nearly in the same plane, and almost perpendicular to the plane of the planet's orbit." This statement is corroborated by other accounts. The satellites of Herschel were all discovered by Dr. Herschel.

Satellites.	Periodical times				nistances from primary in miles.
	5 d.	21 h.	25 m .	20 s.	230,335
2	8	16	57	47	298,838
3	10	23	2	47	348,388
4	13	10	56	29	399,593
5	38	1.	48	0	746,240
6	107	16	39	56	1,597,708

Causes of the Planetary Motion.

Matter is in itself inactive, and moves but as impelled by external force. An impulse being given to a body, it passes in a right line, till turned out of its course by a different impulse, not in direct coincidence or opposition to the former. Uninterrupted, it would forever move in the same direction, and at the same rate, or over equal distances in equal times. After every new impulse, it will take a new direction, and pass in a diagonal between its former course and the direction of the new impulse.

Comets.
The term comet is derived from the Latin cometa. This is a derivative from coma, a head or lock of hair. The original is a Greek primitive, comee,
hair. Without doubt, comets are so called from the train or tail they ex hibit when in the vicinity of the Sun.

Comets are large heavenly bodies, moving round the Sun in various directions, and in orbits very eccentric. They seem to come from some fardistant region, make a short circnit ronnd the Sun, and then retire to their unknown bound. By the unlearned, they are often called blazing stars. It is not strange, if, as has been represented, in the days of barbarism and superstition, comets were considered portentous; if they were regarded as the harbingers of war, famine, and pestilence; if they presented to the frighted imaginations of men the convulsions of states, the dethronement of princes, and the fall of empires. Even among the ancients, however, men of science regarded them in a very different light. Such men so far observed the motions of comets as to form ideas of them in some measure consonant to modern philosophy. By the Chaldeans, they were considered as planets; and such they were regarded by the Pythagorean philosophers of Italy.

Astronomers of the present day view comets not only as harmless, but designed by the all-wise Creator for benevolent and important purposes; though most of those purposes must be unknown to us, or deduced by reasoning from analogy.

There is a great diversity in comets. When viewed through a good telescope, a comet generally resembles a mass of aqueous vapor surrounding a dark nucleus. The shades of appearance are very different in different comets. Even the nucleus seems wanting in some. Comets of this kind were observed by Dr. Herschel; some by the sister of that astronomer. Approaching the Sun, the nebulous light of a comet becomes more brilliant, and its luminous train increases in length. At the perihelion its heat is greatest, and the length of its train the most extensive. Here the comet sometimes shines with all the splendor of Venus. Its brilliancy decreases as it retires from the perihelion, till it reassumes its nebulous appearance. "History records," says Dr. Rees, "that some comets have appeared as large as the Sun." One of this magnitude is said to have been visible at Rome in the reign of Nero. "The astronomer Hevelius also observed a comet, in 1652, which did not appear to be less than the Moon, though it was deficient in splendor, having a pale, dim light, and exhibiting a dismal aspect." - Wilkins's Astronomy.

The number of comets which have been seen within the limits of the solar system is not known. It has been stated at from three hundred and fifty to five hundred.

Some comets have approached nearer to the Sun than any of the planets. Of ninety-eight, whose elements have been computed, twenty-four passed between the Sun and the orbit of Mercury; thirty-three between the orbits of Mercury and Venus; twenty-one between the orbits of Venus and the Earth; sixteen between the orbits of the Earth and Mars; three between the orbits of Mars and Ceres; and one between the orbits of Ceres and Jupiter.

The tails of comets sometimes occupy an immense space. The comet of 1681 stretched its tail across 104°; that of 1769 subtended an angle of 60° at Paris, 70° at Boulogne, 97° at the Isle of Bourbon.

By some, the tails of comets have been considered the rays of the Sun, transmitted through the nucleus of the comet, believed to be transparent like a lens. This was the opinion of Appian, Cardan, and Tycho Brahe. Kepler
thought the tail was formed by the solar rays driving away the denser parts of the comet's atmosphere. Euler thinks there is a great affinity between the aurora borealis, the zodiacal light, and these tails; and that the cause of them all is the action of the Sun's light on the atmosphere of the Earth, the Sun, and the comets.
The hypothesis of Dr. Hamilton, of Dublin, deserves particular consideration. He supposes the tails of comets to be streams of electrical light. The doctor supports his opinion by these arguments: "A spectator at a distance from the Earth would see the aurora borealis in the form of a tail, opposite to the Sun, as the tail of a comet lies. The aurora borealis has no effect upon the stars seen through it, nor has the tail of a comet. The atmosphere is known to abound with electric matter; and the appearance of the electric matter in vacuo resembles exactly that of the aurora borealis, which, from its great altitude, may be considered in as perfect a vacuum as we can make. The electric matter in vacuo suffers the rays of light to pass through without being affected by thens. The tail of a comet does not expand itself sideways, nor does the electric matter. Hence he supposes the tails of comets, the aurora borealis, and the electric fluid to be the same kind of matter." It may be added, in confirmation of this hypothesis, that many astronomers have observed an undulatory motion in the tails of comets similar to what is sometimes seen in the aurora borealis. About the close of the Revolutionary war the aurora borealis was most extensive and brilliant in the United States. This, with vast undulations, covered the whole northern half of the hemisphere, collecting into a beautiful center in the zenith. To a spectator on a distant planet this might give the Earth an appearance resembling, in some measure, the blazing effulgence of a comet.

Equatton of Thme.

Though the apparent motion of the Sun has been used as a measure of time from the greatest antiquity, yet accurate observation has shown it is far from being uniform. The Sun is either faster or slower than a wellregulated clock or watch during most of the year. At four times only do they coincide, viz.: the 14th of April, the 15th of June, the 31st of August, and the $23 d$ of December. From the 14th of April to the 15th of June, the Sun is fast of clock; from the 15th of June to the 31st of August, it is slow of clock; from the 31st of August to the 23d of December, it is fast of clock; from this time to the 14th of April, it is slow of clock. From the difference of longitude, the days of coincidence are not all the same in the United States as in Europe. About the 1st of November the Sum is 16 m . 14 or 15 s . fast of clock. This is the greatest inequality. The difference is cansed by the elliptical figure of the Earth's orbit, and the obliquity of the equator to the plane of the ecliptic.

The Times.

The tides are the alternate ebbing and flowing of the Sea. They are imperceptible in the midst of the ocean, and can only be known by the rising of the water on the adjacent land, or where the depth of water will admit of sounding.
Kepler was the first who discovered the true cause of the tides, and that the attraction of the Sun and Moon produced the constant flux and reflux of the water. But a "hint being given, the immortal Sir Isaac Newton
improved it, and wrote so amply on the subject as to make the theory of the tides in a manner quite his own, by discovering the cause of their rising on the side of the Earth opposite to the Moon. For Kepler believed that the presence of the Moon occasioned an impulse, which caused another in her absence."
The attraction of the Moon is the principal cause of the tides; but the attraction of the Sun operates to increase or diminish the height or depression of the water occasioned by the lunar attraction. But were every part of the Earth equally attracted by the heavenly bodies, no tide could be produced. The unequal attraction, or the attraction of one part of the terraqueous globe more forcibly than the other, may be considered as the true cause of the tides. The force of attraction in any body decreases as the squares of the distances from that body increase. Hence the farther distant any body is from the center of attraction, the less the opcration, on . that body. The water, therefore, on the side of the Earth next to the Moon is more forcibly attracted than the body of the Earth, and the body of the Earth than the water on the opposite side. Suppose three particles of matter, one on the surface of the Earth next to the Moon, one at the center of the Earth, and one on the surface opposite to the Moon. By the laws of gravitation the particle nearest to the Moon would be more attracted by her than that at the center, and that at the center more attracted than the particle on the opposite side. By the unequal attractions the distances between these particles would be increased. One would be elevated from the center, and the center particle would be drawn from that on the side opposite to the Moon, amounting to the same thing as if the opposite particle were elevated. For, when the distance between the center of the Earth and a particle at the surface is increased, the particle will appear raised from the surface. We take notice of a tide, because the water rises on the adjacent land. This will be the case when the distance between the surface of the water and the center of the Earth is increased, whether the water be elevated from the Earth, or the Earth be withdrawn from the water. No more difficulty, therefore, arises in accounting for the tide on the side of the Earth opposite the Moon than for that on the surface nearest to her, both being the effect of unequal attraction.

The points directly under and opposite to the Moon may be considered as the centers of highest elevation; and 90° from these, or half the distance between them, as the circle of low water. This extends wholly round the Earth, and moves as the Moon moves.

When the Moon is in the equator the circle of low water, 90° distant, must extend from pole to pole. Every place from the equator to the poles must have its regular return of tides; and these, uninfluenced by extraneons causes, must returu at equal intervals.
As the Moon moves from the equator toward either tropic, the circle of low water recedes from the poles toward the polar circles, arriving at these when she arrives at the tropics.
This departure of the Moon from the equator must make flood tide at the poles, increasing as her declination increases, and highest when she is farthest distant from the equator. On her return the tides ebb at the poles, where it becomes low water when she arrives at the equinoctial. In a revolution of the Moon, therefore, two tides only occur at the poles, full sea returning at intervals of about $13 \frac{2}{8}$ days. Diring the interval in which the circle
of low water is distant from the poles, places in any parallel touching the highest point of that circle have but one tide in a revolution from the Moon round to the Moon again. Places between that circle and the poles, in the same time, have but one, and that a partial tide; while all below its highest point have two tides in succession.

At the equator the intervals between high and low water, or between a tide and a succeeding tide, remain equal, whatever may be the declination of the Moon. Wheu she is in the equator the tides return at equal intervals in all latitudes. But when she is in any degree of deelination, places on each side of the equator, cutting the circle of low water in their diurnal rotation, or which are below the highest point of ebb tide, have unequal duration of cbb and flood, or of time between ligh and low water in different parts of the lnnar day; the farther distant from the equator, the more unequal the returns.

The Moun being in her north declination, places in the northern hemisphere have their highest tides, but when she is in the south declination the opposite tides are the highest. In the southern hemisphere the whole is reversed.

The tide, as raised by the Moon, is greater on the side of the Earth next to her than that on the opposite side. The canse of this is apparent. For, as she is nearer to that side, the semi-diameter of the Earth bears the greater proportion to the shorter distance.

For convenience of explication, the highest tides have been considered directly under and opposite the Moon. It is, however, learned from observation that the tide is not at its greatest height above or below the horizon till after the Moon has passed the meridian; becanse the water having obtained a direction, continues that direction after the Moon has passed till prevented by external force. Similar occurrences are common. The heat of the day is most inteuse after the Sun has passed the meridian; and the extreme of summer heat is generally not till some time after the summer solstice.

The tides are in some measure altered by the inclination of the Moon's orbit to the plane of the ecliptic. Hence the 'highest elevation of water may at times be more than 5° above the tropics; and the region of single tide reduced as much below the polar circles.

The tides, as we have seen, are affected by the influence of the Sun. The attraction of the Sun is more powerful at the Earth than that of the Moon, but has less effect in raising tides. The immense distance of the Sun from the Earth causes his attraction on the different parts to be nearly equal, the semi-diameter of the Earth bearing but a very small proportion to this imnense distance. The influence of the Sun causes the tides to be earlier in the first and third quarters of the Moon; later in her second and fourth. In the former case the tide of the Moon is preceded by that of the Sun; in the latter, it is succeeded and retarded by the elevation ot water raised by the Sun. The highest tides are denominated spring tides. These happen at the conjunctions and oppositions of the Sun and Moon, or at the changes and fulls.

Eclipses.

An ectipse is a partial or total obscuration of a heavenly body.
So far as astronomical observation has extended, the Sun is the only
heavenly luminary in the solar system that shines by its own light. The planets are in themselves opaque, and shine only by reflecting the solar rays. Hence on the side of those not illuminated by the Sun dark shadows are cast. These shadows are in the form of vast cones extending into the heavens. They are but privations of light in the space hid from the Sun. That they are not coextensive with the Sum's light, but terminate at a distance far more limited is evident, because the primary planets never eclipse each other. Mars, though often in opposition to the Sun, is never eclipsed by the Earth's shadow. This must, therefore, terminate before it reaches that planet.

The shadow of the Earth when longest is about 219 of its semi-diameters. Different computations make a trifling differeuce in the mean extent of this shadow. If the diameters of the Earth and Sun be taken as before stated, and the shadow be computed from these, it will be found to be about 217 semi-diameters of the Earth, equal to 864,094 miles.

If the Moon revolved in the plane of the ecliptic, an eclipse wonld happen at every conjunction and opposition, or at every change and full. But her orbit being inclined to that circle in an angle of $5^{\circ} 9^{\prime} 3^{\prime \prime}$, varying a little at different times, eclipses cannot happen except when she is in or about her nodes. In every other part of her orbit she is either too far north or south to eclipse the Sun, or to fall into the Earth's shadow, and be herself eclipsed. The limit is different in different species of eclipses. For if the Moon be within about 17° of either of her nodes at the change there will be a solar eclipse. But lunar eclipses can happen but when she is within about 11° of her nodes. The greatest limit in solar eclipses, according to the tables in the author's larger work, is $18^{\circ} 11^{\prime}$; the least, $16^{\circ} 28^{\prime}$. The greatest in lunar, $11^{\circ} 51^{\prime}$; the least, $10^{\circ} 11^{\prime}$.

In lunar eclipses, when a part only of the Moon's disk is covered, the eclipse is denominated partial; when the whole disk is covered, total; when the center of the disk passes throngh the center of the shadow, central.

The Moon is visible when totally immersed in the Earth's shadow, appearing of a dusky red color, like burnished copper. It is probable that the refracted rays of the Sun cause this phenomenon. These traversing the atmosphere of the Earth are by it turned inward, so as to fall on the Moon, and render her distinctly to be sceu.

In a lunar eclipse, all to whom the Moon is visible see her in the same instant of absolute time.

Solar eclipses are much more frequent than lunar ; but most of the former are invisible at any particular part of the Earth.

The dark shadow of the Moon sometimes reaches to the Earth, eclipsing a small portion of its surface; sometimes that dark shadow is terminated before it arrives at the Earth. In the latter case, the Sun, at the center of an eclipse, appears like a luminons ring. The eclipse is then called annular. This beautitnl phenomenon was seen in some parts of New England on the morning of April 3, 1791 ; at Washington, September 17, 1811; and in the Eastern parts of the United States, February 12th of the year 1831. The dark shadow of the Moon is longest when she is in perigee and the Earth in aphelion; shortest when she is in apogee, and the Earth in perihelion. The inhabitants of our republic have had the satisfaction of viewing three annular eclipses since the commencement of the present century; one.

September 17, 1811, another, February 12, 1831, and another, September 18, 1838; the annular eclipses being three for the century.

Two total solar eclipses are computed for the United States during the century; one June 16, 1806; the other, Angust 7, 1869. It will appear from this, and from inspection of the tables of the semi-diameters of the Sun and Moon, that annular eclipses of the Sun are more frequent than total eclipses of the same luminary.

The Moon's partial shadow is called her penumbra. All the inhabitants over whom this shadow extends see the Sun partially eclipsed. The darkness of the penumbra decreases as it diverges from the dark shadow of the Moon. The motion of the dark shadow and penumbra over the Earth is nearly from west to east; except at the polar regions, when they sometimes pass in an opposite direction.

The whole number of eclipses in any one year is never less than two, nor more than seven: when two, both are of the Sun; when seven, four are of the Sun, three of the Moon.

The line of the Moon's nodes has a constant motion from east to west, or backward in the ecliptic, making a complete revolution in 18 y .223 d .20 h . 13 m .32 s . In a year of 365 days its motion is $19^{\circ} 19^{\prime} 43^{\prime \prime}$, completing a revolution in 18 y .224 d .4 h .53 m . when leap-year is four times taken; in 18 y .223 d .4 h .53 m . when leap-year is tive times included. By the retrograde motion of the nodes, either of them is brought round to the Sun, or passes from the Sun to the Sun again, in 346 d .14 h .52 m .14 s . on a mean. Half of this time only intervenes between one node and the other passing the Sun. When eclipses happen at the ascending node, other eclipses may be expected at the descending node in about 173 d. ; and, after a lapse of the same time, at the ascending node, thus continuing in rotation.

When the Sun and Moon have been in conjunction with the Moon's ascending or descending node, they will be in conjunction again within 28^{\prime} $12^{\prime \prime}$ of the same node, after 223 mean lunations. Thus is formed a regular period of eclipses. ${ }^{-1}$ It is completed in 18 y .11 d .7 h .43 m .19 s . when leapyear is four times included ; 18y. 10 d .7 h .43 m .19 s . when leap year is five times included. There is a regular series of returns to each eclipse. Eclipses at the ascending node first strike the Earth at the north, and pass off at the south pole, moving a little southward at each return. Eclipses at the descending node commence at the south and retire at the north pole. After an eclipse has completed a series, and left the Earth, it will not again return and commence a new series at the same node, till after an absence of more than 12,000 years. The eclipses commencing at one pole are equal in number to those commencing at the other. The irregular motion of the Earth and Moon may accelerate or retard the commencement of a series about one hundred years. In one series an eclipse may visit the Earth but seventy times; it will not surpass seventy-seven times. When an eclipse returns but seventy times, it will occupy about 1,262 years; when it returns seventyseven times, it will require 1,388 years. The memorable eclipse of June 16, 1806, was total to a large part of New England. It happened at the Moon's descending node. Having traversed the mighty void from the creation, it first met the south pole on the morning of the 6 th of March, O.S. 1049 , at 10 h .11 m .39 s . Each visit has shown it a little farther north. On the 24 th of June, 1824 , it happened in the evening, the Sun going down a little eclipsed at Washington. It again visited the Earth, July

S, 1842. But, being at 2 h .2 m .2 s . in the morning, at Washington, it was invisible in the United States; but was large and total over a wide extent of the eastern continent. This eclipse will leave the Earth at the north pole on the 11th of May, in the year 2347, N. S. of the Christian era.

The dark shadow of the Moon, when longest, and falling directly on the Earth, extends about 107 miles. In most cases, however, it falls obliquely; in some, very obliquely, when it may cover an extent of more than 900 miles.

The tables make the extent of the penmmbra, when least, about 4,500 miles; when greatest, a little more than 7,000 miles. It is very different at different times, varying on account of the distance of the Sun and Moon, but more from the oblique manner in which it often strikes the Earth.

According to the tables in the author's larger work, total darkness in a solar eclipse will never continue in one place more than 5 m .32 s . The duration will be a little longer, according to the tables of Enfield. Several authors state this duration short of the truth, making it three minutes, or about three minutes. In the June eclipse of 1806, total darkness was considerably short of the greatest possible duration; yet, in the southern part of New Hampshire, the author, by the most careful observation, made it 4 m .20 s . At Sterling, Massachusetts, Robert B. Thomas, the author of the Farmer's Almanac, probably nearer the center of the shadow as it passed, found the time of total darkness 4 m .45 s .

ECLIPSES VISIBLE IN THE UNITED STATES.

Year.	䔍	Month	D.	H.	M.	A. P. M.		Remarks.
1859	(1)	Feb.	17	5	36	A. M.	Total. Small.	
	(9)	July	29	5	44	$\mathrm{P} . \mathrm{M}$.		
1860	(1)	Feb.	6	9	17	P. M.		
	(2)	July	18	7	55	A. M.		
1861	(1)	Dec.	17	3	9	A. M.		
	(5)	Dec.	81	7	45	A. M.		
1862	(1)	June	12	1	18	A. M.	Total.Total.Total.	Moon rises eclipsed.
	(1)	Dec.	6	2	43	A. M.		
1863	(1)	June	1	6	30	P. M.		
	(1)	Nov.	25	4	21	A. M.		
1865	(1)	April	10	11	29	P. M.	Very smal	
	(1)	Oct.	4	15	50	P. M.	Very small	
	\%	Oct.	19	10	27	A. M.		
1866	(1)	March	30	11	30	P. M.	Total.	
1867	(1)	March	20	3	45	A. M.		

Year.	-	Month.			M.	A. P. M.	Remarks.
1868							
1869	(1)	Jan.	27	8	21	P. M.	Total over a southern section of the
	-	Aug.	7	6	5	P. M.	
1870							[Union.
1871	(1)	Jan.	${ }^{6}$	4	9	P. M.	Moon rises partially eelipsed.
1872	(1)	Nov.	15	0	29	A. M.	Very small.
1873	(1)	May	12	6	23	A. M.	Commences 4 h .34 m . Total in the
1874	(1)	Oct.	25	2	37	A. M.	Nearly total. [Western States.
1875	c	Sept.	29	6	12	A. M.	
1876	(1)	March	10	1	5	A. M.	
	(2)	March	25	4	45	P. M.	Small.
1877	(1)	Aug.	23	6	2	P. M.	Total. Moon rises eclipsed.
1878	(1)	Feb.	17	5	58	A. M.	
	8	July	29	5	35	P. M.	
	(1)	Aug.	12	7	3	P. M.	
1879							
1880	5	Dec.	31	7	42	A. M.	Total.
1881	(1)	June	12	1	56	A. M.	
1882							
1883	(1)	Oct.	16	2	8	A. M.	[Union.
1884	(1)	April	10	6	47	A. M.	Total in the western parts of the Visible, and total after the Sun sets.
	(1)	Oct.	4	5	14	P. M.	
1885	©	March	16	1	28	P. M.	[in the Western States.
	(1)	Sept.	24	2	56	A. M.	
1886	©	March	5			P. M.	Commences about sunset. VisibleVery small.
	\%	Aug.	29	6	23	A. M.	
1887	(1)	Feb.	8	5	4	A. M.	
1888	(1)	Jan.	28	6	6	P. M.	Total.
	(1)	July	23	0	35	A. M.	Total.
1889	\%	Jan.	1 17	0	18	P. M.	Penumbra touches Washington about [sunset.
1890							
1891	(1)	Nov.	15	7	36	P. M.	Visible after sunset.
	(1)	May	11	6	0	P. M.	
	0	Oct.	20	1	40	P. M.	
1893							
$\begin{aligned} & 1894 \\ & 1895 \end{aligned}$	(1)	Sept.	14 10	11	24 28	$\stackrel{\text { P. M. }}{\text { P. }}$.	Total.
	(1)	March Sept.	10 4	10 0	28	P. M.	
1896	(1)	Sept. Aug.	4 23	0	49 55	A. M.	
1897	\%	July	29	9	45	A. M.	
1898	(1)	Jan.	7	7	16	P. M.	Small. Total.
	(1)	Dec.	27	6	37	P. M.	
1899	(1)	Dec.	16	8	34	P. M.	
1900	(3)	May	28	8	40	A. M.	

Divisions of Time.

Time, as measured by the celestial luminaries, is divided into periods, cycles, years, months, weeks, days, hours, minutes, seconds, and sometimes farther sexagesimal parts.

Periods, in astronomical reckoning, are large divisions of time. The Chaldean Period is a circle of 25,858 years. This period respects the motion of the terrestrial poles. At the termination of it, the axis of the Earth points to the same stars as at the beginning.

The Jutian Period is formed by maltiplying together the cycles 28, 19, and 15. It consists of 7,980 years. The creation of the world, according to the common compntation, was on the 706th year, and the Dionysian era of Christ's birth, on the 4,713th year, of this period. According to some, the birth of Christ was earlier by four years. The Julian period is found of use in comparing the dates of ancient events.

The Dionysian Period, or circle of Easter, consists of 532 years, formed by multiplying the cycle of the Sun, 28 , by that of the Moon, 19.

CYCLES ARE REVOLUTIUNS OF TIME.

The Cycle of the Sun consists of 28 years. By this cycle the days of the week are brought to the same days of the month; the Sun to the same signs and degrees of the ecliptic, with little variation; and the leap-years to the same state as at the commencement of the cycle. Each of these returns, separately, in a much shorter period. But, by the cycle, they are brought to coincide.

The Cycle of the Moon is the Golden Number. It is a period of 19 years, at the expiration of which, the changes and falls, with the other aspects of the Moon, return to the same noonths, and days of the month, as at the beginning, or within a day of the same time.

The Roman Indiction is a period of fifteen years, established by Constantine, in the year 312, for indicating the times of certain payments, made by the subjects to the government.

For tinding the cycle of the Sun, golden number, and indiction, add 4,713 to the year of the Christian era, and divide the sum by 28,19 , and 15 , respectively; the remainders are the numbers sought for the year.

Required the cycle of the Sun, golden number, and indiction, for the year 1831.

4713 1831	28)6544(233	$\begin{gathered} \text { 19) } 6544(344 \\ 57 \end{gathered}$	$\text { 15) } 6544(436$
6544	94	84	54
	84	76	45
	104	84	94
	84	76	90
	20 Cy	n. 8 Gol	mber. 4 Ind

The Epact is the excess of the solar above the lunar year of 354 days, or 12 mean lunations. It is taken for the age of the Moon, on the first day of

For finding the Julian epact, multiply the golden number of the year by

11 ; the product, if less than 30 , is the epact. But, if the product exceed 30 , divide it by 30 ; the remainder is the epact.

To find the Gregorian epact, the Jnlian epact must be first found. From this subtract 12 , the number of days between the old and new style in the present century; the remainder is the epact required. If nothing remain, 29 is the epact. If the subtraction cannot be made, add 30 to the Julian epact, and subtract as before.

The golden number and epact are little used at the present time, especially where accuracy is required. The Roman indiction, still less important, is retained in our almanacs; why, is difficult to be conceived, unless as it is used in forming the Julian period.

A YEAR.

A complete revolution of the seasons constitutes a year. The difference in the years, the tropical, the sidereal, and anomalistic, las been considered. The civil solar year consists of 365 days, and in bissextile, of 366 . In this manner it is used in the United States, and most European nations. The lunar year consists of 12 lunar months, or mean lunations; computed at 354 days, the surplus arising from the minutes and seconds of the lunation being generally dropped in the computation. In this calendar a montli is added every third year, to make the lunar coincide with the solar year. This month is intercalary, or embolimic.

The Jews computed their time by lunar years. "But, by intercalating no more than a month of thirty days, which they called Ve-Ader, every third year, they fell $3 \frac{3}{4}$.days short of the solar year in that time."

The year of the Greeks consisted of 12 months, of 29 and 30 days, alternately taken, comprising 354 days, or about 12 mean lunations. This lunar year was with dificulty connected with the solar year, or the revolution of the seasons, so as to make a particular month fall at the same season in successive years. "The Olympic games were celebrated every fourth year during the full Moon, next after the summer solstice; and the year of the Greeks was so regulated as to make this full Moon the first month. This purpose was effected by intercalations; but these were managed so injudiciously, that, in the time of Meton, the calendar and the celebration of the festivals had fallen into great confusion."

The ancient Romans computed their time by the Lustrum, a period of four years. They also reckoned by lunar years, as established by Romnlus, till Julius Cæsar reformed the calendar, introducing the system of computation known as the Julian calendar to the present time. In this calendar three years were common, consisting of 365 days each. Every fourth year the 24 th day of February was twice recknned, making it consist of 366 days. This, being the 6 th of the calends of March, was called bis sextus dies, denominated by us bissextile. The intercalary day is now added to the last of Febriary, and from it the year is called bissextile, or leap-year. The Jnlian calendar long prevailed in Europe. But, from observations on the time of Easter, the civil year was found to be too long for the tropical, and another attempt was made to reform the calendar.

The vernal equinox fell on the 21st of March, at the time of the Council of Nice, 325 of the Christian era. In 1582 Pope Gregory XIII. observed, that the same equinox happened ten days earlicr in the year than it had done at the time of the Nicene Council. To correct the style, he altered
the calendar ten days, ordering that the 5 th day of October should be called the 15 th. Thus amended, the style was called the Gregorian, or new style. Though adopted in several European countries, it was not received into England till the year 1752. The Julian calendar, or old style, still prevails in Russia. In the present century, the difference between the old style and the new is twelve days, as before stated.

Pope Gregory stopped not at the alteration of the style. He endeavored to establish a principle by which the civil year and the tropical would in future coincide. By this principle bissextile is to be omitted three times in four hundred years. When the centuries of the Christian era are divided by four, if there be a remainder, the year at the end of the century is to be reckoned common; bat if nothing remain, the leap-year is to be retained, or the last year of the century is to be reckoned bissextile. Though the year 1800 would have been a leap year in the Julian calendar, yet it was considered common in all our almanacs on the Gregorian principle. Our computations to the present time are made on he same principle. Thus, at the end of the nineteenth century, the leap-year is to be omitted, there being a remainder when nineteen is divided by four ; but the year 2000 will be considered bissextile, because there is no remainder when twenty is divided by four.

The omission of three bissextiles in four hundred years does not bring the civil year exactly to coincide with the tropical, as computed by La Place. The former still exceeds the latter twenty seconds, twenty-four thirds. This excess will amount to a day in about 4,236 years. The omission of one bissextile in one hundred and twenty-nine years would bring the different computations to great nearness.

Months are the principal divisions of a year. These are lunar, solar, and civil. The sidereal lunar month is the time the Moon is passing from a point in the heavens to the same again, as from a star to the same star, as before stated. But the principal lunar month is a lunation, or the time the Moon is passing from one change to another. This seems to have given the name to this division of time, or to be the foundation of months. The solar month is the time the Sun is passing one of the signs of the ecliptic, or the twelfth part of a year.

Civil months are of two kinds. The weekly month, always equally long, consists of four weeks. This is the true legal month. "A month in law," says Blackstone, " is a lunar montl, or twenty-eight days, unless otherwise expressed; not only because it is one uniform period, but because it falls naturally into a quarterly division by weeks. Therefore a lease for twelve months is only for forty-eight weeks; but if it be for a twelvemonth, in the singular number, it is good for the whole year."

The other months are those in our calendar. They are Roman in their origin. The Latin names are retained, some of them assuming an English termination. The sixth month was called Sextilis till the time of Augustus Cæsar. It was changed to Augustus, in honor of that emperor. To heighten the compliment, a day was taken from the last of February, and added to August. Before that time February, in a common year, consisted of twentynine days, August of thirty.*

[^0]A week, a well-known portion of time, and old as creation, undoubtedly had its origin in the resting of Jehovah from his work, and the establishment of the Sabbath. It consists of seven days.

Days are artificial or natural. The ortificial day is continually varying in length in most latitudes, being the time the Sun is above the horizon. The natural day is the time in which any meridian of the Earth moves from the Sun round to the Sun again, being twenty-fonr hours. This is subject to a fractional variation at different seasons. The ancient Egyptians began their day at midnight. This is the practice of the United States, and of most Enropean nations. It is the civil day with us, and is divided into two twelves. From common practice, it is too well-known to need explanation. The Jews began their days at the setting of the Sun. They divided the night and the day each into twelve equal parts. As this was done at all seasons of the year, not only the days but the hours, or divisional parts, must have been of unequal length; though not so mequal as such a division would be with us, Palestine being nearer the equator than most of the United States. The ancient Greeks also began their day at Sun-setting. The same practice is followed among the moderns, by the Bohemians, the Silesians, the Italians, and Chinese. The day was commenced at Sun-rising by the Babylonians, Persians, and Syrians. This is the manner of computation by the modern Greeks.

The nautical or sea day commences at noon, twelve hours before the civil day. The first twelve hours are marked P. M., the last A. M. The astronomical day begins at noon, twelve hours after the civil day, and is reckoned numerically from one to twenty-four.

An hour is the twenty-fourth part of a natural day. This division of time is very ancient. Herodotus observes, "that the Greeks learned from the Egyptians, among other things, the method of dividing the day into twelve parts. The division of the day into twenty-four hours was not known to the Romans before the Punic war. Till that time they only regulated their days by the rising and setting of the Snn." The day was divided by them into four watches, commencing at six, nine, twelve, and three of the clock. The night was divided in the same manner into four watches, each consisting of three hours.

The remaining divisions of time all proceed in the well-known sexagesimal order-the hour is divided into sixty minates; the minute into sixty seconds ; the second into sixty thirds; and so on to fourths and fifths.

The dominical letter is deserving a place in a work of this kind. The first seven letters of the alphabet were formerly placed in almanacs for the days of the week. Introduced by the primitive Christians, they were used instead of the nundinal letters of the Roman calendar. One of these, standing for the Sabbath, was written in capitals, and called the dominical letter, from Dominus, the Latin word for Lord. The dominical letter is still retained in our almanacs, while figures are substituted for the other letters.

If 365 , the days in a common Julian year, be divided by seven, the number of days in a week, one will remain. If there were no remainder, and no bissextile, each succeeding year would begin on the same day of the week. But one remaining, when a common year is thus divided, each year will begin and end on the same day of the week. When January begins on Sunday, A is the dominical letter for that year. But the next year must
commence on Monday; A, therefore, or the substituted figure is set at that day. The Lord's day being the seventh of the month; G will be the dominical letter for that year. As the following year must commence on Tuesday, H is the dominical letter for that year. Thus the letters would follow, G, $\mathbf{F}, \mathrm{E}, \mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{A}$, in retrograde order. At the end' of seven years the days of the week would return to the same days of the month as at the beginning. But bissextile having 366 days, if this be divided by seven, there will be a remainder of two. Thus there must be an inferruption of the regular returns.
The letters were placed in such order that A stood at the first day of January, B at the second, C at the third; thus on throughont the seven. The same were repeated in succession throngh the year. In each succeeding year, therefore, the same letters stood at the same days of the month. This always brought C to the 28th of February. That this order might not be interrupted by leap-year, C was placed at the 29 th also; or, according to some tables, D was repeated. Thus the same letters were set to the days of the succeeding months in bissextile, as in common years. If a year commence with D as the dominical letter, C at the 28 th of February must in that case stand for Satarday; C also must be agaiust the 29 th, and of course being for the Lord's day inust be dominical ; or, if D be repeated, O at the 7 th of March becomes dominical, and thus continues through the year. The next year would commence two days later in the week. On account of this leaping in the retrograde order of the letters, the seven occupy five years in a revolution, when leap-year is twice included; six, when it is once included. Hence the days of the week return to the same days of the month in five or six years, according as bissextile is twice or but once included. In twenty-eight years the seven letters will always have five revolutions, except at the end of the centuries, when leap-year is omitted.

Obliqutity.

The obliquity of the equator to the plane of the ecliptic, being the cause of the variety of seasons, the different length of days and nights, and the pleasing vicissitudes resulting from the varying year, is well deserving a place, even in a compendinm of astronomy. The principal inquiry is, whether the obliquity remains the same, or is subject to a constant diminution.
"The obliquity of the ecliptic to the equator," says Dr. Brewster," was long considered a constant quantity. Even so late as the end of the seventeenth century, the difference between the obliquity, as determined by ancient and modern astronomers, was generally attributed to inaccuracy of observation, and a want of knowledge of the parallaxes and refraction of the heavenly bodies. It appears, however, from the most accurate modern observations, at great intervals, that the obliquity of the ecliptic is diminishing. By comparing about one hundred and sixty observations of the ecliptic, made by ancient and modern observers, with the obliquity of $23^{\circ} 28^{\prime} 16^{\prime \prime}$, as observed by Tobias Mayer, in 1756, we have found that the diminution of the obliquity of the ecliptic, during a century, is $51^{\prime \prime}$; a result which accords wonderfully with the best observations." This would bring the obliquity at the present time, 1858 , to $23^{\circ} 27^{\prime} 25^{\prime \prime}$.

The above statement, though contrary to the opinion of some philosophers, is in accordance with the true principles of Newtonian philosophy, and is
corroborated by the best modern astronomers. Professor Vince, having stated the observations of many authors, ancient and modern, concludes: "It is manifest, from these observations, that the obliquity of the ecliptic continually decreases; and the irregularity, which here appears in the diminution, we may ascribe to the inaccuracy of the observations; as we know that they are subject to greater errors than the irregularity of this variation."

The following table will give an idea of the diminution of the obliquity for many centuries. It was extracted from "Rees's Cyclopædia."*

The Fixed Stars.

The fixed stars are so denominated from their always retaining the same situation in relation to each other. We have seen that the Earth is, at one season of the year, $190,000,000$ miles distant from its situation at the opposite season; yet these stars have no sensible parallax. The star which is north at one time is north at any other time. Most of the stars, indeed, appear to have a diurnal revolution round the Earth; but this arises from the rotation of the Earth on its axis, and is no more than is caused by that rotation.

That the stars always retain the same apparent situation, must be owing to their immense and inconceivable distance. Let two persons be placed one rod distant from each other, east and west. An object ten rods distant, which is due north from one, will easily be perceived not to be north of the other. But let the object be ten miles distant from these observers, and if it be north of one it will scarcely be perceived not to be north of the other; the angle can be ascertained only by nice observation. Let this principle be applied to the fixed stars and the student will be sensible that their distance is truly immense. We form very inadequate ideas of the Earth's distance from the Sun; of course of twice that distance. But this immense distance, $190,000,000$ miles, makes no perceptible difference in the situation

[^1]of the fixed stars, even when viewed with the nicest instruments. "From what we know," says Mr. Ferguson, "of the immense distance of the stars, the nearest may be computed at $32,000,000,000,000$ of miles from us, which is farther than a cannon-ball would fly in $7,000,000$ of years.

From the distance of the stars it may be concluded that they shine by their own native light, and not by the reflected rays of the Sun. For those rays, decreasing in number in any given space as the squares of the distances increase, cannot by reflected light make objects visible at a distance so inconceivably great.

The fixed stars are, without doubt, suns to other systems. Thus they are now considered by the unanimous consent of astronomers. They may be distinguished from the planets by the twinkling of their light. The diameter of a star appears much less viewed through a good telescope, than when seen withont the aid of instruments.

Not more than 1,000 stars are visible to the naked eye in either hemisphere. They seem, indeed, innumerable when in a clear evening we turn onr eyes toward the heavens. But, in attentive observation, most of those bright spots which appeared to be stars vanish. They are probably reflections from minute particles of various kinds continually floating in our atmosphere. The British catalogue contains not more than about 3,000 stars in both hemispheres, though it includes many not visible to the naked eye. - By improved reflecting telescopes the number is found to be great beyond all conception. Dr. Herschel says, "that in the most crowded part of the milky-way, he has had tields of view that contained no less than 588 stars, and these were continued for many minutes, so that in a quarter of an hour he has seen 116,000 stars pass through the field of view of a telescope of only 15^{\prime} aperture; and at another time, in 41 minutes he saw 258,000 stars pass through the field of his telescope."

Many stars appear single to the naked eye, which on being viewed with a good telescope, are found to consist of two, three, or more stars. Some are denominated by Dr. Herschel insulated stars, becanse they seem removed from the attractive force of other stars. Such are our Sun, Arcturus, Capella, Sirius, and many others.
"A binary sidereal system, or double star, properly so called, is formed by two stars situated so near each other as to be kept together by their mutual attraction." It is, however, evident that stars may be sitnated one nearly behind the other, so as to appear binary though immensely distant.

The double star Epsilon, Bootes, is beautiful, composed of two stars, one light red, the other a fine blue.

The double star Zeta, in the constellation Hercules, is composed of two stars; the greater a beautiful bluish white, the less a fine ash-color.

The star Delta, of the Swin, is binary, composed of two stars very unequal in their apparent magnitude; the larger white, the less reddish.

The pole-star is binary, composed of two stars of very unequal magnitude; the larger white, the less red.

The treble star in the left fore-foot of the constellation Monoceros, is one of the most beantiful objects of the kind in the heavens.
The Beta, in the constellation Lyra, or the Harp, is quadruple, white, but three of them inclined to red.

The Lambda, in Orion, is quadruple. More properly it is a double star
with two stars at a small distance. The double star is unequal; the largest white, the smallest a pale rose-color.

A catalogue of the principal double stars may be seen in Dr. Brewster's supplement to Ferguson. Its insertion here would far exceed the limits designed for this compend.

Several stars have appeared for a time in the heavens and then disappeared. In ancient catalogues stars are enumerated which are not now to be seen, even by the powerful instruments of modern astronomy. Others are now visible which seem not to have been noticed by the ancients.

A new star was discovered by Cornelius Gemma, in 1572, in the chair of Cassiopeia. It surpassed Sirius in brightness and magnitude. To some eyes it appeared larger than Jupiter, and might be seen at mid-day. It afterward gradually decreased, and after sixteen months entirely disappeared.

In 1596, the Stella Mira, or wonderful star in the neck of the whale, was observed by Fabricius. It seemed alternately to vanish and reappear seven times in six years. During this time, however, it is said never to have been entirely extinct.

In 1600, a changeable star in the neck of the Swan, was observed by Jansenius. The same was observed and its place determined by Riciolus in 1616,1621 , and 1624. But from 1640 to 1650 it was invisible. It had several instances of appearing and again vanishing, prior to the year 1715, when it reappeared as a star of the sixth magnitude, its present appearance.

In 1604, a new star was discovered by Kepler and some of his friends near the head of Serpentarius. It exhibited a bright and sparkling appearance, beyond any they had before seen. Assuming the different colors of the rainbow, it appeared every moment changing, except near the horizon, where it generally appeared white. It was near Jupiter in October of that year, and surpassed that planet in magnitude, but disappeared before the following February.

Several other stars have appeared, vanished, and reappeared; some of them in regular succession. Such changeable stars may be suns having extensive spots. Stars of this kind, by a regular rotation on their axes, may alternately present their dark and luminous sides. "Maupertuis is of opinion that some stars, by their prodigious quick rotation on their axes, may not only assume the figure of oblate splieroids, but, by their great centrifugal force arising from such rotation, they may become of the figure of millstones, or reduced to flat circular plates, so as to be quite invisible when their edges are turned toward us; as Saturn's ring is in such positions. But when any eccentric planets or comets go round any flat star in orbits much inclined to its equator, the attraction of the planets or comets in their perihelia, must alter the inclinations of that star, on which occasion it will appear more or less large and luminous, as its broad side is more or less turned toward us."-Ferguson.

The propriety of the term fixed, as applied to the stars, seems rendered at least donbtful by the observations of modern astronomers. An advancement of the solar system, in absolute space, is now considered certain. It was observed by Halley and Cassini. The first explanation of it was given by Mayer. But to point out the region in the heavens to which the solar systern is advancing, was reserved to Dr. Herschel. "He has examined this subject with his usual success, and has certainly discovered the direction in which our system is gradually advancing. He found that the apparent
proper motion of about forty-four stars out of fifty-six, is very nearly in the direction which would result from a motion of the Sun toward the constellation Hercules, or more accurately, to a place in the heavens, whose right ascension is $250^{\circ} 5230^{\prime \prime}$, and whose north polar distance is $40^{\circ} 22^{\prime}$."

The stars, according to their magnitude, have been arranged into six classes or orders. The largest are called stars of the first magnitude, next to these are those of the second magnitude; thus decreasing to the sixth, Of course, the least stars belong to the sixth magnitude. Sometimes, however, in modern and even popular works, we find allusion to stars of the seventh or eighth magnitude. Considerable difference may be perceived in stars of the same class, some being much larger and more brilliant than others.

The arrangement of stars into magnitudes, was made long before the invention of telescopes. Stars unseen without the assistance of these, are called telescopio stars.

Another happy arrangement of the stars has been handed down to us from great antiquity. By a powerful imagination, the early cultivators of astronomy conceived companies of stars as having the form of certain animals, or other sensible objects; and hence they divided the starry sphere into constellations, each including stars of different magnitudes. According as the forms appeared to their imagination, they applied names to the different constellations. Thus one constellation was called Leo, another Bootes, and another Orion. Stars not included in any constellation are called unformed stars.

The animal, or other object of each constellation, is represented on the celestial globe, and the proportion of the stars belonging to each, denoted by the letters of the Greek alphabet, according to the plan adopted by Bayer, a German, in his Uranometria, a large celestial atlas. Thus, the largest star of the constellation is denoted by Alpha, the second by Beta, the third by Gamma, and thus on in alphabetical order.

The classing of stars, however chimerical, is of vast importance, as it enables the astronomer to designate the place of a star, a planet, or a comet, at any time, as easily as a geographer can that of a hamlet or a town.

From Cygnus, the Swan; Phenix, the Phenix; Piscis Australis, the Southern Fish; Leo, the Lion; and Crux, the Cross, as they are represented on a common celestial globe, the student may form some idea of that imagination by which the stars were arranged into constellations. Probably in Leo, or any other constellation vicwed in the heavens, he will discover but little similarity between the figure presented by the stars, and the animal or other object by which they are represented.

Forty-eight of the constellations are reckoned ancient. Of these, 12 are in the zodiac, 21 to the north, and 15 to the south of it. The whole number of constellations has been reckoned 92 . Of these, 12 are in the zodiac, 35 are north, and 45 south of that circle.

In each part of the following table the ancient constellations are placed first.

CONSTELLATIONS IN THE ZODIAC.

Aries, the Ram.
Taurus, the Bull.
Gemini, the Twins.
Cancer, the Crab.
Leo, the Lion.
Virgo, the Virgin.

Libra, the Scales. Scorpio, the Scorpion. Sagittarius, the Archer. Capricornus, the Goat. Aquarius, the Water-bearer. $P i s c e s$, the Fishes.

CONSTELLATIONS NORTH OF THE ZODIAC.

Ursa Minor, the Little Bear.
Ursa Major, the Great Bear.
Draco, the Dragon.
Cepheus.
Boötes.
Corona Borealis, the Northern Orown.
Hercules.
Lyra, the Harp.
Cygnus, the Swan.
Cassiopeia, the Lady in her Chair.
Perseus.
Auriga, the Wagoner.
Serpentarius, the Serpent-bearer.
Serpens, the Serpent.
Sagitta, the Arrow.
Aquila, the Eagle.
Antinous.
Delphinus, the Dolphin.

Equi Sectio, the Horse's Head.
Pegasus, the Flying Horse.
Andromeda.
Triangulum, the Triangle.
Canes Venatici, the Greyhounds.
Cor Caroli, the Heart of Charles.
Triangulum Minus, the Little Triangle.
Musca, the Fly.
Lynx.
Leo Minor, the Little Lion.
Camelopardalis, the Camelopard.
Mons Monalus, the Mountain Mrnalus.
Scutum Sobeiski, Sobeiski's Shield.
Heroules cum Ramo et Cerbero.
Taurus Poniatowski, Poniatowski's Bull. Tulpecula et Anser, the Fox and the Goose. Lacerta, the Lizard.

CONSTELLATIONS SOUTH OF THE ZODIAC.

Cetus, the Whale.
Orion.
Eridanus.
Lepus, the Hare.
Canis Major, the Great Dog.
Canis Minor, the Little Dog.
Argo.
Hydra, the Water-Serpent.
Crater, the Cup.
Corvus, the Raven.
Centaurus, the Centaur.
Lupus, the Wolf.
Ara, the Altar.
Corona Australis, the Sonthern Crown.
Piscis Australis, the Southern Fish.
Phenix.
Officina Soulptoria, the Engraver's Shop.
Hydrus, the Water-Snake.
Farnax Chemica, the Chemical Fnrnace.
Horologium, the Time-Keeper.
Reticulus Rhomboidalis.
Dorado vel Ziphias, the Sword-Fish.
Cela Praxitelis, the Engraver's Tool.

Columba Noachi, Noah's Dove.
Equuleus Pictorius, the Painted Colt.
Monoceros, the Unicorn.
Chameleon.
Pyxis Nautica, the Mariner's Compass.
Piscis Volans, the Flying-Fish.
Sextans, the Sextant.
Robur Carolinum, the Royal Oak.
Machina Pneumatica, the Wind Instrument.
Crosiers el Cruzero.
Apis Musca, the Bee or Fly.
Apus vel Avis, the Bird of Paradise.
Circinus, the Compass.
Quadra Euclidis, Euclid's Square.
Triangulum Australe, the Southern Triangle.
Telescopium, the Telescope.
Pavo, the Peacock.
Indus, the Indian.
Microscopium, the Microscope.
Octans Hadleianus, Hadley's Octant.
Arus, the Crane.
Toucan, the American Goose.

The Galaxy.

The Galaxy, or Milky-Way, is a luminous zone in the heavens. The beautiful clondy whiteness by which it is distinguished is found by modern astronomers to proceed from the collected rays of innumerable stars not discernible by the naked eye. "That the Milky-Way," says Dr. Herschel, "is a most extensive stratum of stars of varions sizes admits no longer of the least doubt."
A group of stars is a collection of them of any figure, elosely compressed together, like the trees in a crowded forest.

Clusters of stars are regarded by Dr. Herschel among the most magnificent objects in the heavens. They differ from groups in their beantiful and seemingly artificial arrangement.

Nebulce are light spots in the heavens, sometimes denominated cloudy stars. Some of them are found to be clusters of telescopic stars. The most noted nebula was discovered by Huygens in 1656. It is between the two stars in the sword of Orion. In one part of it, a bright spot upon a dark ground seems to be an opening into a brighter and more distant region. Nebulæ were discovered by Dr. Halley and others. "But to Dr. Herschel," says Enfield, "are we indebted for catalogues of two thousand nebulæ and clusters of stars, which he himself has discovered." Dr. Brewster says, "two thousand five hundred."

What an astonishing view of the works of creation is opened upon us by the night! With wonder and delight we greet the return of day. The beanty, and even the sublimity of this world are lighted up to us by the splendor of the morning. But how surpassed are these by the intinite grandeur presented to our view by the nocturnal heavens! To the night we are indebted for the most exalted conceptions we can form of the immensity and sublimity of Jehovah's works. We cannot contemplate them without the most profound awe! We behold, not a solitary world, but a system of worlds, kept in perpetual harmony by the Sun ; not one Sun and one system only, but millions of Suns and of systems, ranged in endless perspective, all revolving in harmonious order! How inconceivably great, and wise, and good must be the Author and Governor of such a universe.

Lattrude and Lonâttude.

Latitude, as before stated, is the distance north or sonth from the equator. It is reckoned on the meridian in degrees; which, like those of all other circles, are subdivided into minutes, and again into sexagesimal parts. The center of the meridian, like that of the equator and otlier great circles of the globe, is considered at the center of the Earth.
The great circles of the globe, extended iuto the visible heavens, are considered as celestial circles, always lying in the same plane with those on the Earth. The position of the heavenly bodies, therefore, in regard to these circles, may be used in determining the latitude and longitude of places.
The latitude of a place may be determined by finding the distance of its zenith from the celestial equator. If, therefore, the zenith distance of a heavenly body and its declination be known, the latitude of the place of observation may be ascertained.

The declination of a heavenly body, as before defined, is its distance nortl or south from the colestial equator. The zenith distance of a heavenly body may be obtained by observing its meridian altitude, or by two altitudes. Four corrections are required in finding the altitnde of the Sun or Moon: semi-diameter, depression of the horizon, parallax, and refraction. The semi-diameter and parallax of a planet can be but a few seconds. They are imperceptible in a star.

Suppose that on the 4th of July, 1831, the Sun's declination was found to be $22^{\circ} 55^{\prime} 39^{\prime \prime}$ north, when it passed the meridian of New York; and at that time the Sun's true zenith distance was found to be $17^{\circ} 46^{\prime} 21^{\prime \prime}$ north, what is the latitude of that city?

If Arcturus, the noble star mentioned in the book of Job, be in $20^{\circ} 20^{\prime}$ north declination, as placed on the British celestial globe, and be observed to pass the meridian of Boston $22^{\circ} 3^{\prime}$ north of the zenith, what is the latitude of the city?

Declination north,
Zenith distance,
$20^{\circ} 20^{\prime}$
Answer,
$12^{\circ} 23^{\prime}$

With a little attention the student may easily determine whether he ought to add or subtract in making these calculations. If, in the last example, the declination had been $20^{\circ} 20^{\prime}$ south, the zenith distance would have been $62^{\circ} 43^{\prime}$, and the declination must have been subtracted to find the latitude of the place.

The latitude of a place may be determined by observing the altitude of its elevated pole. The altitude is always equal to the latitude of the place of observation. At this time the north pole of the Earth points nearly to a particular star, well known as the north or pole star. According to Dr. Flint, in his Survey, the declination of this star in 1810 was $88^{\circ} 17^{\prime} 28^{\prime \prime}$, with an annual increase of $19 \frac{1}{2}^{\prime \prime}$. Hence its declination on the 1 st day of January, 1831 , was $88^{\circ} 24^{\prime} 17^{\prime \prime \prime}$, and its distance from the pole $1^{\circ} 35^{\prime} 43^{\prime \prime}$. Let the altitude of this star above and below the pole be taken. Half the sum of these altitudes added together is the altitude of the pole, and equal to the latitude of the place.

Semi-diameter and depression of the horizon have been mentioned as necessary corrections in determining latitude, and not explained in separate articles.

The semi-diameter of the heavenly body is the angle under which the semi-diameter of the body appears at the Earth. The distance of the limb being taken in ascertaining the altitude of the Sun or Moon, the semi-diameter is necessarily applied in order to reduce it to the center of the body.

Depression of the horizon is caused by the eye of the observer being elevated. When a man stands upriglitly, he looks down on the horizon which touches the Earth at his feet. It must be apparent, that the higher the eye
is elevated, the farther below the horizon, touching the surface of the Earth beneath it, may a heavenly body be seen.

Longitude on the Earth's surface is the distance east or west from some fixed meridian, assumed as first. Like latitude, it is reckoned in degrees, minntes, and sexagesinal parts.

The best method of determining longitude has long been an object of inquiry by the mariner and the geographer, the mechanic, the statesman, and the philosopher.

Philip III. of Spain, we are informed, offered a reward of a hundred thousand crowns for the discovery of longitude. The States of Holland, then the rival of Spain, soon after followed the example. During the minority of Lewis XV., the Regent of France offered a great reward for the discovery of longitude at sea. About the year 1675, in the time of Charles II. of England, the royal observatory was built at Greenwich. Mr. Flamstead was appointed astronomer royal. Instructions were given to him and his successors, "that they should apply themselves with the nitmost care and diligence to rectify the tables of the motions of the heavens, and the places of the fixed stars, in order to find out the so much desired longitude at sea for the perfecting of the art of navigation."

In 1714 , the British parliament offered $£ 10,000$ for the discovery of longitude if the method determined it to $1^{\circ} ; £ 15,000$ if it determined it to 40^{\prime}; and $£ 20,000$ if it determined it to 30^{\prime}, with a proviso, that if such method extended but to 80 miles adjoining the coast, the proposer should have but half the reward. On this act Mr. John Harrison received the premium of $£ 20,000$ for his time-keeper. Several acts were passed in the reign of George II. and George III. for the encouragement of finding longitude. An act passed in 1774 , said to be the last of that government on the subject, repealing all the former acts. This act diminishes the premium to half the first great offer.

The United States have not been inattentive to the subject of longitude; so far, at least, as respects the establishment for themselves of a first meridian. In the year 1809, Mr. Lambert, of Virginia, presented to Congress a memorial on the subject of longitude. He commences by stating, "that the establishment of a first meridian for the United States of America, at the permanent seat of government, by which a further dependence on Great Britain, or any other foreign nation, for such a meridian, may be entirely removed, is deemed to be worthy the consideration and patronage of the national legislature." An interesting report on this memorial was made in March, 1810 , by a select committee of the House of Representatives, of which Mr. Pitkin, of Connecticut, was chairınan. An extract from this report may deserve a place even in a compendinu of astronomy:
"The committee have deemed the subject worthy the attention of Congress, and would, therefore, beg leave to observe, that the necessity of the establishment of a first meridian, or a meridian which should pass through some particular place on the globe from which geographers and navigators could compute their longitude, is too obvious to need elncidation.
"The ancient Greek geographers placed their first meridian to pass through one of the islands, which by them were called the Fortunate Islands, since called the Canaries. Those islands were situated as far west as any islands that had been discovered, or were known by ancient navigators in that part of the world.
"They reckoned their longitude east from Hera, or Junonia, supposed to be the present island of Teneriffe.
"The Arabians, it is said, fixed their first meridian at the most westerly part of the continent of Africa. In the fifteenth and sixteenth centuries, when Europe was emerging from the dark ages, and a spirit of enterprise and discovery had risen in the sonth of Europe, and various plans were formed and attempts made, to find a new route to the East Indies, geographers and navigators continued to calculate longitude from Ferro, one of the same islands, though some of them extended their first meridian as far west as the Azores, or Western Islands.
"In more modern times, however, most of the European nations, and particularly England and France, have established a first meridian to pass through the capital, or some place in their respective countries, and to which they have lately adapted their maps, charts, and astronomical tables.
"It would, perhaps, have been fortunate for the science of geography and navigation, that all nations had agreed upon a first meridian, from which all geographers and navigators might have calculated longitude; but as this has not been done, and, in all probability, never will take place, the committee are of opinion that, situated as we are in this western hemisphere, more than three thousand miles from any fixed or known meridian, it would be proper, in a national point of view, to establish a first meridian for ourselves; and that measures should be taken for the eventual establishment of such a meridian in the United States.
"In examining the maps and charts of the United States, and the particular states, or their sea-coasts, which have been published in this country, the committee find that the publishers have assumed different places in the United States as first meridian. This creates confusion, and renders it difficult, without considerable calculation, to ascertain the relative situation of places in this country. This difficulty is increased by the circumstance, that in Lonisiana, our newly acquired territory, longitude has herefofore been reckoned from Paris, the capital of the French empire.
"The exact longitude of any place in the United States being ascertained from the meridian of the observatory at Greenwich, in England, a meridian with which we have been conversant, it would not be difficult to adapt all our maps, charts, and astronomical tables, to the meridian of such place. And no place, perhaps, is more proper than the seat of government."

The memorial, the report of the committee, and other papers were afterward referred to Mr. Monroe, then Secretary of State, and late President of the United States. His opinion fully accorded with that of the committee, in favor of establishing a first meridian for the United States, and that it should be at Washington, the seat of goverument.

The subject was afterward referred to another committee of the House of Representatives, of which Dr. Samuel L. Mitchill, of New York, was chairman. The report of this committee was in full accordance with the preceding sentiment, and in favor of the establishment of a first meridian at the seat of government.

To these high authorities, that of the illustrious Washington may be added, as stated by Mr. Lambert, in 1821, in his address on the subject to the President of the United States.
"The illustrious personage by whose name the metropolis of the American Union has been designated, unquestionably intended that the capital,
situated at or near the center of the District of Columbia, shonld be a tirst meridian for the United States, by cansing; during the first term of his presidency, the geographical position of that point, in longitude $0^{\circ} 0^{\prime}$, and its latitude $38^{\circ} 53^{\prime}$ north, as found by Mr. Andrew Ellicott, to the nearest minute of a degree, to be recorded in the original plan of the city of Washington."

Relative or apparent time differs four minutes for a degree, or one hour for every 15° of longitude. To the east, it is later; to the west, earlier. When it is noon with us, it is one P. M., 15° east; eleven, A. M. 15° west. Washington, according to Mr. Lambert, is $76^{\circ} 55^{\prime} 30^{\prime \prime}$ west of Greenwich. It is $6 \mathrm{~h} .52 \mathrm{~m} .18 \mathrm{~s} .$, A. M., at Washington when it is noon at Greenwich. Boston is $159^{\circ} 32^{\prime}$ west of Calcutta. When it is noon at Boston it is 10 h . $38 \mathrm{~m} .8 \mathrm{~s} .$, P. M., at Calcutta. If, therefore, by an exact time-keeper, or observation on the heavenly bodies, the time of day at the meridian, from which longitude is reckoned, and also the time at the place of observation, can be known, the difference converted into motion will show the longitude.

A good time-keeper, clock or watch, forms one method of computing longitude. Such time-keeper, set for any meridian, will not, when carried east or west, correspond with the apparent time. But its difference from the time at the place of observation, turned into motion, would, if true, give the longitude. If a ship, sailing from London to Boston, should set a watch for the meridian of London 6^{\prime} west of Greenwich, such watch, if perfectly accurate, would give the time $4 \mathrm{~h} .43 \mathrm{~m} .25 \mathrm{~s} ., \mathrm{P}$. M., when the Sun is on the meridian at Boston. No clock or watch, however, yet invented, has been found entitled to perfect dependence. Even the time-keeper of Mr. William Harrison was found snbject to considerable error when tried at the royal observatory by Dr. Maskelyne; though it had made a voyage from England to Barbadoes and back again, varying but 54 seconds in 156 days, or, as was thought, with proper allowance, only 15 seconds in that time.

The eclipses of Jupiter's satellites, happening very often, form an excellent method of determining longitude on land. Like those of the Moon, they are seen at the same absolute time in all places where they are visible. The difference in relative time, then, will show the longitude. Suppose an eclipse of the 4th satellite of Jupiter be set in the Nautical Almanac published for Greenwich at $4 \mathrm{~h} .25 \mathrm{~m} .$, A. M., on a particular day, and the same is observed in the United States at $11 \mathrm{~h} .17 \mathrm{~m} .18 \mathrm{~s} .$, P. M., of the preceding day, what is the difference of longitude?

$$
\begin{array}{r}
4 \mathrm{~h} .25 \mathrm{~m} . \\
-11 \mathrm{~h} . \\
\hline 5 \mathrm{~m} . \\
\hline 17 \mathrm{~m} . \\
\hline
\end{array}
$$

In making this subtraction, it will be perceived, from the nature of the case, that 12 must be added to the hours of the minuend, or upper number. Convert 5 h .7 m .42 s . into motion, by allowing 15° for each hour, 1° for every 4 minutes, and 1 minute for every 4 seconds, and so on for thirds, you have the difference of longitude $76^{\circ} 55^{\prime} 30^{\prime \prime}$.

It is said the difficulty of observation at sea renders eclipses of Jupiter's satellites of but little practical atility to the mariner in computing longitude.

Lunar observations form another method of determining longitude. This method is a great modern improvement in navigation. The idea is not very
modern. "M. de la Lande mentions certain astronomers, who, above two liundred years ago, proposed this method, and contended for the honor of the discovery; but its present state of improvement and universal practice he very justly ascribes to Dr. Maskelyne." This last mentioned astronomer first proposed and superintended the construction of the Nautical Almanac. In this the angular distance of the Moon from the Sun and certain fixed stars is inserted for every third hour in the day, calculated for the meridian of Greenwich. "If, therefore, under any meridian, a lunar distance be observed, the difference between the time of observation and the time in the Almanac when the same distance was to take place at Greenwich, will show the longitude." The stars selected for the Almanac are nine, viz.: the Alpha, or first star of Aries, Aldebaran of Taurus, Pollux of Gemini, Regulus of Leo, Spica of Virgo, Antares of Scorpio, Altair of Aquila, Fomalhaut of Piscis Australis, and Markab of Pegasus. The Nautical Almanac is annually published in England by the commissioners of longitude.

For practice in finding longitude, with the necessary tables, the student is referred to Dr. Bowditch's useful work, the "Practical Navigator."

Except a small variation on account of the spheroidical figure of the Earth, degrees of latitude remain the same, or of equal length, on every part of the globe. But those of longitude decrease from the equator to the poles, where they become extinct. The number of degrees in a circle of longitude is the same in all latitudes; but the number of miles in a degree continually lessens each way from the equator. The student versed in trigonometry may be informed that the proportion is-as radius is to the cosine of any given latitude, so is the number of miles in a degree of longitude at the equator to the number of miles in a degree of longitude at such latitude.

Meteors.

In some astronomical works are to be found accounts of lightning, thunder, clouds, aurora borealis, and even of wind, rain, snow, and hail. These, though highly important, and deserving the attention of the chemist and the student in general philosophy, seem not connected with astronomy, nor deserving a place in a work intended to be exclusively astronomical.

But aerolites, or falling stones, seem worthy of some notice, even in a compendium of astronomy. "It mnst be reckoned," says Rees's Cyclopædia, " among the wouders of the age in which we live, that considerable portions of these heavenly bodies are now known to have descended to the Eartl. So wonderful and unexpected an event was at first received with incredulity and ridicule; but we may now venture to consider the fact as well established as any other hypothesis of natural philosophy, which does not actually admit of mathematical demonstration."

One of the earliest accounts we have of these phenomena is given by Livy, in his History of Rome. He tells us that, in the time of Tullus Hostilius, the successor of Numa, and third king of Rome, it was announced to the king and to the fathers, that it rained with stones on mount Albanus; that these stones fell from heaven not otherwise than when the winds drive the hail thick to the Earth.

Pliny mentions, that a large stone fell in Thrace, in the second year of the seventy-eighth Olympiad.

Three large stones are said to have fallen in Thrace, in the year before Christ 452.

It would be useless to dwell on the numerons accounts of these phenomena handed down to us from great antiquity. But it may be proper to give a few instances of the falling of these stones in modern times, received on the authority of different authors.

A shower of falling stones, 1,200 , one of 120 lbs ., is related to have happened near Padua, in Italy, in 1510.

April 5, 1804, a stone of this kind fell near Glasgow, in Scotland. Several gentlemen of the university well ascertained the particulars of this phenomenon.

But New England affords one of the best anthenticated accounts of these wonderful stones. Professors Silliman and Kingsley visited and carefully examiued every spot where it was ascertained these stones had fallen. The principal fall was within the bounds of Weston, in Comnecticut; though the most northerly was in Huntingdon, on the borders of Weston. Something of the original account deserves to be extracted: "The neteor which has so recently excited alarm in many, and astonishment in all, first made its appearance in Weston, about a quarter or half-past six o'clock, on Monday, the 14th of December, 1807. The morning was sornewhat cloudy, mingled with spots of clear, a space of 15° along the northern horizon perfectly clear; there was little or no light, except from the Moon, just setting.
"Judge Wheeler was passing through the inclosure adjoining his house, with his face toward the north, and his eyes on the ground, when a sudden flash across the northern sky made him look op; he immediately discovered a globe of fire passing behind the first cloud, which was very dark, and obscured the meteor. In this situation its appearance was distinct, like the Sun seen through a mist. Its progress was not so rapid as that of common meteors and shooting stars. When it passed the clear sky it flashed with a vivid light, not so inteuse as lightning in a thunder-storm, but like what is called heat lightning. Its surface was apparently convex. When not too much obscured by clouds, a conical train of paler light attended it waving, and in length about ten or twelve diameters of the body. In the clear sky, there was a brisk scintillation about it, like a firebrand carried against the wind. It disappeared about 15° short of the zenith, and the same number west of the meridian. It did not vanish instantaneonsly, but grew fainter, as a red-hot cannon-ball would do, cooling in the dark, only much more rapidly.
"About thirty or forty seconds after this, three loud and distinct reports, like those of a four-pounder, near at hand, were heard. They succeeded each other rapidly, and did not occupy above three seconds. Then followed a continual rumbling, like a cannon-ball rolling over a floor, sometimes louder and sometimes fainter."

There were six places where stones fell on this occasion; the most remote, nine or ten miles from each other. One fell on a rock of granite with a loud report. It was broken into fragments, thrown to the distance of thirty feet, and some part reduced to powder. One mass of this fall was found sunk two feet below the surface of the ground. Of the masses found, two weighed 35 lbs . each ; one, 25 lbs . From the fragments found of one, it was thought it must have weighed nearly 200 lbs.

A great similarity is found in these stones, when examined chemically, in different parts of the world where they had fallen. But they are very different from the other stones on the surface of the Earth.

Much speculation has been excited respecting the origin of the aerolites. Prior tells us, "The most prevalent opinion among modern philosophers is, that they are concretions actually forined in the atmosphere itself." But that such solid and weighty bodies should be formed in the rare medium of the atmosphere, would be more wonderful than the falling stones themselves. Some have supposed they originate in the asteroids.
Perhaps the most probable opinion is that of La Place, "that the stones are projected by lunar volcanoes within the sphere of terrestrial attraction." The Moon is but 240,000 miles from the Earth. The force of attraction in different bodies is as the quantity of matter. Of this, that of the Earth is to that of the Moon as $\mathbf{1}$ to .025 . Hence the neutral ground between the two bodies must be vastly nearer the Moon than the Earth. Whenever matter thrown up by a volcano from the Moon, passes this ground, it must irresistibly be drawn to the Earth.

The lunninous meteors, usually denominated shooting stars, seem different in their origin, and to be of species different from aerolites, or falling stones. In some instances in which these meteors have appeared in immense numbers, for many hours in succession, and over an extensive region, no falling stones have been discovered, nor any traces been found where they have marked the Earth.
Several noted instances of these meteors have occurred in modern times. An account of one is given by Humboldt, witnessed by himself and Bonpland at Cumana, in South America. "The night of the 11th of November, 1779, was cool and extromely beautiful. Toward the morning, from half after two, the most extraordinary luminous meteors were seeu toward the east. Bonpland, who had risen to enjoy the freshness of the air in the gallery, perceived them first. Thousands of bolides, fireballs, and falling stars, succeeded each other during four hours.' Their direction was very regular from north to south. They filled a space in the sky extending from the true east 30° toward the north and south; some of them attained a height of 40°, and all exceeded 25° or 30°. There was very little wind, and no trace of clouds to be seen."

Phenomena similar to those seen by Humboldt were extensively observed on the Atlantic ocean and the Gulf of Mexico, on the 12th of November, 1799. The following account of these has been extracted into our papers from the Newburyport Herald of that year. It was given by Captain Woodman, of the brig Nymph:
"On my passage home from the island of St. Domingo, being in lat. 29° lon. 70°, on the 12 th of November, at half-past one o'clock in the morning, the weather being very clear and pleasant, the wind to the eastward, the moon near the full, and shining very bright, observed the stars to shoot in great numbers from every point of the compass; and at two o'clock the whole atmosphere appeared to be full of stars-I may say thousands of thousands-shooting and blazing in all directions-in a most extraordinary and alarming manner, and so continued till daylight. On my arrival at the Vineyard, I met with several masters of vessels, who were on their passage at the same time, and said that the stars made the same appearance to them on the night above mentioned, though they were then several degrees to the northward of me. This account was dated Newburyport, December 20, 1799.

These phenomena of November 12th, 1799, were witnessed by Mr. Elli-
cott when a commissioner to settle the boundary line between the United States and the Spanish possessions in North America. He describes them as "grand and awful. The whole heavens appeared as if illuminated with sky-rockets, which disappeared only by the light of the sun after daybreak. The meteors, which, at any one instant of time, appeared as numerous as the stars, flew in all possible directions, except from the Earth."

Captain Hammond and his crew, when at Mocha in Arabia, on the 12th of November, 1832, witnessed a similar display of luminous meteors, and described them in similar language.

The citizens of these United States will long remember the night of the 12 th, or the morning of the 13 th of November, 1833. The brilliant exhibition of luminous meteors which adorned the canopy from the St. Lawrence to the Gulf of Mexico, and from the Atlantic to the Rocky Mountains, perhaps has never been surpassed in the time of its continuance, or in the richness and grandeur of its appearance.

The display seems to have commenced earlier as seen from the southern than from the northern sections of the Union. The following account is extracted from the Charleston Mercury of November 14th, 1833 :
"Those who were up before the dawn yesterday witnessed a most glorious sight, one glance at which were worth ten years of common life. The temperature of the day before had been oppressive, the mercury ranging as high as 78 degrees. At night the atmosphere became cooler, but not so much so as to make a fire necessary for comfort. About ten o'clock, P. M., shooting stars were observed to succeed each other with unusual frequency, and continued to appear at short intervals during the night. But at about three o'clock in the morning the wind, which had been from the west, having changed, and blowing with some freshness from the northeast, there was a burst of splendor throughont the firmament, and its entire concave was thronged with innumerable meteors streaming athwart each other toward the horizon in every quarter, leaving long trains of light as if millions of rockets were incessantly exploding. The literal shower of stars continued till daylight, exploding in glittering confusion as if the whole starry host were reeling madly from their spheres.
"While this grand and beautiful spectacle lasted, a permanent light as strong as moonlight was thrown through the windows of our chambers, and, although the sky was without a clond, there were flashes, from time to time, of the most vivid lightning. The unusual light roused many from their beds, some supposing that the city was on fire. While every spectator must have gazed with feelings of awe, some were astonished into the liveliest terror."

There is a striking coincidence of expression in the description of these phenomena in different and distant parts of the country. How far they were visible beyond the limits of the United States is not yet ascertained. They are described as having appeared splendid at St. George's Bank, three hundred miles from the coast.

The astonishing displays of meteors seen at different times, 1779, 1799, 1832, and 1833, all appeared at the same time of the year, or within a single day of the same time. This is worthy of notice and philosophical inquiry.

The cause of these phenomena, these showers of luminous meteors, evidently distinct from aerolites, seems now demanded from every quarter by the wise and the simple, the learned and the unlearned. Many hy-
potheses have been formed on the subject. Dr. Halley conjectured "that a stratum or train of inflammable vapor, gradually raised from the Earth and accumulated in an elevated region, suddenly took fire, and, burning like a train of gunpowder, exhibited the meteoric phenomena." The late President Clap of New Haven, supposed fiery meteors to be terrestrial comets revolving about the Earth. But his attention must have been fixed on others, and not on these showers of meteors. A learned professor wishing for more information concerning them, thinks "it evident that the point from which the fireballs emanated was beyond the limits of our atmosphere; that the balls were projected obliquely into the atmosphere; that they were not at first luminous, but became so, and more so, as they reached the denser parts of the atmosphere, until they exploded or burst asunder; and that they consisted of luminous vapor, such as after explosion remained suspended in the air."

The most probable conjecture seems to be, that the meteors of 1833 were electrical phenomena.

The state of the atmosphere is to be considered. The weather was warm for some time previous to the display. On the day preceding, it was almost sultry. In the afternoon there were gusts of wind attended with sudden showers of rain and lightning. "The atmosphere seemed to be saturated with electricity."

To account for these metcors on the principles of electricity is not new. Dr. Rees informs us that "Dr. Blagden proceeds to explain these meteors on the hypothesis that they are electrical phenomena. His arguments are, 1st, from the great rapidity of their motion, which seeus to exceed any other we are acquainted with besides electricity; 2 dly, from certain electrical phenomena which sometimes accompany these meteors; and 3dly, from the connection which they have with the aurora borealis. Dr. Blagden concludes that there are three regions of the atmosphere distinguished by electrical phenomena peculiar to each; 1st, the lowest region, in which the thunder and lightning occur ; 2dly, the middle region, where the fireballs and shooting stars are observed ; and 3diy, the highest region, where the aurora borealis displays a peculiar kind of electrical agency." It is worthy of remark, that miany accounts mention flashes of lightning during the display of meteors. It is very probable that the great meteor which passed over England on the 18th of August, 1783, was an electrical phenomenon. It went with immense rapidity, more than one thousand miles in about half a minute.

SELECTIONS FROM RYAN'S ASTRON0MY.

Ок Сометs.

1. Comets are planetary bodies moving about the Sun in elliptic orbits; and following the same laws as the planets; so that the areas described by their radii vectores are equal in equal times.

When a comet appears, the observations to be made for ascertaining its orbit are of its declinations and right aseensions, from which the geocentric latitudes and longitudes are obtained. These observations of right ascension and declination must be made with an equatorial instrument, or by measuring with a micrometer, the differences of the deelination and right ascension of the eomet and a neighboring fixed star. The observations, according to Dr. Brinkley, ought to be made with the utmost care, as a small error may occasion a considerable one in the orbit.

From the beginning of the Christian era to the present time, there have appeared not less than 500 comets; but the elements of not more than 99 have been computed, and of the latter number 22 passed between the Sun and Mercury in their perihelia; 40 between Mercury and Venus; 17 between Venus and the Earth; 16 between the Earth and Mars; and 4 between Mars and Jupiter.

The appearance of one comet has been several times recorded in history, viz., the comet of 1680 . The period of this comet is 575 years. It exhibited at Paris a tail $62^{\circ} \mathrm{long}$, and at Constantinople one of 90°. When nearest the Sun, it was only one-sixth part of the diameter of the sun distant from his surface; when farthest, its distance exceeded 138 times the distance of the Sun from the Earth.
2. As the orbits of the comets are very eccentric, the aphelion distance of a comet is so great, compared with its perihelion distance, that the small portion of the ellipse which it describes near its perihelion, or during its appearance, may, without any sensible error, be supposed to coincide with a parabola, and thus its motion during a short interval may be calculated as if that portion of the orbit was parabolieal.

Dr. Halley makes the perihelion distance of the eomet of 1680 to be to its aphelion distance, nearly as 1 to 22412 ; so that this eomet was twenty-two thousand four hundred and twelve times farther from the Sun in its aphelion than in its perihelion.

Aceording to the laws of Kepler, the sectors described in the same time by two planets, are to each other as the areas of their ellipses divided by the square of the times of the revolution, and these squares are as the cubes of their semi-major axes. It is easy to conelude, that if we imagine a planet moving in a circular orbit, of which the radius is equal to the perihelion distance of a comet, the seetor described by the radius vector of the comet, will be to the corresponding sector described by the radius vector of the
planet, as the square root of the aphelion distance of the comet is to the square root of the semi-major axis of its orbit, a relation which, when the ellipse changes to a parabola, becomes that of the square root of 2 to unity.

The relation of the sector of the comet to that of the imaginary planet is thus obtained, and it is easy by what has been already said, to get the proportion of this last sector to that which the radius vector of the earth describes in the same time. The area described by the radius vector of the comet may then be determined for any instant whatever, setting out from the moment of its passage through the perihelion, and its position may be fixed in the parabola which it is supposed to describe. Nothing more is necessary, but to deduce from observation the elements of the parabolic motions.
3. The elements of a comet are, the perihelion distance of the comet, the position of the perihelion, the instant of its passage through the perihelion, the inclination of its orbit to the plane of the ecliptic, and the position of its nodes.

Elements of the Comet of 1811.

Its heliocentric motion retrograde.
The investigation of these five elements presents much greater difficulties than that of the elements of the planets, which being always visible, and having been observed during a long succession of years, may be compared when in the most favorable position for determining these elements, instead of which comets appear only for a short time, and frequently in circumstances where their apparent motion is rendered very complicated by the real motion of the Earth, which always carries us in a contrary direction.

Notwithstanding all these difficulties, it is possible to determine the elements of the orbits of comets by different methods. Three complete observations are sufficient for this object; others only serve to confirm the accuracy of these elcments, and the truth of the theory which has been just explained. Above four-and-twenty comets, the numerous observations of which are exactly represented by this theory, have confirmed it beyond all doubt. It appears, therefore, that comets which have been considered as meteors for many years, are of the same nature as planets; their motions and their returns are regulated by the same laws as planetary motions.
4. Comets do not always move in the same direction like the planets. The real, or heliocentric motion of some is direct, or according to the order of the signs; and of others, retrograde. But the geocentric motion of the same comet may be either retrograde or direct according to the position of the Earth with respect to the comet, and their relative velocities.

The heliocentric motion of half the comets whose elements have been computed, is retrograde, and of the others, direct. The inclination of their orbits is not confined within a narrow zone like that of the planetary orbits; they present every variety of inclination, from an orbit nearly coincident with the plane of the ecliptic, to that perpendicular to it.

A comet is recognized when it reappears by the identity of the elements of its orbit with those of the orbit of a comet already observed. If its peri-
helion distance, the position of its perihelion, its nodes, and the inclination of its orbit are very nearly the same, it is probable that the comet which appears is that which has been observed before, and which, having receded to such a distance as to be invisible, returns to that part of its orbit nearest to the Sun. The duration of the revolution of comets being very long, and having been observed with very little care till within about two centuries, the period of the revolution of one comet only is known with certainty, that of 1682 , which had been already observed in 1607 and 1531 , and which has reappeared in 1759 . This comet takes about 76 years to return to its perihelion; therefore, taking the mean distance of the Sun from the Earth as unity, the greater axis of its orbit is 35.9 , and as its perihelion distance is only 0.58 , it recedes from the Sun at least 35 times more than the Earth, describing a very eccentric ellipse. Its return to the perihelion has been longer by thirteen months from 1531 to 1607 , than from 1607 to 1682 ; it has been 18 months shorter from 1607 to 1682, than from 1682 to 1759.

The real or heliocentric motion of this comet was retrograde, and the elements of the orbit deduced by Dr. Halley from the observations of Apian in 1531, of Kepler in 1607, and of himself in 1682, also the elements deduced from the observations in 1759, were as follows:

This comet was retarded by the action of Jupiter, as Dr. Halley had foretold. This retardation was more exactly computed by Clairaut, who also calculated the retardation by Saturn. The result of his computation published before the return of the comet, fixed April 15 for the time of the passage through perihelion: it happened on March 12. Dr. Halley's computation appears also very exact, when it is considered that he did not allow for the retardation by Saturn. As had been predicted by Dr. Halley, this comet reappeared in 1835.

The return of some other comets has been suspected: the most probable of these returns was that of the comet of 1532 , which has been believed to be the same with that of 1661 , and the revolution of which was fixed at 129 years; but this comet not having reappeared in 1790, as was expected, there is great reason to believe that these two comets were not the same.

The preceding matter has been principally extracted from Laplace's Syst t m of the World.

An ingenious computation has been made by Laplace, from the doctrine of chances, to show the probability of two comets being the same, from a near agreement of the elements. It is unnecessary to detail at length the method here. It supposes that the number of different comets does not exceed one million, a limit probably sufficiently extensive. The chance that two of these, differing in their periodic times, agree in each of the five clements within certain limits, may be computed, by which it was found to be
as 1200 to 1 . that the comets of 1607 and 1682 were not different, and thus Halley was justly almost confident of its reappearance in 1759. As it did appear then, we may expect, with a degree of probability approaching almost without limit to certainty, that it will reappear again at the completion of its period.

But with respect to the comet predicted for 1789, from the supposition that those of 1661 and 1532 were the same, the case is widely different. From the discrepancy of the elements of these comets, the probability that they were the same is only 3 to 2 , and we cease to be surprised that we did not see one in 1789. See Dr. Brinkley's Elements of Astronomy.

Comets that appeared in 1264 and 1556 are supposed to have been the same, whence this comet may again be expected in 1848.

A comet appeared in 1770 very remarkable from the result of the computations of Lexell, which indicated a period of only $5 \frac{1}{2}$ years; it has not been observed since. There can be no doubt that the periodic time of the orbit which it described in 1770, was justly determined; for M. Burckhardt has since, with great care, recomputed the observations, and his result gives a periodic time of $5 \frac{1}{2}$ years.

Lexell has remarked, that this comet, moving in the orbit he had investigated, must have been near Jupiter in 1767, and would also be very near it again in 1779 ; from whence he concluded that the former approach changed the perihelion distance of the orbit, by which the comet became visible to us, and that in consequence of the latter approach, the perihelion distance was again increased, and so the comet again became invisible, even when near its perihelion. This explanation has been in a manner confirmed by the calculations of Burckhardt, from formulas of Laplace. He has found, that before the approach of Jupiter, in 1767 , the perihelion distance might have been 5.08, and that after the approach in 1779 , it may have become 3.33 , the Earth's distance being unity. With both these perihelion distances, the comet must have been invisible during its whole revolution. The perihelion distance in 1770 was 0.67 .

This comet was also remarkable by having approached nearer the Earth than any other comet that has been observed, and hy that approach having enabled us to ascertain a limit of its mass, or quantity of matter. Laplace has computed, that if it had been equal to the Earth, it would have shortened the length of our year by one-ninth of a day. Now it has been ascertained, by the computations of Delambre on the Greenwich observations of the Sun, that the length of the year has not been changed, in consequence of the approach of that comet, by any perceptible quantity; and thence Laplace has concluded, that its mass is less than one five-thousandth of that of the earth. The smallness of its mass is also shown by its having traversed the orbits of the satellites of Jupiter without having occasioned an alteration in their motions. From those and other circumstances, it seems probable that the masses of the comets are in general very inconsiderable; and therefore, as Dr. Brinkley remarks, that astronomers need not be under apprehensions of having their tables deranged in consequence of the near approach of a comet to the Earth or Moon, or to any bodies of the solar system.
5. The motion of a comet, like that of a planet, is accelerated when moving from its aphelion to its perihelion, and retarded from its perihelion to its aphelion. On account of the great eccentricity of a comet's orbit, its motion
in the perihelion is prodigiously swift, and in the aphelion proportionably slow.

The velocity of this comet in its perihelion was so great, that, if continued, it would have carried it through 124 degrees in an hour. But its actual hourly motion during that interval, before and after it passed its perihelion, was $81^{\circ} 46^{\prime} 52^{\prime \prime}$.

From Dr. Halley's determination of the orbit of this comet, it cannot be less than 13,000 millions of miles from the Sun when in its aphetion.

According to Pingre, the elements of the orbit of the comet of 1680 were as follows: this comet passed through its perihelion December 18th, at 1 minute 2 seconds after 12 o'clock, at noon mean time at Greenwich; place of the perihelion $8 s .22^{\circ} 40^{\prime} 10^{\prime \prime}$, or $22^{\circ} 40^{\prime} 10^{\prime \prime}$ of Sagittarius; and its distance from the Sun when in the perihelion, .00603 , the mean distance of the Earth from the Sun being considered as unity or 1 ; the longitude or place of the ascending nodes 9 signs, $1^{\circ} 57^{\prime} 13^{\prime \prime}$, or $1^{\circ} 57^{\prime} 13^{\prime \prime}$ of Capricornus; and the inclination of the orbit to the plane of the ecliptic $61^{\circ} 22^{\prime} 55^{\prime \prime}$.

It appears from the great diurnal motion of some comets, that they must have come very near the earth. For, according to Regiomontanus, the comet of 1472 moved over an arc of 120° in one day. And the comet of 1759 described the apparent are of 41° in the same interval of time.

The comet of 1811 was first seen at Viviers, by Flaugergues, on the 25th of March, and was visible till the end of May; it must have been very faint and near the horizon all the time, it having during that interval great southern latitude. The Earth was in about 5 degrees of Libra, on the 25 th of March, and therefore the comet must be nearly in opposition to the Sun, which certainly was the most favorable position for seeing it. It was then moving toward its perihelion, but its motion being slow, and the Earth retreating from it, it was lost sight of when the Earth arrived at the beginning of Sagittarius. The comet passed the ascending node on July 11th, when the Earth was between Capricornus and Aquarius; it was then approaching its conjunction with the Sun, and was invisible from the end of May till the 31st of August, when, between 3 and 4 o'clock that morning, it was observed by Bouvard, at the imperial observatory; its right ascension was $147^{\circ} 18^{\prime}$, and declination $32^{\circ} 53^{\prime}$ north. The comet was tirst observed at Greenwich, on the 5th of September; its geocentric longitude at that time was $145^{\circ} 3^{\prime} 10^{\prime \prime}$, and its geocentric latitude $28^{\circ} 36^{\prime} 39^{\prime \prime}$. The comet was at its perihelion at a distance of $97,128,950$ miles from the Sun on the 12 th of September.

On October 2d, the comet was $26^{\circ} 33^{\prime}$ from the perihelion; its heliocentric longitude was $41^{\circ} 53^{\prime}$ and latitude $72^{\circ} 1^{\prime}$; having two days before passed the higher part of its orbit, or 90 degrees from the node. The Earth at the same time was in about 9° of Aries; and the geocentric longitude of the comet was $174^{\circ} 37^{\prime}$, and its geocentric latitude $54^{\circ} 5^{\prime}$. The comet's distance from the Sun was $102,532,550$, and from the Earth $120,413,930$ miles. The comet was nearest the Earth on the 11th of October, when its distance was $113,630,450$ miles, its apparent motion in longitude at this time was nearly four degrees in twenty-four hours. On the 12 th , the comet was $37^{\circ} 33^{\prime}$ from the perihelion, having a rapid geocentric motion in longitude, the direction of the Earth and comet conspiring to produce that effect. Its geocentric longitude was $203^{\circ} 46^{\prime}$, and latitude $61^{\circ} 39^{\prime}$; the Earth at the same time was $18^{\circ} 40^{\prime}$ in the sign Aries. The comet's distance from the Sun was $108,342,464$, and from the Earth $113,948,225$ miles. On January 1st, 1812,
the comet was $89^{\circ} 11^{\prime}$ from the perihelion; its heliocentric longitude was $328^{\circ} 15^{\prime}$, and latitude $23^{\circ} 33^{\prime}$. The Earth was about $10^{\circ} 21^{\prime}$ in Cancer ; the greatest geocentric longitude of the comet was $312^{\circ} 2^{\prime}$, and latitude $17^{\circ} 18^{\prime}$. Its distance from the Sun was $190,520,000$, and from the Earth $259,614,500$ miles. See, for a delineation of a portion of this comet's orbit, Squire's Astronomy.

Though the real or heliocentric motion of this comet was not within the sphere of the Earth's orbit, yet its geocentric track, when referred to the ecliptic, crossed the orbit of the Earth; hence, the apparent place of the comet, during the greater part of the time it was visible, was toward the opposite part of the heavens to its true place.

From the true and apparent places of the comet given above, for particular days, its real and visible path may be traced upon the celestial globe. Dr. Herschel makes the planetary body of this comet not more than 428 miles in diameter ; but the real diameter of the head he makes to be about 127,000 miles.

The apparent motion of this comet was direct, yet very unequal, for when it first became visible after passing the ascending node, it was nearly stationary, and the same about the time of its disappearance, but when nearest the Earth it equaled that of Mercury.

This comet was visible a longer time than almost any other upon record, and therefore none has ever afforded such certain means of information with respect to its orbit. Had its heliocentric motion been direct, it would have been visible much longer, and would have passed within $44,485,850$ miles of the Earth, had it crossed the line of its nodes at the same time. The comet would then have appeared a large nebulous body, but without a tail, as that appendage would have been projected in a direct line from behind its body.

Creation a Proof of Divine Existence.

This is a conclusion which has been deduced by men of all nations, and in every period of the world. "There is no nation or people," says Cicero, "so barbarous and ignorant as not to acknowledge a powerful and Supreme Divinity."

1. It is as natural for the human understanding, in its original and unbiassed state, when contemplating the frame of the universe, to infer the existence of a Deity, as it is the property of the eye to distinguish light and colors, and of the ear to distinguish sounds. The principle from which this conclusion is deduced is exactly the same as that by which, from the contemplation of a building, we infer a builder, and from the elegance and utility of every part of the structure, we conclude that he was a wise and skillful architect; or that by which, from an inspection of a clock or watch, or any other piece of useful machinery, we infer not only the existence, but the qualities and attributes of the contriver and artificer. The man who is incapable of at once deducing such conclusions ought to be regarded as destitute of the reasoning faculty; and if we thus necessarily infer the cause from the effect in the case of human art, can we for a moment hesitate to ascribe the production of this amazing universe which surrounds us, to a Being of infinite knowledge, wisdom, and power, adequate to bring into existence such an immense and wonderful machine, and to preserve it in harmony, from age to age, amidst all its diversified and complicated movements? That ever a
doubt was entertained on this subject, is a plain proof that man has lost, in part, that light of reason and intelligence with which he was originally endued, or that he is sometimes urged on by depraved passions and a pride of singularity to utter sentiments which he does not sincerely believe. As Cicero long ago declared--"He who thinks the admirable order of the celestial orbs, and their constancy and regularity, on which the conservation and good of all things depend, to be void of a mind that governs them, he himself deserves to be accounted void of a mind." It is "the fool" alone, in the strictest sense of the word, whatever may be his pretended learning, who dares to declare " there is no God."

And as the universe demonstrates the existence, so it displays the attributes of the Eternal. The manifestation of himself to numberless orders of intelligent beings must have been the great end intended in bringing the universe into existence. This manifestation is made chiefly in actions-in actions which display greatness, wisdom and goodness, beyond all bounds. His greatness appears from the immensity of power which the universe exhibits. The power necessary to move a single planet in its course far transcends human conception. What, then, must be the energy and extent of that power which set in motion and still upholds all the planets, worlds, and systems dispersed throughout the spaces of infinitude! The highest created intelligence must be utterly overwhelmed and confounded when it attempts to contemplate or to grasp an idea of omnipotence. His knowledge, wisdom and unceasing agency are no less conspicuous in the arrangement and direction of every thing that exists in heaven and on earth. As his presence pervades all space, so his agency is displayed in the minutest movement of every part of the vast whole. This great and incomprehensible Being moves every atom, expands every leaf of the forest, decks every flower, conveys the sap through the ramifications of every tree, conducts every particle of vapor to its appointed place, directs every ray of light from the sun and stars, every breath of wind, every flash of lightning, every movement of the meanest worm, and every motion of the smallest microscopic animalculum ; while at the same time he supports the planets in their courses, guides the comet in its eccentric career, regulates the movements of millions of resplendent systems, and presides in sovereign authority over unnumbered hosts of intelligent existence; directing all the mysterious powers of knowledge, virtue, and moral action to subserve the purposes of his will, and accomplish the ends of his moral government. In every department of this universe, likewise his good ness is displayed to unnumbered orders of beings, sentient and intellectual; for all the powers of intelligence and action possessed by every creature in heaven and on earth, from the archangel to the worm, and all the happiness they now or ever will enjoy, are derived from him as the uncreated source of all felicity.
Under this glorious and stupendous Being we live and move; our comforts and enjoyments, while passing through this transitory scene, are wholly in his hands, and all our prospects of enjoyment beyond the range of our earthly career are dependent on his mercy and favor. His omnipotent arm supports us every moment; every breath we draw, every pulse that beats within us, every muscular power we exert, every sound that strikes our ears, and every ray of light that enters our eye-balls, is dependent on his sovereign will. All that we hope for beyond the limits of time and throughout the revolutions of eternity depends upon his power, his wisdom, his benevolence and his
promises. Were he to withhold the powers and agencies under which we now live and act, we could neither think nor speak, hear nor see, feel nor move; the whole assemblage of living beings in our world wonld be ehanged into immovable statues, and this earth transformed into a barren waste and an eternal solitude. To the service of this glorions Being all the powers and faculties with which he has endowed us ought to be unreservedly consecrated. As his highest glory and blessedness consist in bestowing benefits on his intelligent oftspring, so we ought to be imitators of him in his boundless beneficence, by endeavoring to eommunieate happiness to all around us. "To do good, and to communicate, forget not; for with sueh sacrifices God is well pleased." To him, as the "Father of our spirits and the former of our bodies," ${ }^{p}$ is due the highest degree of our love and gratitude; on him we ought to rely for every blessing, and humbly resign ourselves to his disposal under every event; for "all things are of God," and all are conducted with supreme and unerring wisdom and goodness to an end immortal and divine.
2. The immensity and magnificence of the universe and the attributes of Deity it displays are considerations which ought to be taken into account in all our views of religion. There is a class of men who, in prosecuting scientifie pursuits, wish to diseard every thing that has a bearing on religion when deduced from the investigations of science, and can searcely refrain from a sneer, when the arrangements in the economy of nature are traced to the ageney of their All-wise and Omnipotent Creator; as if the objeets which science professes to investigate had no relation to the views we ought to entertain of the Divinity, and ought never to be traced to their great first eanse. On the other hand, there are many professed religionists who, from mistaken notions of piety, would set aside the study of the works of God, as having no connection whatever with the exercises of picty and the business of religion, and as even injurious to their interests. Both these classes of men verge toward extremes which are equally ineonsistent and dangerous. The anazing fact, that ereation consists of a countless number of magnificent systems and worlds beyond the comprehension of finite minds, ought not thus to be reeklessly set aside in our views of God and of religion; for they are all the workmanship of one Berng, and they are connected together as parte of one grand system, of whieh the God we profess to worship is the supreme and universal governor. They present to the view of all intelligences the most glorious displays of his eliaracter and perfections, and eonsequently demand from us a corresponding sentiment of admiration and reverence, and a corresponding tribute of homage and adoration. Such enlarged prospeets of the universe are therefore available for the loftiest purposes of religion and piety, and ought to enter as an element into all our views of the administration of the Almighty, and of that worship and obedience he requires from his rational offspring, unless we would be contented to render him a degree of homage far inferior to that which the manifestations of his attributes demand.

God is known only by the manifestations which he makes of his eharacter and perfections. The highest created intelligences can know nothing more of the Divinity than what is derived from the boundless universe he has presented to their view, the dispensations of his providence to certain orders of beings, and the special revelations he may occasionally vouchsafe, on certain emergencies, to particular worlds. Had man continued in primeval innocence, the contemplation of the vast creation around him, with all its diversified wonders and beneficent tendencies, would have led him to form correct
views of the attributes of his Almighty Maker, and of the moral laws by which his conduct should be regnlated: but it does not follow, that because the study of nature is now of itself an insufficient guide to the knowledge of the Creator, and the enjoyment of eternal felicity, such studies are either to be thrown aside, or considered as of no importance in a religious point of view. To overlook the astonishing scene of the universe, or to view it with indifference, is virtually to "disregard the works of Jehovalh, and to refuse to consider the operations of his hands." It is a violation of Christian duty, and implies a reflection on the character of the Deity, for any one to imagine that he has nothing to do with God considered as manifested in the immensity of his works; for his word is pointed and explicit in directing the mind to such contemplations. "Hearken unto this; stand still, and consider the wonderful works of God." "Lift up thine eyes on high, and behold who hath created these orbs." "Remember that thou magnify his works which men behold." "Great and marvelous are thy works, Lord God Almighty! Thy saints shall speak of the glory of thy kingdom and talk of thy power, to nake known to the sons of men thy mighty operations and the glorious majesty of thy kingdom."
3. The Christian revelation, throughout all its departments, is not only consistent with the views we have taken of the universe, bat affords direct evidence of the magnificence of creation, and of the myriads of beings with which it is peopled. Of this position we have exlibited some proofs in the remarks and illustrations which show at the same time the harmony which subsists between the discoveries of revelation and the discoveries which have been made in the system of nature. There is no other system of religion or pretended revelation that was ever propagated in the world to which such a characteristic belongs. If we examine the Mahomedan Koran, the Shasters of Bramah, the system of Confucius, the mythology of the Greeks and Romans, and every other Pagan code of religion, we shall find interspersed throughont the whole of them numerous sentiments, opinions, and pretended facts at utter variance with the true system of nature, and to what are known to be the established laws of the universe. This is strikingly exemplified in the extravagant stories and descriptions contained in the pretended revelations of Mahomet, and the absurd notions respecting the creation contained in the sacred books of the Hindoos, which assert that the universe consists of seven heavens and seven worlds, which are all at a future period to be absorbed into God; with many other absurdities. In opposition to all such foolish and absurd opinions, the inspired writings, when properly understood and rationally interpreted according to the rules of just criticism, are uniformly found to be perfectly consistent with the discoveries of science, and the facts which are found to exist in the system of the universe; and this correspondence and harmony ought to be considered as a strong presumptive evidence that the revelations of Scripture and the scenes of the material universe proceed from the same All-wise and Omnipotent Author and Lawgiver, that all created matter is under the influence of a universal and unchingeable law of a positive and a negative force.

Brief History of some of the more Remarkable Comets.

The word comet literally signifies a hairy star; because such bodies are generally accompanied with a nebulosity or train, which has the appearance of luminous hair. The luminous point near the center of a comet, which is
most brilliant, is called the nucleus. The haze or nebulosity which surrounds the nucleus is called the hair, and sometimes the envelope; and the nucleus and hair combined constitute what is usually termed the head of the comet. The luminous train, extending sometimes to a great distance from the head, is called the tail of the comet. Thicse bodies have occasionally appeared in the heavens in all ages. The ancients wcre divided in their opinions respecting them; some considering them as wandering stars; others as meteors kindled in the atmosphere of the earth, subsisting for a time, and then dissipated; and others viewed them as prodigies indicating wars, famines, inundations, or pestilences.

Aristotle, who believed that the heaveus were incorruptible and unchangeable, maintained that comets were generated when they first made their appearance, and were destroyed when they ceased to be visible, and consequently that they could not be reckoned to belong to the heavenly bodies, but were only meteors or exhalations raised into the upper regions of the air, where they blazed for awhile, and disappeared when the matter of which they were formed was consumed. And as the opinions of this ancient sage had a powcrful influence on the philosophers and astronomers of later timesas his assertions were frequently regarded as little short of demonstrationsfew persons had the boldness and independency of infind to call in question the positions he maintained on any subject discussed in his writings.

It was not before the time of the celebrated astronomer Tycho Brahe that the nature of comets began to be a little understood, and that they were considered as moving in the planetary regions. This astronomer observed with great diligence the famous comet which appeared in 1577 ; and, from many aecurate observations during the time of its appearance, found that it had no sensible diurnal parallax, and therefore was not only far above the limits of our atmosphere, but beyond the orbit of the moon itself. Its motions were likewise particularly observed by Hagecius, at Pragne, in Bohemia, at the same time that they were observed by Tycho, at Uraniburg. These two places differ six degrees in latitude, and are nearly under the same meridian, and both measured the distance of the comet from the same star, which was in the same vertical circle with the comet; yet both observers found their distances the same, and consequently they both viewed the comet in the same pgint of the heavens, which could not have happened unless the comet had been in a higher region than the moon. After Tycho, Kepler had an opportunity of making observations on the comets which appeared in 1607 and 1618 , and from all his observations he deduced this conclusion, "that comets move freely through the planetary orbs." From this period comets began to be more accurately observed, and to be considered as constituent parts of the solar system; and at length the illustrions Newton demonstrated that their motions are performed in long ellipses, having the sun in one of their foci.

Before proceeding to inquire into the nature and physical constitution of these bodies, I shali present the reader with a brief sketch of the history' of the most remarkable comets which have appeared in modern times.

One of the most remarkable comets which have appeared in modern times is that which made its appearance toward the close of the year 1680, and which was particularly observed by most of the astronomers of Europe. This comet, according to the accounts given by the astronomers of that period, appeared to descend from the distant regions of space with a prodig-
ious velocity, almost perpendieular to the sun, and aseended again in the same manner from that luminary with a veloeity retarded as it had before been accelerated. It was observed, partieularly at Paris and Greenwich, by Cassini and Flamstead, by whom it was seen in the morning from the 4th to the 25 th of November, 1680 , in its deseent toward the sun; and after it had passed its perihelion,* in the evening, from the 12th of December to the 9th of March, 1681. The many exact observations made on this comet enabled Sir I. Newton to discover that so much of its orbit as could be traced by the motion of the comet, while it was visible, was, as to sense, a parabola, having the sun in its foons, and that it was one and the same eomet that was seen all that time. This comet was remarkable for its very near approaeh to the sun. At its perihelion, it was not above a sixth part of the sun's diameter from its surface; that is, about 146,000 miles from the surfaee of that luminary, and 584,000 from its center. According to Sir Isaac Newton, the velocity of this comet when nearest the sun was 880,000 miles an hour. On taking its perihelion distance, as given by M. Pingre, Mr. Squire found, by two different calculations, that its veloeity in its perihelion was no less than $1,240,000$ miles an hour! This velocity was so great, that if continued, it would have carried it through 124 degrees in an hour ; but its actual hourly motion during that interval, before and after it passed the perihelion, was 81 degrees, 47 mimutes. At this period, the diameter of the sun, as seen from the comet, must have subtended an angle of more than a hundred degrees, whieh must nearly have filled its whole hemisphere.

From Dr. Halley's determination of its orbit, it appears that when in its aphelion, or greatest distance from the sun, it cannot be less than $13,000,000,000$, or thirteen thonsand millions, of miles distant from that luminary; that is, seven times the distance of Uranus. Aecording to the same astronomer, this comet, in passing through its southern node, eame within the length of the Sun's semi-cliameter of the orbit of the Earth, that is within 440,000 miles; and he remarks, "Had the earth been then in that part of its orbit nearest that node of the comet, their mutual gravitation must have eaused a change in the plane of the Earth's orbit, and in the length of our year; and if so large a body with so rapid a motion were to strike the Earth, a thing by no means impossible, the shock might reduce this beautiful frame to its original chaos." Modern observations, however, render such deduetions somewhat improbable. The period of this eomet is supposed to be about 575 years. It is conjectured that it is the same eomet whieh appeared in 1106 , in the reign of Henry I., that was seen during the consulate of Lampadius and Orestes, about the year 531, and in the forty-fourth year before Christ, in which year Julius Cæsar was murdered. Its nueleus was eomputed to be about ten times as large as the moon. Its tail extended over a space of seventy degrees in extent.

This is the comet to the near approaeh of whieh to the Earth Mr. Whiston attributed the universal deluge in the time of Noah. His opinion was, that the Earth, passing through the atmosphere of the comet, attraeted from it a great part of the water of the flood; that the nearness of the comet raised a great tide in the subterranean waters; that this conld not be done without

[^2]making fissures or cracks in the outer crust of the Earth; that throngh these fissures the subterraneous waters were forced; that along with the water much slime or mud would rise, which after the subsiding of the water partly into the fissures and partly into the lower parts of the Earth to form the sea, would cover over to a considerable depth the antediluvian Earth; and thus he accounts for trees and bones of animals being found at very great depths in the Earth. The same comet, he supposed, when coming near the Earth after being heated to an immense degree in its perihelion, would be the instrumental cause of that great catastrophe, the general conflagration. Modern geological researches, however, render all such hypotheses utterly untenable.
2. Another comet which has obtained a certain degree of celebrity is that which appeared in 1682, and is usually distinguished by the name of Halley's comet. This comet appeared with considerable splendor, and exhibited a tail thirty degrees in length. On calculating its elements from its perihelion passage, Dr. Halley was led to conclude that it was identical with the great comets which appeared in 1456,1531 , and 1607, whose elements he had also ascertained. The intervals between these periods being about seventy-five or seventy-six years, he was led to conclude that this was the period of the revolution of the comet, and ventured to predict that it would again return about the latter part of the year 1758. As this was the first comet whose return had been predicted, when the time of its expected appearance approached astronomers became anxious to ascertain whether the attraction of the larger planets, Jupiter and Saturn, might not interfere with its orbitual motion, and prevent it from arriving at its perihelion so soon as the time predicted.

Clairaut, an eminent French mathematician, after a great many intricate and laborious calculations in reference to the subject, concluded that the attraction of Saturn would lengthen the period 100 days, and the action of Jupiter 518, making in all 618 days, by which the expected return would happen later than if no such influence had taken place; so that instead of the period being 74 years, 323 days, it ought to be 76 years, 211 days; and as the comet passed its perihelion on September 14, 1682, it ought to reach the same point on April 13, 1759. These calculations were read before the Academy of Sciences on the 14th of November, 1758; but Clairaut gave notice that, being pressed for time, he had neglected in his calculations small values, which collectively might amount to about thirty days in the seventy-six years. These predictions were accordingly verified, for the comet appeared about the end of December, 1758, and arrived at its perihelion on the 13th of March, 1759 , only thirty days before the time fixed by the calculations of Clairant, who, upon repeating the process by which he had arrived at the result, reduced this error to nineteen days. The same comet again made its appearance, according to prediction, in 1835.
3. Another remarkable comet made its appearance in 1744 , which excited a considerable degree of attention. It was first seen at Lausanne, in Switzerland, December 13, 1743; from that period it increased in brightness and magnitude as it approached nearer the Sun. On the evening of January 23, 1744, it appeared exceedingly bright and distinct, and the diameter of its nucleus was nearly equal to that of Jupiter. Its tail then extended above 16 degrees from its body, and was supposed to be about 23 millions of miles in length. On the 11 th of February, the nucleus, which had before been
always round, appeared oblong in the direction of the tail, and seemed divided into two parts by a black stroke in the middle. One of the parts had a sort of beard, brighter than the tail; this beard was surrounded by two unequal dark strokes, that separated the beard from the hair of the comet. These odd phenomena disappeared the next day, and nothing was seen but irregular obscure spaces, like smoke, in the middle of the tail, and the head resumed its natural form. On the 15th of February the tail was divided into two branches, the eastern about 8 degrees long, the western 24. On the 23 d the tail began to be bent. It showed no tail till it was as near the Sun as the orbit of Mars, and it increased in length as it approached nearer that luminary. At its greatest length, it was computed to equal a third part of the distance of the Earth from the Sun.* This was one of the most brilliant comets that had appeared since that of 1680 . Its tail was visible for a long time after its body was hid under the horizon: it extended 20 or 30 degrees above the horizon two hours before sunrise.
4. In the month of June, 1770 , Messier discovered a comet, the motions of which appear to be involved in a considerable degree of mystery. The comet continued visible for a long time. Lexell ascertained, from observation, that it described an ellipse around the Sun, of which the greater axis was only three times the diameter of the Earth's orbit, which corresponds with a revolution of $5 \frac{1}{2}$ years. It was therefore expected that it would again frequently make its appearance; but it has never since been visible, although it made a pretty brilliant appearance in 1770 . The National Institute of France, not many years ago, requested M. Burckhardt to repeat all the calculations with the utmost care; and the result of his labor has been a complete confirmation of the elements obtained by Lexell. What has become of this comet it is difficult to conjecture. Its aphelion, or greatest distance from the Sun, was reckoned to be not far beyond the orbit of Jupiter, and that it approached as near to the Earth as the Moon, and ought to have appeared twelve times since the year 1770. M. Arago attempts to solve the difficulty by affirming that its orbit was then totally different from that which it has since pursued; that its passage to the point of perihelion in 1776 , when it was expected, took place by day, and before the following return the form of the orbit was so altered, that, had the comet been visible from the Earth, it would not have been recognized; that before 1767, during the whole progress of its revolutions, its shortest distance from the Sun was $199,000,000$ leagues, and that after 1779, the minimum distance became $131,000,000$ leagues, which was still tro far removed for the comet to be perceptible from the Earth. Sir David Brewster attempts to account for its disappearance by supposing that it must have been attracted by one of the planets whose orbit it crossed, and must have imparted to it its nebulous mass; and that it is probable the comet passed near Ceres and Pallas, and imparted to them those immense atmospheres which distinguish them from all the other planets. Whether any of these opinions be tenable and sufficient to solve the difficulty, is left entirely with the reader to determine.
5. Another comet, which has engaged the particular attention of astronomers during the last twenty years, is distinguished from all preceding comets by the shortness of its periodic revolution. It is usually denominated Encke's comet, so called from Professor Encke, of Berlin, who first ascertained its

[^3]periodical return. It was discovered at Marseilles on the 26th November, 1818 , by M. Pous, and its parabolic elements were presented to the Board of Longitude, at Paris, by M. Bouvard, on the 13th of January, 1819. It was immediately remarked, that the result of Bouvard's calculations was too similar to the elements of a comet which appeared in 1805, not to consider. that and the one of 1818 as the same body; and M. Encke soon after established, by incontestable calculations, that this comet took only abont 1200 days, or three years and three-tenths, to travel through the whole extent of its elliptic orbit. This was considered as a very extraordinary result, as an opinion had previonsly prevailed that the period of a revolution of a comet must necessarily be long. It now appears that this comet was first seen by Messier and Mechain in 1786; afterward by Miss Herschel, in 1795; and its subsequent returns were observed by different astronomers in 1805 and 1819, all of whom, at those periods, supposed that the four comets were four different bodies. The elements of this comet, and the short period of its revolution, are now incontrovertibly established; for its reappearance in the southern hemisphere in June, 1822, took place very nearly in the positions previously calculated. The agreement was not less remarkable in 1825; and in 1828 , the third period of its announced return, it occupied the places assigned to it by Encke the year preceding. It likewise appeared in 1832, 1835, and 1838.

This comet is very small; its light is feeble; it has no tail; it is invisible to the naked eye, except in very favorable circumstances, but may be seen with a small magnifying power. It revolves in an elliptical orbit of considerable eccentricity, having an inclination to the plane of the elliptic of $13 \frac{7}{8}$ degrees. On comparing the intervals between the successive perihelion passages of this comet, a singular fact has been elicited, namely, that its periods are continually dimiuishing, and its mean distance from the Sun shortening by slow but regular degrees. This is supposed by M. Encke to be produced by a resistance experienced by the comet from a very rare ethereal medium pervading the regions through which it moves; since such resistance, by diminishing its actual velocity, wonld diminish also its centrifugal force, and thus give the Sun more power over it to draw it nearer. It is therefore the opinion of Sir J. Herschel, that "it will probably fall ultimately into the Sun, should it not first be dissipated altogether-a thing no way improbable, when the lightness of its materials is considered, and which seems authorized by the observed fact of its haring been less and less conspicuous at each reappearance." The acceleration of this comet is about two days in each revolution; and the frequent opportunities of observation which will occur, in consequence of the shortness of its period, may lead to new and interesting conclusions in relation to the nature of these bodies.
6. Besides the above, another periodical comet has lately been discovered, which is distinguished by the name of Biela's, and sometimes Gambart's comet. This comet was perceived at Joliannisberg on the 27 th Feb., 1826, by M. Biela; and by M. Gambart, at Marseilles, ten days afterward. Gambart, without delay, calculated its parabolic elements firom his own observations; and by inspecting a general table of comets, he recognized that it was not its first appearance, but that it had been already observed in 1789 and 1795. Messrs. Clausen and Gambart undertook the computation of the comet's revolution, and found, each of them nearly at the same time, that the new comet made its entire revolution round the Sun in a period of ahout
seven years. It was afterward found, more accurately, to be 2460 days, or nearly $6 \frac{8}{4}$ years. M. Damoiseau calculated the perturbations of this comet, and predicted that it would cross the plane of the Earth's orbit on the 29th of October, 1832, a little before midnight, at a point about 18,480 miles within the orbit of the Earth. According to this prediction, the comet actually made its appearance in 1832 about the time now specified. Its next appearance was calculated to happen in 1839, and it was reckoned that it would arrive at its perihelion on the 23d July of that year.

The predicted appearance of this comet in 1832 seems to have produced considerable alarm, particularly in France. Some German journalists predicted that it would cross the Earth's orbit near the point at which the Earth would be at the time, and cause the destruction of our globe. "Such was the degree of alarm excited on this occasion, that M. G-, a Professor in Paris, put the question to the Academy of Sciences, whether it did not feel itself bound in duty to refute, as speedily as possible, this assertion. "Popular terrors," he observed, "are productive of serious consequences. Several members of the Academy may still remember the accidents and disorders which followed a similar threat, imprudently communicated to the Academy by M. de Lalande, in May, 1773. Persons of weak mind died of fright, and women miscarried. There were not wanting people who knew too well the art of turning to their advantage the alarm inspired by the approaching comet, and places in paradise were sold at a very high rate. The announcement of the comet of 1832 may produce similar effects, unless the authority of the Academy apply a prompt remedy; and this salutary intervention is at this moment implored by many benevolent persons." It was supposed by some, that if any disturbing cause should delay the arrival of the comet for one month, the Earth must pass directly through its head.

In order to dispel such fears, and to illustrate the nature of these bodies, M. Arago published an excellent and popular treatise on comets in the "Annuaire" of 1832. He showed that the result of the calculation was, that the passage of the comet ought to proceed a little within our orbit, and at a distance from that curve, which is equal to four terrestrial radii and two-thirds, or about 37,000 miles; that on the 29 th October, 1832, a portion of the Earth's orbit might be included within the nebulosity of the comet; but that the Earth would not arrive at the same point of its orbit till the morning of the 30th November, or more than a month afterward; and consequently that the Earth would be more than twenty millions of French leagues (or fifty millions of British miles) distant from the comet. He adds, that "if the comet, instead of crossing the plane of the ecliptic on the 29th October, had not arrived there till the morning of the 30 th November, it would have undoubtedly mingled its atmosphere with ours, and perhaps even have struck us!" The Earth is considered in more danger, if danger there be, from this comet and that of Encke, than from any other. Eucke's comet crosses the orbit of the Earth sixty times in the course of a century, and there is certainly a possibility that it might come into collision with the Earth; but the probability of its doing so is very small, and, besides, this comet and that of Gambart are so extremely rare, that little danger is to be apprehended, even although a contact were to take place. Gambart's is a small, insignificant comet, without a tail, or any appearance whatever of a solid nucleus, and is not distinguishable by the naked eye.
7. The comet of 1807. This was the first comet on which I had an oppor-
tunity of making observations. My first observation was on the evening of October the 8th, 1807, a little after sunset, when it appeared in a northwesterly direction, not far distant from Arcturus, which was then only a little above the horizon. To the naked eye it appeared somewhat like a dim nebulous star of the second magnitude, with a beam of light on one side of it. Through a telescope, its tail presented a pretty brilliant appearance, and occupied a space of considerably more than a degree in length. The coma seemed to have a roundish, but dim and undefined appearance, and appeared more indistinct as the magnifying power was increased. When viewed with an achromatic telescope of thirty-one inches focal distance, and a power of thirty, it presented a very distinct and beautiful appearance, and the nuclens, coma, and tail, nearly filled the field of view. When a power of sixty was applied, it was much more indistinct than with the former power, and in all the subsequent observations the lower power was generally preferred. In the course of five or six weeks, or about the middle of November, it disappeared to the naked eye. I traced it with the telescope, as often as the weather would permit, for two or three months after it had become invisible to the unassisted sight, and found that its apparent motion was pretty rapid, and toward the northeast. Abont the middle of January, 1808, at eleven P. M., it appeared in a direction northeast by north; and at this time it appeared through the telescope like a small nebulous star, or like that species of comets called bearded comets, having no trace of any thing similar to a tail. The last time I saw it was about the end of Jannary, when it was still distinctly visible, like a nebulous star; but cloudy weather for nearly a fortnight prevented any further observations, and I saw it no more. On the evening in which I had the last peep of it, I detected another comet within eight or ten degrees of it, which appeared like a star of the third magnitude, and exhibited a pretty brilliant appearance through the telescope. It had no tail, like the former comet, but appeared surrounded with radiant hairs like the glory which painters represent around the head of our Saviour. It continued visible for several weeks; but I have not seen any particular notices of this second comet, or any special observations on it, which have been recorded by astronomers.

This comet appears to have been first noticed by Herschel and Schroeter about the 4 th of October, 1807, who continned their observations upon it for several months. According to Schroeter's observations and estimates, the diameter of the nucleus of this comet was about 4,600 miles, or nearly the size of the planet Mars, and appeared to be of considerable density; the diameter of its coma, 120,000 miles, but liable at different times to variations of increase and decrease; and its rate of motion, at certain periods, 1,333,380 miles a day, or 55,557 miles an hour. Its tail was divided in a very unusual manner into two separate branches; the north side continued much brighter and better defined than the other, and was also invariably convex, while the other side was concave. But what was deemed most remarkable was the variation in length and the coruscations of the tail. Something like cornscation had been observed by the naked eye in the case of preceding comets, and such phenomena appear to have been confirmed by the observations of Schroeter. In less than one second, streamers shot forth to two and a half degrees in length; they as rapidly disappeared and issued out again, sometimes in portions and interrupted like our northern lights. Afterward the the tail varied both in length and breadth, and in some of the observations,
the streamers shot from the whole expanded end of the tail, sometimes here, sometimes there, in an instant, two and a half degrees long, so that within a single second they must have shot out a distance of $4,600,000$ miles. Their light was also sometimes whiter and clearer at the end than at the base, as is occasionally seen in the northern lights. Some have objected to the extreme rapidity of the streamers as here stated, but the fact of coruscations having been seen appears to be confirmed by the observations of this celebrated and accurate observer. The observations of Herschel on this comet differ in some respects from those of Schroeter, particularly in the estimate he makes of the size of the nucleus, which he reckons to be considerably smaller than what has been stated above.
8. The most remarkable comet which has appeared in modern times, since that of 1680 , was the comet of 1811 . About the beginning of September in that year, about eight or nine in the evening, as I was taking a random sweep with my telescope over the northwestern quarter of the heavens, an uncommon object appeared to pass rapidly across the field of view, which on examination appeared to be a splendid comet. Not having heard of the appearance of any such body at that time, I was led to imagine that I had fortunately got the first peep of this illustrious stranger; but I afterward learned from the public prints that it had been seen a day or two before by Mr. Neitch, in the neighborhood of Kelso, who appears to have been the first that obscrved it in this country. This comet appeared with peculiar splendor, and was visible even to the naked eye, for more than three months in succession, and excited universal attention. It afforded to astronomers more opportunities for observation of its physical aspect and constitution, and for determining the elements of its orbit, than almost any other comet that had previously appeared. The two celebrated observers, Herschel and Schroeter, made numerous and very particular observations on the phenomena and motions of this comet, which were continued every clear evening for the space of nearly five months. Some of these observations, along with the remarks and deductions connected with them, are extremely interesting to the astronomical observer; but my limits will permit only a statement of the general results.

Some of the results deduced by Schroeter are the following:-That the central globe of light, or what he calls the nucleus, was 50,000 miles in diameter, or nearly six and a half times the diameter of the Earth, which he deduced from the mean of twenty-seven measurements, which gave $1^{\prime} 49^{\prime \prime}$ as the mean angular diameter of the body; that this great body was in all probability chiefly fluid, though its central parts might consist of denser substances; and that there was reason to believe that it shone with its own native light. The coma was extremely rarefied in comparison with the nucleus, resembling a very faint whitish light, seattered in separate portions. It was divided into two-one iminediately encompassing the nucleus, the other of a more faint and grayish light, sweeping round it at a distance, and forming the double tail which the comet presented. The train, or head veil, as he terms it, swept around the nucleus, at a distance equal to its breadth, and appeared as unconnected as the ring of Saturn with its body, and which sometimes appeared darker than the open sky. The diameter of this exterior part of the head was $34^{\prime} 15^{\prime \prime}$, or about 947,000 miles, which is larger than the diameter of the Sun, and which he thinks must have formed a hollow cone around the nucleus, and which he thought indicated a force of
a repulsive nature residing in the nucleus. Between the 4 th and 6 th of De cember a great revolution took place; the rarefied nebulous matter, which had for three months been so unusually repelled from the nuclens on every side to a distance of about one-fifth of the diameter of the head, or 190,000 miles, was again attracted to it, affording an incontrovertible proof of physical action upon a great scale, arising doubtless from the same causes which produce the other phenomena of nature. The double tail of this comet was exceeding faint compared with the nucleus and coma. On the $23 d$ of October it extended fully eighteen degrees, notwithstanding its oblique position, the angle at the Sun being then $61^{\circ} 23^{\prime}$; at the Earth, 69°; and at the comet, $49^{\circ} 37^{\prime}$. Had it been viewed at right angles, it would have subtended an angle of $36^{\circ} 36^{\prime}$, equivalent to more than $60,000,000$ of miles, which is more than half the distance from the Earth to the Sun. Coruscations, similar to those which appeared in the tail of the comet of 1807 , were likewise perceived, particularly on October the 16th, when a small tail instantaneously appeared, then vanished, and reappeared, which was in length equal to three times the diameter of the comet's head, or $2,373,000$ miles. Other displays of the same kind took place on the 7 th of November and the 18th of December. These facts, of the reality of which Schroeter entertained not the least doubt, must be considered as very curious and extraordinary phenomena.

Herschel's observations nearly agree with those of Schroeter, exeepting that be estimates the diameter of the nucleus as very much smaller than what is stated above. He estimates the greatest length of the tail, as seen on the 15 th of October, to have been $100,000,000$, or a hundred millions of miles, which consequently extended over a space larger than that which intervenes between the Earth and the Sun; and its breadth, as deduced from the observations of October the 12th, nearly fifteen millions of miles. He calculated its distance, when nearest the Earth, to be about 113 millions of miles. He concluded that the solid matter of the comet was spherical, that it shone in part by its own native light, and that it probably had a rotation round its axis. From the most accurate observations of the motion of this comet, its period of revolution has been calculated to exceed 3000 years. Bessel computes it at 3383 years; and several other astronomers conceive its period to be considerably longer, even exceeding 4000 years.
9. Reappearance of Halley's comet in 1835. The return of this comet was calculated by Messrs. Damoiseau and Pontecoulant; the former of whom calculated its return to the peribelion on the 4th, and the latter on the 7th of November, 1835, and it actually arrived at that point only a few days after these periods, namely, on the 16 th of November: It was first seen on the continent in the month of August that year, but does not appear to have been noticed in the northern parts of Britain till more than a month afterward. Its expected reappearance excited universal attention throughout Europe. Soon after the middle of September, as I was taking a sweep with a two-feet telescope over the northeastern quarter of the heavens, near the point where I expected its appearance, I happened to fix my eye on this longexpected visitor, which appeared very small and obseure. I immediately directed an excellent three-and-a-half-feet achromatic telescope, with a diagonal eye-piece magnifying about thirty-four times, to the comet, when it was distinctly seen, and appeared of a considerable diameter, but still somewhat hazy and obscure. I afterward applied a power of forty-five, and another of ninety-five; but it was seen most distinctly with the lower power. With
ninety-five it appeared extremely obscure, and nearly of the apparent size of the moon.* There appeared at this time nothing like a tail, but the central part was much more luminous than the other portions of the comet, and presented something like the appearance of a star of the third or fourth magnitude surrounded with a haze. In some of the views I took of this object, the luminous part or nucleus appeared to be considerably nearer one side than another. At this period, and for a week or ten days afterward, the comet was altogether invisible to the naked eye. Many snbsequent observations were made, and published in the provincial newspapers, but which my present limits prevent me from inserting.

After the comet became visible to the naked eye, the tail began to appear, and increased in length as it approached its perihelion, and at its utmost extent was estimated to be above thirty degrees in length. On the 13th of October, aceording to the observations of Arago, a luminous sector was visible in its head; on the day following, this sector had disappeared, and a more brilliant one and of greater longitudinal extent was formed in another place. This second sector was observed on the 17 th, when it appeared less bright; and on the 18th its weakness had decidedly increased. The comet was concealed till the 21st, but on that day three distinct sectors were visible in the nebulosity. On the 23d all traees of these sectors had disappeared, the nucleus, which had previously been brilliant and well-defined, having become so large and diffuse that the observer could scarcely believe in the reality of such a sudden and important alteration, till be satisfied himself that the appearance was not occasioned by moisture on the glasses of his instrument. It appears, likewise, that one of these luminous fans or sectors was observed by Sir J. Herschel, at the Cape of Good Hope, after the comet had passed its perihelion. The nebulosity of this comet appears to have increased in magnitude as it approached the sun, but its changes were sometimes unaccountably rapid. On one occasion it was observed to become obseure and enlarged in the course of a few hours, though a little before its nucleus was clear and well defined. On the 11th of October, the Rev. T. W. Webb, and two other observers, observed coruscations in the tail. On that evening, at 730^{\prime}, the tail was very conspicuous, in the constellation of Draconis, and evidently fluctuated, or rather coruscated in length, being occasionally short, and then stretching in the twinkling of an eye to its full extent, which was at least equal to ten degrees. Its changes were extremely similar to the kindling and fading of a very faint streamer of the Aurora Borealis.
"The influence of the ethereal medium on the motion of Halley's comet will be known after another revolution, and future astronomers will learn by the accuracy of its returns, whether it has met with any unknown cause of disturbance in its distant journey. Undiscovered planets beyond the visible boundary of our system may change its path and the period of its revolution, and thus may indirectly reveal to us their existence, and even their physieal nature and orbit. The secrets of the yet more distant heavens may be disclosed to future generations by comets which penetrate still further into space, such

[^4]as that of 1763 , which, if any faith may be placed in the computation, goes nearly 43 times further from the Sun than Halley's does, and shows that the Sun's attraction is powerful enough at the distance of 144,600 millions of miles to recall the comet to its perihelion. The periods of some comets are said to be many thousand years, and even the average time of the revolution of comets generally is about a thousand years; which proves that the Sun's gravitating force extends very far. La Place estimates that the solar attraction is felt throughout a sphere whose radius is a lundred millions of times greater than the distance of the Earth from the Sun." "The orbit of Halley's comet is four times longer than it is broad; its length is about 3420 millions of miles, about 36 times the mean distance of the Earth from the Sun. At its perihelion it comes within 57 millions of miles of the Sun, and at its aphelion it is 60 times more distant. On account of this extensive range, it must experience 3600 times more light when nearest to the sun than in the most remote point of its orbit. In the one position the Sun will seem to be four times larger than he appears to us, and at the other he will not be apparently larger than a star."

The appearance of this comet, so near the time predicted by astronomers, and in positions so nearly agreeing with those which were previously calculated, is a clear proof of the astonishing accuraey which has been introduced into astronomical calculations, and of the soundness of those principles on which the astronomy of comets is founded. It likewise shows, that comets in general are permanent bodies connected with the solar system, and that no very considerable change in their constitution takes place while traversing the distant parts of their orbits.

From the preceding historical sketches and descriptions the reader will learn something of the general phenomena of comets; and I shall now briefly inquire into the opinions which have been formed respecting the

Physical Constitution of Comets.

On this subject our knowledge is very imperfect; in fact, we may be said to know little or nothing of the physical construction of those mysterious bodies, or of the nature of the substances of which they are composed. In regard to the nebulosity of comets, where there appears no nucleus, it has been conjectured to be composed of something analogous to globular nasses of vapor, slightly condensed toward the center, and shining either by inherent light or by the reflected rays of the Sun. When there is a nucleus in the center of a comet, it seldom happens that the nebulosity extends to it with a gradually increasing intensity. On the contrary, the parts of the nebulosity near the nucleus are but slightly luminous, and seem to be extremely rarified and transparent. At some distance from their center, their shining quality is suddenly increased, so that it looks like a ring of invariable size resting in equilibrium around the center. Sometimes two, and even three of these concentric rings have been perceived separated by intervals; but what appears to be a ring must in reality be a spherical covering, an idea of which may be formed by imagining in our atmosphere, at three different heights, three continued layers of clonds entirely covering the globe. The matter of the nebulosity is so rare and transparent that the smallest stars may frequently be seen through it.

As to the nucleus, it is generally considered as the solid or densest part of the comet. The nuclei of comets are sometimes very similar to the disks of
planets, both in form and brightness. They are generally small compared with the whole size of the comet; but in some cases they are of considerable magnitude, as we have already stated in respect to the comets of 1807 and 1811. Some suppose that the nuclei of comets are transparent, as well as their nebulosities, and allege as a proof that stars have been seen through a nucleus. Thus, Montaigne is said to have seen a star of the sixth magnitude through the nucleus of a small comet, and Olbers saw a star of the seventh magnitude, although it was covered by a comet, and withont its light being rendered less powerful; but the accuracy of such observations has been called in question. On the other hand, it has been concluded that the nucleus of a comet has on several occasions eclipsed a star which was in the same line of vision. Messier, when observing the small comet of 1774 , perceived a star which was eclipsed by the opaque body of a comet, or at least all the circumstances attending it led to that conclusion. On the 28th of November, 1828 , at $10^{\text {h }} 30^{\prime}$ P. m., M. Wartman, at Geneva, perceived a star of the eighth maguitude completely eclipsed by Encke's comet. Comets have likewise been observed to transit the disk of the Sun like dark spots. M. Gambart, of Marseilles, calculated that a comet which he had observed would pass across the Sun on the morning of the 18 th of November, 1826, and both he and M. Flaucerques were successful in obtaining a sight of it during its transit. Mr. Capel Llofft, on the 6th June, 1818, at 11 a. m., saw a body passing over the sun's disk which appears to have been a comet. It was likewise seen on the same day by Mr. Acton, at $2^{\text {h }} 30^{\prime}$, considerably advanced beyond the point in which it was seen at $11 \mathrm{~A} . \mathrm{m}$. , and its progress over the disk seems to have exceeded that of Venus in transit. These observations seem evidently to indicate that some comets at least have nuclei composed of solid and opaque materials. From all the observations in relation to this point, collected by M. Arago, he dednces the following conclusions: 1. That there exist some comets destitnte of the nucleus. 2. That there are other comets, the nuclei of which are transparent. 3. That there are also comets, which are more brilliant than the planets, the nuclei of which are probably solid and opaque.

In respect to the tail, or luminous train, which generally accompanies comets, it is found that it is generally in opposition to the Sun, or on the prolongation of the line which would join the Sun and the nucleus. But this is not always the case. Sometimes the direction of the tail has been found at right angles with this line; and in some extraordinary instances the tails of comets have been observed to point directly toward the Sun. This was the case with a comet that appeared in 1824, which for about eight days exhibited an additional luminons train in opposition to that which assumed the ordinary direction. This anomalous tail, according to Olbers, was 7° long, while the other was only $3 \frac{1}{2}^{\circ}$, and it was bright enough to be seen with an opera-glass. In general, however, it is found that the tail inclines constantly toward the the region last quitted by the comet, as if in its progress through an ethereal medium, the matter forming it experienced more resistance than that of the nucleus. The tail is generally enlarged in proportion to its distance from the head of the comet, and in certain cases it is divided into several branches, as already noticed of the comet of 1807 . Some have supposed that the divided tail is nothing more than a perspective representation of the sides of a great hollow cone; but there are certain observations which seem to prove that, in some cases, they have a separate existence as independent branches. The
most remarkable instance of a divided tail was in the comet of 1744 . On the fith and 7th of March, there were six branches in the tail, each of them about 4° in breadth, and from 30° to 40° long. Their edges were pretty well defined and tolerably bright; their middle emitted but a feeble light, and the intervening spaces were as dark as the rest of the firmament. The tails of comets, as already noticed, sometimes cover an immense space in the heavens. The comet of 1680 had a tail which extended to 68°, that of 1811 to 23°, and that of 1769 to 97° in length; so that some of these tails must have reached from the zenith to the horizon. The length of the tail of the comet of 1680, estimated in miles, was $112,750,000$; that of $1769,44,000,000$; and that of ${ }^{1}{ }^{6} 44,8,250,000$ miles. A body moving at the rate of 20 miles every hour would not pass over the space occupied by the tail of the comet of 1680 in less than $\$ 43$ years. It has been supposed by some astronomers that certain changes in the appearance of the tails of comets arise from the rotation of the comctary body; as some comets have been supposed to rotate about an axis passing through the center of the tail, such as that of 1825 , which was concluded, from certain appearances, to perform its rotation in 20 hours 30 minutes.

As to the nature of the immense tails of comets, their origin, or the substances of which they are composed we are entirely ignorant; and it would be wasting time to enter into any speculation on this subject as nothing could be presented to the view of the reader, but vague conjectures, gratuitous hypotheses, and unfounded theories.

Miscellaneous Remarks on Comets.

1. Whether comets shine with their own native light, or derive their light from the Sun?-This is a question about which there have been different opinions, and at the present moment it may be considered as still undetermined, thongh the probability is, that in general, they derive their light from the same source as the planets. It appears to have been the opinion of both Schroeter and Herschel, that the comet of 1811 shone by inherent light; and the rapid variations which have been observed in the brightness of the nucleus, and the coruscations of the tail, are considered by some as inexplicable on any other hypothesis. It is likewise supposed that certain phenomena, which have been observed in the case of faint and rarefied comets, tend to corroborate the same position. For example, Sir J. Herschel, on September 23, 1832, saw a small group of stars of the 16 th and 17 th magnitude through the comet of Biela. Though this group could have been effaced by the most trifling fog, yet they were visible through a thickness of more than 50,000 miles of cometary matter; and therefore it is supposed scarcely credible that so transparent a material, affording a free passage to the light of such minute stars, could be capable of arresting and reflecting to us the solar rays. On the other hand, it has been objected to this opinion, that comets have appeared as dark spots on the disk of the Sun; that their light exhibits traces of polarization; and that they have been occasionally observed to exhibit phases. M. Arago remarks, that "on the very day that any comet shall appear with a distinct phase, all doubts on this subject will have ceased." But it is considered doubtful whether any decided phase has yet been perceived, although some observers were led, from certain phenomena, to infer that something like a phase was presented to their view. It is found that all direct light constantly divides itself into two points of
the same intensity, when it traverses a crystal possessing the power of double refraction; reflected light gives, on the contrary, in certain portions of the crystal throngh which it is made to pass, two images of unequal intensity, provided the angle of reflection is not 90°; in other words, it is polarized in the act of reflection. On this principle, M. Arago pointed out a photometric method of determining whether comets borrow their light from the Sun, or are luminous in themselves. On the $23 d$ of October, 1835 , having applied his new apparatus to the observation of Halley's comet, he immediately saw two images presenting the complementary colors, one of them red, the other green. By turning the instrument half round, the red image became green, and vice versa. He concluded therefore that the light of the comet, at least the whole of it, is not composed of rays possessing the property of direct light, but consists of that which is polarized or reflected specularly: that is, of light derived from the Sun. These experiments were repeated with the same result, by three other observers in the Observatory of Paris.
2. It appears to be a remarkable fact in respect to comets, that the real diameter of the nebulosity increases proportionably as the comet becomes bistant from the Sun. Hevelius appears to have been the first who made this observation; but it seems to have been overlooked, and even an opposite position maintained. As the tails of comets increase in length as they approach their perihelia, so it was generally considered that the nebulosities followed the same law; but the observations which have lately been made on Biela's comet have confirmed the observations of Hevelius. On the 28th of October, 1828, this comet was found to be nearly three times further from the Sun than on the 24th of December, or in the proportion of 1.4617 to 0.5419 , yet in October its diameter was about twenty-six times greater than in December, or in the proportion of 79.4 to 3.1; that is, its solid contents on the 28th of October were 16,800 times greater than on the 24 th of December, and the smallest size of the comet corresponded to its least distance from the Sun. M. Valz, of Nimes, and Sir Joln Herschel have attempted to account for this circumstance on very different principles, but neither hypothesis appears to be satisfactory.
3. Whether a comet may ever come in contact with the Earth, and produce a concussion?-As comets move in orbits which form extremely elongated ellipses; as they move in all imaginable directions; as they traverse almost every part of the solar system in returning from the furthest verge of their excursions; as they penetrate within the interior of the planetary orbitseven within the orbit of Mercury, and cross the orbits of the Earth and the other planets, it is not impossible that a comet may come in contact with our globe. An apprehension of such an event produced a considerable degree of alarm on the Continent at different periods, particularly in 1773 and 1832, as formerly stated. But when we consider the immense cubical space occupied by the planetary system in which the comets move, and compare it with the small capacities of these bodies; and when we take into view certain mathematical calculations in reference to the subject, the probability of a shock from a comet is extremely small. "Let us suppose," says Arago, "a comet, of which we only know, that at its perihelion, it is nearer the Sun than we are, and that its diameter is one-fourth of that of the Earth, the calculation of probabilities shows that of $281,000,000$ of chances there is only one unfavorable; there exists but one which can produce a collision between the two bodies. As for the nebulosity, in its most general dimen-
sions, the unfavorable chances will be from ton to twenty in the same number of two hundred and eighty-one millions. Admitting then, for a moment, that the comets which may strike the Earth with their nuclei would annihilate the whole human race, then the danger oi death to each individual, resulting from the appearance of an unknown comet, would be exactly equal to the risk he would run if in an urn there ras only one single white ball of a total number of $281,000,000$ balls, and that his condemnation to death would be the inevitable consequence of the white ball bcing produced at the first drawing."

When we consider that a Wise and Almighty Ruler superintends and directs the movements of all the great bodies in the universe, and the erratic motions of comets among the rest, and that no event can befall our world without his sovereign permission and appointment, we may repose ourselves in perfect security that no catastrophe from the impulse of celestial agents shall ever take place but in unison with his will, and for the accomplishment of the plans of his universal providence. At the same time, the possibility of a shock from a large comet shows us that this Earth and all its inhabitants are dependent for their present existence and comforts on the will of an Almighty Agent, "in whom we live, and move, and have our being ;" and that, were it conformable to his all-wise and eternal designs, he could easily disarrange the structure of our globe, and reduce its inhabitants either to misery or to complete destruction; and that, too, without altering a single physical law which now operates throughout the universe.

If we recognize the Scriptures as a revelation from God, we may rest assured that no danger from such a cause can liappen to our world for ages yet to come; for there are many important predietions contained in revelation which have not yet received their accomplishment, and must be fulfilled before any fatal catastrophe can happen to our globe. It is predicted that the Jews shall be brought into the Christian church " with the fullness of the Gentiles,"-that "the idols of the nations shall be abolished,"-that "wars shall cease to the ends of the earth,"-that the kingdom of Messiah shall extend over all nations,-that "the knowledge of Jehovali shall cover the earth, and that all shall know him from the least to the greatest;" that "the earth shall yield its increase," and its desolate wastes be cultivated and inhabited,-that moral order shall prevail, and "righteoushass and praise spring forth before all the nations,"-and that this happy era of the world shall continue during a lapse of ages. These event have not yet been accomplished, though at the present moment they appear either in a state of commencement or of progression; but they cannot be supposed to be fully realized till after a lapse of centuries. The believer in Divine revelation, thereforc, has the fullest assurance that, whatever directions comets may take in their motions toward the center of our system, none of them shall be permitted to impinge upon our globe, or to effect its destruction, for at least a thousand years to come, or till the alwバe and other predictions be completely accomplished.
4. Another question occurs on this subject-namcly, whether any comets have ever fallen into the sun? It was the opinion of Sir Isaac Newton that one purpose for which comets are destined, is to recruit the Sun with fresh fuel, and repair the great consumption of his light by the streams continually emitted every way from that luminary; and that such comets as come very near the Sun in their perihelions meet cvery time with so much resistance
from his atmosphere as to abate their projectile force-by the constant dimunution of which, the centripetal power, or gravitation toward the Sun, would be so increased as to make them fall into his body. On a similar principle, Arago supposes that the comet of 1680 , which approached so ncar the body of the Sun, must have passed nearer to his surface at that time than at its preceding apparitions; that the decrease in the dimensions of the orbit will continue on each succeeding return to its point of perihelion; and that " $i t$ will terminate its career by falling upon the Sun." But he acknowledges that, " from our ignorance of the densities of the various strata of the Sun's atmosphere, of that of the comet of 1680 , and of the time of its revolution, it will be impossible to calculate after how many ages this extraordinary event is to happen;" and he likewise admits that "the annals of astronomy do not afford any reason to suppose the previous occurrence of such an event since the origin of historical record; so that we have no direct evidence that such an event has ever taken place, or that it ever will. We know too little of the physical constitution of the Sun, and of the nature of comets, to be able to assert that the falling of a comet into the Snn would actually recruit the luminous matter of which his outer surface is composed; for we have reason to believe that there is little or no analogy between the mode in which we supply our fires by means of fagots, and that by which the solar light is recruited and preserved in its pristine vigor; and besides, it is found that bodies, particularly in certain electric states, may be rendered luminous without the addition of any extraneous body to their substances.

Of the Influence of Comets on the Earth.

In former times, the appearance of comets was supposed to be the foreronner of wars, revolutions, famine, pestilence, the deaths of great men, earthquakes, inundations and other calamities. When the splendid comet of 1456 appeared, (supposed to be the same as Halley's comet,) its tail extended at one time over more than 60 degrees. Three days before its perihelion, its nucleus was as bright as a fixed star, its tail of the color of gold, and it appears to have exlibited coruscations. Pope Calixtus, believing it to be at once the sign and instrument of Divine wrath, was so frightened at its appearance that he ordered public prayers to be offered up in every town, and the bells to be tolled at the noon of each day, to warn the people to supplicate the mercy of Heaven. He at the same time excommunicated both the comet and the Thrks, whose arms had lately proved victorious against the Christians, and established the custom, which still exists in Catholic countries, of ringing the church bells at noon. In modern times, certain natural effects have likewise been attributed to the influence of comets-such as tempests, hurricanes, volcanic eruptions, cold or hot seasons, overflowing of rivers, fogs, dense clouds of flies or locusts, the plague, the dysentery, the cholera, and other disorders.

Mr. T. Forster, a respectable writer on natural science, author of "Researches about Atmospherical Phenomena," \&c., published in 1829 a work on the "Atmospherical Causes of Epidemic Diseases," in which he maintains that the most unhealthy periods are those during which some great comet has been seen; that the appearance of these bodies has been accompanied by earthquakes, eruptions of volcanoes, and atmospheric commotions; and that no comet has been seen during seasons of healthiness. For example, in the year 1665 a comet made its appearance, and soon after its disappearance the
city of London was ravaged by the plague. In 1680, one of the most splendid comets which have been observed in modern times madc its appearance. The atmospheric effect produced by its influence, according to Mr. Forster, was " a cold winter, followed by a hot and dry summer," and "meteors in Germany." As the influence of comets on our globe and its atmosphere (if such an influence exist) must have a respect to the whole Earth, and not merely to any partieular portion of it, we might ask, in reference to the first example, why did not the comet of 1665 produce a similar effect in Amsterdam, Vienna, Paris and Madrid, and in the principal eities of Asia, Africa, and America? But of such effects we never had the least intimation. In respeet to the second example, we are warranted to inquire, whether the cold winter was followed by a hot summer in every other climate of the Earth? whether meteors were as common in other conntries as in Germany? and whether the comet produced opposite effects, at one time congealing the pools and rivers, and at another scorching the Earth with heat? If such questions cannot be satisfactorily answered, we are not warranted in attributing such effeets to the influence of comets.

We err egregiously, in this as well as in many other respects, when we infer, from two eontemporaneous events, that the one is either the sigu or the cause of the other. It is on a prineiple of this kind that some persons are led to attribute the events to whieh we have alluded to the influence of comets. Because an inundation, a war, a political eonvulsion, or a voleanie eruption has taken place at the time of the approach of a comet to this part of our system, therefore they conclude that there must be a certain connection between such events, and that the one is the eause and the other the effect; while the two events, in point of fact, may not have the slightest relation to eacl other, exeept their casual occurrence at the same period. We might, on the same grounds, infer that the rising of the star Sirius along with the Sun, which announced to the Egyptians the rise of the Nile, was the cause of the annual overflowing of that river. Before we can identify any event with the influence of a comet, we must not confine our views to an event or two in our immediate neighborhood, but must endeavor to aseertain whether similar events or phenomena have happened on every part of the Earth at the same period. As comets, either large or small-either visible to the naked eye or through a telescope, make their appearance at an average almost every year, and as epidemics, political commotions, earthquakes, hurricanes, and similar events are always to be found occurring in some partienlar portions of the globe, we should never be at a loss for a physical cause to account for every thing that happens here below, if eomets are to be sapposed to have such an influence over terrestrial affairs. Whatever takes place in any country of an uncommon nature, might then be attributed to a comet whieh is cither approaching the center of our system or receding from it.

It is remarkable that the announcement of a comet has generally been received with melancholy anticipations, and the effeets attributed to its influence have uniformly been of a calamitous nature. But why should it not be the precursor of prosperous events-of peace, plenty, social tranquillity, and genial seasons-as well as of wars, famines, revolutions, cold winters, and parelied summers? It seems something like a reflection on the general benevolence of the Deity to imagine that be has created such a vast number of bodies, and directed their course through every part of the planetary regions, chiefly for the purpose of "shaking from their horrid hair" wars,
famine, and pestilence; for if they produce such effects upon the Earth, we might with equal reason believe that they produce similar effects on the otlier planets of our system as they pass along in their course toward the Sun; and this would lead us to infer that the inhabitants of all the planetary orbs are liable to the same disasters and calamities as the inhabitants of the Earth, a position which seems scarcely consistent with the boundless benevolence of the Divine mind.

But although I do not admit the conclusions and the cometary influences to which I have alluded, I am far from asserting that comets have no influence whatever on our globe or its surrounding atmosphere. The universe is one great whole, and all its parts, however remote, must be supposed to have a certain relation to one another; and they may produce an influence, however small and imperceptible, on each other at the greatest distances. The remotest star perceptible to the eye may produce a certain physical influence on our globe, thongh so small and insensible as to be beyond the limits of the nicest calculation; and therefore comets which sometimes approach pretty near the Earth may produce a certain sensible effect upon our globe, particularly should a portion of their immense tails at any time sweep along the higher regions of our atmosphere. But what special influence or effects they may produce on the physical economy of our terrestrial system it is impossible for us in the mean time distinctly to ascertain, from our ignorance of the constitution of those mysterious bodies, and of the substances of which they are composed. While too much has doubtless been attributed to the influence of comets, it would be verging to an opposite extreme to maintain that they can produce no effect at all on our Earth and atmosphere. We know that certain celestial bodies produce a powerful influence on our globe. The Moon, in conjunction with the solar influence, rules the ocean and perpetuates the regular returns of ebb and flow. Its light not only cheers our winter nights, but produces a variety of other influences both on the human constitution, the atmosphere, and on the productions of the earth; and there may be many effects produced by its agency with which we are as yet unacquainted. The Sun not only diffuses light over every region of the Earth for the purpose of vision, but rays or emanations invisible to our sight proceed from his body, which promote evaporation, the growth of vegetables, and the various degrees of temperature which prevail throughout the globe. These emanations are likewise found to produce certain chemical effects, to dissolve certain combinations of oxygen, and to give polarity to the magnetic needle; and many other effects of which we are ignorant may afterwards be found to proceed from those invisible irradiations. The larger planets, Jupiter and Saturn, and those which are nearest to us, as Venus and Mars, may likewise produce certain effects on our globe, both in virtue of their attractive power and of the peculiar nature of the reflected rays they transmit to the region we occupy.

We cannot therefore but conclude, that comets may exert a peculiar influence on our terrestrial system in addition to that of other celestial bodies, and different from it, particularly those whose bulk and masses are considerable, and which approach nearest to the Earth. Their light, whether native or reflected, appears to be peculiar, and the margin of their immense tails may occasionally graze our atmosphere when we are not aware of it, and may produce a peculiar effect different from that produced by the other bodies of our system; but what that special effect is has not hitherto been
determined; for the mere coincidences of certain events with the appearance of comets cannot be supposed to be owing to their peculiar influence, unless such events are found uniformly to happen on the apparition of a comet, and that too throughout a great portion of the Earth. This subject is worthy of some attention; and perhaps future observers, by more accurate observations than have hitherto been made, may throw some light on an influence which on the one hand has been perhaps too rashly set aside, and on the other carried to a pitch of extravagance beyond the line of sober reason and observation.

Let it not be supposed that, in admitting that comets may have an influence on our globe, I mean to give the least countenance to foolish superstitions, or to the absurdities of astrology, since all that I would be disposed to admit in the present case is purely a physical influence; an influence which may exist, although we have not yet been able to discriminate its specific effects. The most eminent philosophers have been disposed to admit such an influence. Sir Isaac Newton supposed that "the atmospheres and tails of comets may supply the planets with moisture, which is continually wasting by the growing of vegetables out of water and turning into earth;" and that from the same source may be derived "the purest part of our air, which is requisite for the existence of living beings." These opinions, indeed, cannot be proved, and they are evidently untenable; but they show that that great philosopher admitted the influence of comets. M. Arago, although he scouts the vulgar idea of comets being the cause of most calamitous events, yet he admits that, " not only cometary matter may fall into our atmosphere, but that this phenomenon is of a nature to occur frequently, and may possibly produce those epidemic diseases which have been attributed to it."

A variety of questions has been started respecting cometary action and influence, beside those to which we have now alluded. It has been a question whether we ought to have recourse to the action of a comet to account for the rigor of the climate of North America? It is found that in the northern regions of America, the climate in the same latitude is much colder than in Europe. To account for this, Dr. Halley supposed that a comet had formerly struck the earth obliquely, and changed the position of its axis of rotation. In consequence of that event, the North Pole, which had been originally very near to Hudson's Bay, was changed to a more easterly position; but the countries which it abandoned had been so long a time and so deeply frozen, that vestiges still remain of its ancient polar rigor, and that a long series of years would be required for the solar action to impart to the northern parts of the new continent the climate of their present geographical position. But we have no proof that a comet has ever struck the earth, or that its concussion would have the effect to change the direction of the terrestrial axis. Beside, it is well known that the Asiatic coast is equally cold in the same latitudes as the Atlantic shores of North America.

It has likewise been a subject of inquiry, whether the depression of the soil, of a great part of Asia has been produced by the shock of a comet; and whether Siberia ever experienced a sudden change by a similar event? This latter inquiry has been suggested by the circumstance of the bones of elephants, rhinoceroses, and other animals peculiar to the torrid zone, having been found imbedded in the strata of that country, which has led to the supposition that Siberia was, at some remote period, comprised within the tropics. But there is no proof, nor even probability, that the action of a
comet was concerned in either case. It has also been supposed that the small planets, Vesta, Juno, Ceres, and Pallas, the supposed fragments of a large planet, may have been broken to pieces by the shock of a comet. The circumstance that two of these planets, Ceres and Pallas, are encompassed with an atmosphere of great density and elcvation, has been brought forward as a presumptive proof of the reality of such a concussion, and that the cometary atmosphere, not being liable to destruction by the percussion, was imparted to these planets. But when we consider the very small density of comets, it appears not at all probable that even a direct concussion from such a body would have produced such an effect, although it might have caused a considerable derangement of the physical constitution of the planet. Besides, this hypothesis does not account for the remarkable fact that Vesta and Juno exhibit no traces of an atmosphere which, in consistency with the supposition, ought to have been imparted to them by the comet, as well as to Ceres and Pallas. On the whole, we have no direct or satisfactory proofs that comets have ever come in direct contact with our globe, or that they have produced any considerable derangements throughout the planetary system; and whatever specific influence they may produce on our earth and atmosphere must be deduced from future observatious.

All that can be said of comets which is reliable, more than can be seen, is that they are electric bodies moving in projectiles magnetically arranged with the positive pole forward. It may be said that the Sun moves in the same manner in its orbit. All the planets have reversed poles to the Sun, and revolve on their axes surrounded by atmosphere; while the atmosphere of a comet constitutes its tail, through which the Sun's electric rays of light pass. This phenomena is the same as the Aurora, or northern lights, and is precisely from the same cause. Thus as maguetic bodies when approaching their nearest contact or perihelion, their motion is accelerated. This is the true law of magnetic bodies, and this constitutes their aerial splendor as they move through space.

The Comet of September 12th, 1858.

This comet made its appearance in the northern hemisphere about the middle of September, near and directly under the bowl of the Dipper, or Great Bear, and about twenty-eight degrees below the plane of the pole star. It had the appearance of coming in and passing round the Sun at an angle of about forty-five degrees west of and below the Sun, and went out at an angle of about forty degrees east of the Sun-as viewed from the Earth in September and October.

There were various opinions as to the size and diameter of its mass. From a close observation of this comet, it may be said that it passed its perihelion on the 9th of October. It passed one degree below Arcturus on the evening of the 7th of October, at which time it seemed to have attained its greatest brilliancy. On the 20th, at half-past six in the evening, it stood perpendicular to Venus, three and a half degrees above that planet, and eleren and a half above the horizon. At the same time it stood at an angle with its tail of forty-five degrees south-southeast from the Sun's line of the ecliptic. These few measurements prove that this comet passed a little outside of the line of the Earth's orbit, and west about thirty-five days before the Earth arrived at that point.

GENERAL REMARKS

on the

0RIGIN 0F THE EARTH'S MOTION T0 THE SUN.

Probably the primeval order of the Earth's motion on its axis, and in its path around the Sun, was without obliquity, and consequently without change of seasons; unending summer and equal light spreading from pole to pole, and causing an undisturbed verdure and tropical fruits to exist far from the equator, both toward the north and south, where now the frigid zones forbid the existence of vegetable life to any extent.

The history of the Earth is written in the volume of effects, which are undeniable; it may be read also in nature and revelation combined, and by reference to causes and effects may be seen the laws and the order by which and in which each mighty revolution was effected, affording indubitable evidence of the truth of the word of God, as well as of the durability of His works.

It has been supposed that that dread sentence, "Cursed is the ground for thy sake," received its fulfillment when God caused the Flood to cover the Earth, changing at the same time the Earth's orbit, and cansing the obliquity of the pole to the Sun's plane and pole or axis, whereby were produced all the present phenomena of the seasons. But whether or not those who thus speculate have any foundation in truth, it is confidently asserted that there is both reason and Scripture to sustain the belief that the present inclination of the Earth's axis will be perpetual; the assurance given to Noah, that there should be summer and winter as long as the Earth endured, being supposed to be equivalent to the fiat that the Earth's axis should remain inclined. The passage referred to is found in Genesis viii. 20-22, and is as follows: "And Noah builded an altar unto the Lord, and took of every clean beast, and of every clean fowl, and offered burnt-offerings on the altar. And the Lord smelled a sweet savor; and the Lord said in his heart, I will not again curse the ground any more, for man's sake; for the imagination of man's heart is evil from his youth: neither will I again smite any more every thing living, as I have done. While the earth remaineth, seed-time and harvest, and cold and heat, and summer and winter, and day and night shall not cease."

The Mosaic account of the partial destruction of the Earth by the Deluge has been by some considered to be fully sustained by the organic remains of past ages, both vegetable and animal, which exist in abundance in a fossil or petrified state, proving incontestably that at some long past era most wonderful changes took place in the physical condition of the Earth. Not only does the presence of marine fossil shells, of species both known and unknown, at the tops of high mountains, and in other localities far remote from the sea
-as for instance in the neighborhood of Cincinnati-prove that many parts of the Earth were once far beneath the surface of the ocean, but there is much cvidence to show that our planet has undergone a very great change in temperature-such as whole forests of tropical trees found beneath the Earth's surface in northern regions, and the remains of elephants in Siberia, in such quantities that the ivory turners of St. Petersburg use for their purposes chiefly what is so found. In the same inhospitable region are also found the gigantic remains of an extinct species of elephant, one of which was discovered a few years ago in a condition so perfect that even the hide and hair were nndecayed, it having been imbedded in the ice probably for countless ages in that climate of perpetual winter. These facts show that the climate of Siberia must at one time have been such as belongs to those countries in which the elephant is found at the present day; that is to say, it must liave had the climate of Africa or India,--from which it must be inferred either that the regions now polar were once equatorial, or that the temperature of the Earth at large has been lowered from a degree in which the heat of the polar regions was equal to that of the equatorial regions now, and that the heat of the equatorial regions was so great that they could not have been habitable by man as he is at present constituted.

But though there can be only one opinion relative to the fact of the submersion of the Earth at some remote period beneath the waters of an overwhelming flood, some of the best of men have doubted whether the Noachian Deluge is that to which the great changes which the Earth has undergone must be referred. But, at least, the possibility of that event must be admitted. The vastness of space teems with the traveling messengers of God, which we call comets; one of these may have visited the Earth, causing it to leave its wonted plane, changing the direction of its axis, causing the ocean to rush over the continent-when literally the "fountains of the great deep were broken np"-and sweeping to destruction every living thing.

But it must be admitted that the weight of evidence is in favor of a theory which refers the vast changes the surface of the Earth has undergone to other and much longer continued action than that of the Noachian Deluge, which it is contended was only partial in extent, and not lasting a single year; while there is a vast accumulation of geological facts tending to show that many successive submersions and upheavals of the Earth's surface, and a lapse of thousands of years, were necessary to produce the enormous masses of fossiliferous rocks that are found in all parts of the world. There is every reason, too, to believe that these changes took place chiefly before the existence of man upon the Earth, though evidence is not wanting which tends to show that since the appearance of man geological changes have taken place to some extent.

In examining these evidences, it may be stated, in a general way, that the ages of the different strata of rock indicate the age of the organic remains imbedded in them; and that in the strata of the present period, there are found, besides the existing races, many extinct species, including animals of an enormous size. The organic remains of man, with the monuments of his arts, are also found buried in this last common grave.

The remains of man, and old pottery, with other monuments of his arts, have been found buried in deep caves of rock, both in Europe and this country; and his remains have also been found, buried with his rude stone house,
in the peat bogs of Ireland, clad in skins, and in a perfect state of preservation.

About the year 1787, some workmen were occupied near Aix, in Provence, France, in quarrying stone for the rebuilding, upon a vast scale, of the Palace of Justice. The stone was a limestone of a deep gray, and of that kind which is tender when it comes out of the quarry, but which hardens by exposure to the air. The strata were separated by a bed of sand mixed with clay, more or less calcareons. The first which were wronght presented no appearance of any foreign bodies; but after the workmen had removed the first ten beds, they were astonished, when taking away the eleventh, to find its inferior surface, at the depth of 40 or 50 feet, covered with shells. The stone of this bed having been removed, as they were taking away a stratum of argillaceous sand, which separated the eleventh bed from the twelfth, they found stumps of columns and pieces of stone half wrought, which were exactly similar to that of the quarry; they found, moreover, some coins, landles of hammers, and other tools, or fragments of tools, in wood. But that which principally commanded their attention, was a board about one inch thick and seven or eight feet long. It was broken into many pieces, of which none were missing, and it was possible to join them again one to another, and to restore to the board or plane its original form, which was that of the boards used by masons and quarrymen; it was worn in the same manner, rounded and waving upon the edges. The stones which were completely or partly wrought were not at all changed in their nature, but the fragments of the board, and the instruments and the pieces of instruinents of wood, had been changed into agates, which were very fine and agreeably colored. Here, then, were traces of a work executed by the hand of man, placed at the depth of fifty feet, and covered with eleven beds of compact limestone: every thing tended to prove that this work had been executed upon the spot where the traces existed. The presence of man had preceded the formation of this stone, and that very considerably, since he was already arrived at such a degree of civilization that the arts were known to him, and that he wrought the stone and formed the columns ont of it.

The forests which covered the dry land at that period, many of which are now standing, and from which the board and handles of the tools of the workmen were made, are found buried all over Europe, beneath the surface of the present period.

In all countries, in digging to certain depths, and in mining, the remains of fishes, vegetables, quadrupeds, and birds, are found in the soil, or imbedded in the rocks, except in those of primitive antiquity. The general regularity with which those that are marine are laid at one level, and those which are products of the land are laid at another, and in the alternations of these marine and land products, lead to the conclusion that the sea has repeatedly covered the land for long periods of time, and that the land has, at intermediate periods been dry. And the discoveries in the quarries near Aix, are one of the many evidences which lead irresistibly to such conclusions; for there must have been a long period of submersion, in which that country was corered with the ocean, between those periods in which the workmen at this quarry were succeeded by the workmen of another.

We have on this continent the same evidences of a corresponding period of submersion since the creation of man. Immense forests are found buried here, portions of which are now standing like those found in Europe.

A diminutive iron horse-shoe was dug up, at the depth of twenty-five feet below the surface, in graduating a street in Cincinnati. It was smaller than the kind of shoe required for the smallest kind of asses. A number of nails were in it, and the erosion by rust was such as might have been expected from the oxydation of 500 years.

In digging a well in Cincinnati, the workmen came to the top of a stump a foot and a half in diameter, at the distance of 94 feet from the surface, on the top of which was found an iron wedge; and below this, near the roots of the stump, which had been evidently cut with an axe, a small silver coin.

In blasting the thick and solid limestone rock, at a distance of 14 feet from the surface, when the workmen were constrncting the steamboat canal at Louisville, Ky., they came to a brick hearth, covered in part with charcoal, and what appeared to be old ashes, the remains of the last fire built upon it by the hand of man.

In digging wells all over the valleys of the Ohio and Mississippi rivers, as well as their tributaries, it is necessary to sink them through beds of many different kinds of earth and sometimes of lime rock, to the ancient surface of the earth, on which are constantly found old logs, stumps, and sometimes standing trees, and the relics of human art. The soil on the old surface of the earth thus found, and once cultivated by man, which the farmers now call the old or ancient soil, is generally a rich blue clay.

Little is known in regard to the changes in this hemisphere beyond the generally acknowledged fact that the ocean is rising in the low latitudes, or along the coasts from New York to the Mississippi. Among the evidences of the rise of the ocean, and of its encroachments upon the land along these coasts, is the submergence of the old walls of some of the houses erected by Captain Smith and his contemporaries, at Jamestown, Va., in 1600, latitnde 37°, which are now some distance from the shore in James River, and the old town itself has long since become an island, from the encroachment of the water on the back part of it. The amount of the rise of the water there in 230 years, is variously estimated at from five to seven feet, which has made it necessary to erect a bridge from the island to the main-land.

At St. Augustine, Florida, latitude $26^{\circ} 46^{\prime} 30^{\prime \prime}$, an old dock and an old grave-yard have become submerged, and the government is now engaged in erecting a wall to protect the town from the further encroachment of the ocean; which again corresponds with this theory, or that of the ancient eastern nations.

Some modern geologists, among whom is Mr. Lyell, have created in their imaginations the necessity of a new theory to account for the elevation of the land above the level of the sea, on the gratuitous assumption that the ocean "cannot be lowered in one place without a general subsidence throughout its whole extent," and attempt to account for the alternate changes in the elevation of the land above the level of the ocean by volcanic convulsions. Their hypothesis is, however, based upon local causes, which are neither constant nor uniform in their action; whereas the effect produced requires a general cause in constant operation. Aware of this objection, they acknowledge they "cannot, in all cases, understand the possibility of the elevation of the land out of the sea by the mere effect of local convulsive movements."

Convex and Concave Belts of the Earth.

The Earth has three great convex and two concave belts, and is flattened at the poles, so that the equatorial diameter is supposed to be about thirtysix miles greater than the polar diameter, while the fact is that the equatorial diameter is at least two hundred and fifty miles greater. This configuration of the earth is the result of natural or physical and mechanical laws-the centrifugal and centripetal forces operating on the Earth revolving on her axis together with the atmospheric pressure and the universal law of matter and of space-the positive and negative forces or law of attraction. These forces thus combined cause an elongated equator or great ridge; this being convex causes a sag, or concave, which concavity at its equilibrium, or at a distance proportionate to the diameter of a sphere of the Earth's magnitude, again causes another convexity and a flattened pole; and thus is produced by a combination of the above laws and forces, an undulated or corrugated surface to the Earth. If proof were required to establish this theory, it would be afforded by a geographical view of the gults and rivers which head on a line of about forty-three to forty-five degrees north latitude, and discharge each way, north and south, into the great gulfs at about thirty-three to thirty-five degrees north latitude-forty-three degrees north being about the center of the northern convex belt. See the line of thirty-five degrees north-the line of gulfs and bays from San Francisco to Mexico, and the Mediterranean and Red Seas. This great northern ridge is a winter barrier to protect commerce between the poles and equator.

All steam and wind crafts bound to England or France should cross the Atlantic south of the forty-fifth degree of north latitude, in winter, through the concave zone.

This corrugated form of the Earth's surface-no doubt causiug an unequal temperature of the sea-water-has probably much to do with the winds and calms of the atmosphere, and the tides and currents of the ocean. So long as the atmosphere is unchanged in density, so long, it remains at rest; but whatever tends to change this, operates to set it in motion; so also with the ocean-heat and cold, operating both by evaporation and by their contractile and expansive influence, produce motion in the waters of the sea. Thus, both the atmosphere and ocean are kept in perpetual motion, constantly seeking an equilibrium, but finding none. Thus are accounted for the Gulf Stream and under-currents from ocean to ocean, as well as the existence of the winds both regular and otherwise. In both the ocean and the atmosphere, when the lower strata become heated from subterranean fires, they begin to rise, and in doing so, displace the strata above them, and thus contribute to that agitation of wind and wave which it would seem is destined never to cease.

MISCELLANEOUS.

The Waters "Above the Firmament."

There are some passages in Scripture which-to those who accept the revealed word of God as not only their guide in matters of religious belief, but as a sufficient source of scientific knowledge-tend to establish the theory that at some vast and unknown distance in the immeasurable regions of space, there exists a boundless concave of water. To such persons there seems nothing incredible or impossible in the idea that creative power should suspend "shoreless seas" in the remote ethereal regions, any more than that the same power should have formed and set bounds to the never-resting oceans beneath. It must be admitted, that a literal acceptation of the following passages makes it almost necessary to adopt some such theory. They are sufficient, at any rate, to claim for the question a respectful consideration.
"And God said, Let there be a firmament in the midst of the waters: and let it divide the waters from the waters. And God made the firmament, and divided the waters which were under the firmament from the waters which were above the firmament: and it was so. And God called the firmament heaven: and the evening and the morning were the second day." (Genesis i. 6-8.)
"Praise Him, ye heavens of heavens, and ye waters that be above the heavens." (Psalm cxlviii. 4.)
"In them bath he set a tabernacle for the sun his going forth is from the end of the heaven, and his circuit unto the end of it." (Psalm xix. 4, 6.)

Guided by the teachings of science, it would not be difficult for the literal reader of Scripture to suppose that our solar system moves within a vast hollow sphere of frozen waters, on the interior surface of which are reflected from innumerable points the rays of the Sun, and that thus are accounted for the innumerable fixed stars. In short, that the heavens are but an immense mirror, in which our Sun and his planets are reflected from icy fields and mountain peaks; that there are no other suns or solar systems -a doctrine which, it is worthy of remark, has not only the apparent testimony of Holy Writ, but is in accordance with a physical law of the elements.

Cadses which have Produced a Change of Climate.

With respect to the cause or causes which have effected so great a change in the temperature of the Earth's surface, there are a great variety of opinions.

Burnet, as stated in the abstract we have given of his theory, accounted for this change by supposing that the Earth's axis took a new and different position at the time of Noah's flood; but astronomy has shown the improbability of any such change in position.

Most writers who admit a deterioration of climate, suppose with Burnet "that the change was sudden, and that it took place about the period of the deluge. Some, however, and ainong them Mr. Lyell, believe it to have been gradual, occupying thousands of years, and to have been caused by the
changes which have taken place in the relative positions of the sea and land. But in the first place, no such changes as this author supposes are proved to have happened with respect to the sea and land; nor second, had such changes been proved, is it at all probable such local causes could have been adequate to effect a change so material and universal.

Sir John F. W. Herschel has recently made some calculations and inquiries, with the view of ascertaining whether there existed any astronomical causes which might account for the difference between the present and ancient heat of the Earth's surface. "Geometers," he says, "have demonstrated the absolute invariability of the mean distance of the Earth from the Sun; whence it would at first seem to follow, that the mean annual supply of light and heat derived from that luminary would be alike invariable; but a closer consideration of the subject will show that this would not be a legitimate conclusion, but that, on the contrary, the mean amount of solar radiation is dependent on the eccentricity of the Earth's orbit, and therefore liable to variations.
"Now the eccentricity of the Earth's orbit," he continues, "is actually diminishing, and has been so for ages beyond the records of history. In consequence, the ellipsis is in a state of approach to a circle, and the annual average of solar heat radiated to the Earth is actually on the decrease. But whether this diminution of radiated heat is sufficient to account for the refrigeration of climate, which geological facts appear to prove, is a question which has not been decided."

Allowing that the Earth's orbit should become a perfect circle, we are at a loss to see how the mean annual radiation should thereby be diminished. It is the opinion of M . Arago, that the mean amount of solar radiation can never be materially affected by the irregularities of the Earth's annual motion.

It wonld appear, therefore, that we cannot look to astronomy with much confidence for a solution of the problem in question.

A recent and highly respectable author, Dr. Ure, of Glasgow, believes that the original heat of the Earth was dissipated in consequence of the evaporation of the waters of the deluge.

The effects of evaporation, together with the absence of a large heating surface, is strikingly illustrated in the temperate climate of St. Helena. This island, thongh less than eighteen degrees from the equator, and on a parallel with the burning plains of continental Africa, enjoys one of the most comfortable and salubrions climates on the Earth. At Jamestown, the thermometer, in the warmest season, seldom rises above 80°. In the country the climate is still more mild, the thermometer in some seasons never rising higher than 72°. At Jamestown, the average temperature during the year is from 66° to 78°, the heat at this place being concentrated by the high rocks which rise above the town. At Plantation House, the average heat is only from 61° to 73°, and at Longwood, the last residence of Napoleon, from 56° to 68°.

The island of Sumatra, thongh directly under the equinox, presents a similar exemption from the excessive heats with which the interior of continents situated on the same parallel are oppressed. The heat at this island seldom rises ligher than 85° at any season, while at Bengal, which is situated in 22° north latitude, ít is often above 100°.

It is at a distance from the sea, and where the surface is dry, that the greatest accumulation of heat takes place. Mungo Park relates, that in
some districts in Africa the ground became so hot by the action of the Sun, that even the negroes, though accustomed to that ardent climate, could not bear to touch it with their naked feet; and that he could not hold forth his hand against a current of air which entered the crevices of his hut, without feeling acute pain from its scorching effects.

Dr. Ure supposes that a portion of the antediluvian land is now covered by the ocean, and that the heating surface, or dry land on the Earth, was twice as extensive before the deluge as it is now, and consequently, as a whole, that its heating effects were doubled.

We cannot follow Dr. Ure through the detail of facts and arguments which he has brought forward on this subject; but after many additional statements to those we have given, he concludes, "that the facts and observations just detailed, seem adequate to prove that the events of the deluge involved such a cliange in the terraqueous constitution, as rendered the surface of the globe much colder and moister than it had previonsly been."

The great and sudden fall of temperature which the Earth suffered at a former time, and which is supposed to have taken place at the period of the deluge, is indicated by the situation and number of fossil bones, belonging to species known to inhabit hot climates, found in northern látitudes.
"The almost incredible number of bones of fossil elephants," says Dr. Ure, "found in northern Siberia, which betray no marks of having been rolled or transported from a distance, attest the existence on its plains of huge herbivorous animals at that distant epoch. These demonstrate that a vigorous vegetation clothed countries now covered with frost a great part of the year, where, even in summer, sterilizing cold and humidity perpetually reign, and where, at present, the reindeer can hardly pick up from beneath the snow its scanty mouthful of moss."

Not only the bones of elephants, but those of the rhinoceros, the mastodon, and hippopotamus, are found in Siberia. All these animals living on vegetables, and, from their size, requiring large quantities for their sustenance, it would seem impossible, as we have before stated, that, in the present state of the climate, there should have grown a snfficient quantity of nourishment for the support of these animals.

That these animals died where they had lived, and where their remains are now found, is proved by the circumstances that their skeletons are entire, and that their bones show no scratches, or other marks of transportation or friction. That these bones have not lain for a long period in a hot climate, is proved by their state of preservation-many of the elephants' tusks being perfectly sound, and making the best of ivory, for which purpose vast numbers have been dug up and sold. The change of climate must therefore have taken place at the deaths of these animals, or soon after.

That these animals died suddenly, and remained in a cold climate after death-at least some of them-is proved by the circumstance that the body of an elephant was found on the bank of the river Lena, in 1803. It was frozen in the ice, a large proportion of the flesh being still preserved, and serving as food for the white bears and dogs. Now, since there is no reason to believe that this animal could have lived in a cold climate, and as there is every reason to suppose that he died where his remains were found, perhaps the nature of such a case could not admit of stronger evidence, that there happened a great and sudden change from heat to cold in that country, and that this took place at the time when this animal perished, or soon after.

If it is certain that this animal could not have lived in a cold climate, and equally so that his body could not have been preserved more than a few days in a hot one, the conclusion is inevitable, that the climate must have changed at the time of his death, or immediately afterward.

The opinion of Baron Cuvier entirely coincides with what here seems to be proved. "Every hypothesis," says he, " of a gradual cooling of the earth, or a slow variation in either the inclination or position of the axis of the globe, is inadmissible."

There are many reasons for believing that the animals whose remains are thus found were destroyed at the time of the general deluge, and also that their bodies were not transported to any considerable distance by that catastrophe. Their bones are found on plains and the sides of valleys, where we should suppose their bodies would have been left by the retiring waters; and in many instances they have been found covered by sand or gravel, such as are considered diluvial deposits, and under such circumstances, as to make it improbable that any ordinary flood would have produced similar effects.

On reviewing the facts and circumstances above stated, it is thought that we may fairly come to the following conclusions:

First. That the climate of Siberia was once similar to that of the tropics of the present day.

Second. That at the epoch of the deluge, the climate of Siberia suffered a sudden and material change in its temperature, and that it then became similar to what it is now.

Third. That the delnge was the most probable cause of the destruction of several ancient races of quadrupeds, which inhabited that country anterior to the flood, and among which were the elephant and rhinoceros, the bones of which still exist there. And

Fourth. That the most probable canse of the sudden change of climate in Siberia, and of the decrease of the superficial temperature of the Earth generally, was the cold produced by the evaporation of the waters of the delnge.

It will be readily seen by the inserted matter or opinions of the past ages, that reason, without a proper respect to the laws of the universe or the law of matter-which is also the cause of form and motion-that facts and reason are both stubborn things, not disposed to yield the point. But as facts forever stand secure, reason learns to go back and investigate. It is therefore self-evident, that the theory of the universal polarity of matter and of space were not known in the days of Burnct, Dr. Ure, Baron Cuvier, Sir John F. W. Herschel, Kepler, and a host of ancients. The polar heavens, the milky-way-vast concave zone of the heavens, and heaven of heavens, and the waters above the heavens, are spoken of in the Psalms. Those worthies reasoned well, but without law. The evidence by the law of matter is confirmed both in nature and revelation. St. Paul", in Rom. i. 20, said: "The invisible things of God from the creation of the world are clearly seen, being understood by the things that are made." Now, had proper care and respect been paid to the Scriptures by those who reasoned on the subject of created matter, they would not have been confused at the innumerable changes of matter and of climate. Every step that nature has taken, has been in perfeet conformity to the laws of matter and of space.

The immortal Newton saw the whole vohme of effects, and was so over-
awed by these, that the great cause or law which produced these effects to him was a mystery. Had Newton known the physical law of a comet, he would have set the world on fire; in the eye of the age in which he lived. Sir Isaac Newton would have indorsed the idea of Barnet, that the deluge was caused by the attraction of a comet, and would have confirmed it from natural law and revelation.
The law of a positive and negative force, or, in other words, atmospheric electricity-called atmospheric pressure-has not been properly applied in philosophy, as may be seen by the growth and trunk of a tree being ronnd. To some, the cause of all this is a mystery, as is also the formation of shot passing through space; as the melted lead leaves the fine screen at the top of the tower, the simple law of equal pressure of the atmosphere on all sides causes the spherical form. Here, then, may be seen the npward tendency by attraction and the tenacity of atmospheric electricity, that its equal pressure on all sides causes the circumference to be round.

The Comet, and the Law of a Comet.

The Sun is the great magnetic center of the universe of matter. All the heavenly bodies evidence the theory of the above in relation to their polarity; and from the fact of the phenomena of the precession of the equinoxes, or the constant change of their nodes, prove the magnetic theory of the solar system and the still more important truth of the Sun's motion in the heavens and the vastness of its orbit. The time of one revolution of the Sun on its axis being over twenty-five days ten hours, and in its orbit not less than 25,858 years. It must and will be conceded that the Comets come in to the Sun positively and go out negatively; and as those heavenly messengers perform their revolutions to and from the Sun, the law of God in the physical world is made to appear. On this theory is based the great fact of the creation of matter; not one jot or tittle can pass out of the power of this wonderful law. All animate beings derive their physical action, and all bodies their motion from this law. Inanimate matter is held by its negative and positive affinity or its polarity, particle to particle.
Not a seed germinates in the soil, or a drop of dew falls from heaven to moisten the earth without this law. All that comes down is first attracted upward, and falls by the same law as its bulk increases. Water possesses a magnetic property of its own, its composition being oxygen and hydrogen. Thus move on by unchangeable law all the created material universe of God.

Beauty as a Law.

Beauty is under the law of four cardinal heads, viz.: Form, Motion, Color, and Sound. From these emanate all that is beautiful in time and sense. Both the animal and vegetable kingdom prove the above. All the attributes of beauty are concentrated in woman; that most exquisite combination of form, motion, color and sound--the person of a just-balanced woman -the mother of us all, and the angel to man.
The cardinal slaws of the mind are governed by the four cardinal senses of the body. These are paraphrased in Ecclestastes xii. 6:-"Or ever the silver cord be loosed, or the golden bowl be broken, or the pitcher be broken at the fountain, or the wheel broken at the cistern."
In this noted and memorable essay is described, in most beautiful languagc, the dissolution of the eye, the ear, the taste and feeling of man in death.

DIVINE AGENCY.

At the funeral obsequies of the Hon. John C. Calhoun, M. C., who died March 31st, 1850, the speaker selected the 6th and 7th verses of the lexxii. Psalm, as adapted to the character of this eminent American statesman and scholar; viz., "I have said ye are gods; and all of you are children of the Most High. But ye shall die like men, and fall like one of the princes." Here the psalmist intimates or indorses this sentiment, "That man is divine in his origin, and eternal in his duration."

But more recently I was struck with the impressive address of the present Emperor Alexander, of Rusifa, at his Coronation, when he said:-"Gentlemen, and House of Lords,-It has pleased God to call the Emperor, my father, to eternal life." This most profound sentiment of this young Christian monarch, will forever secure to him the respect due to such distinguished talent, seen in his choice of words and reverence for his father and for God. For God hath said, "By me kings reign and princes decree justice; by me princes rule and nobles, even all the judges of the earth." God's eternal purposes of life and destiny of men and nations are clearly seen or revealed.

REMARKS ON THE PLATES ACCOMPANYING THIS WORK.

The object of the preceding compend is to illustrate first principles in astronomy, a true knowledge of which, and of the Earth's motion on her axis and in her orbit, is almost indispensable to a correct method of finding a ship's latitude or longitude. To perfect this knowledge, and in order to simplify this subject as much as possible, I have introduced a series of plates or cards, relating to both astronomy and navigation, in which the Sun and its declination, the Moon and its changes, and the motions of the Earth, each and all, from an astronomical, nautical, and geographical point of view, are so far explained that the practical part of navigation is made extremely simple, and a mistake made almost impossible in finding the latitude or longitude on whatever part of the surface of the globe the navigator may be.

Ov an inspection of these plates, it will be seen that the eclipses for the years 1859, 1860, and 1861 are laid down in a new form or configuration, as is also the transit of Mercury on the 11th of November, 1861. In the plate illustrating this transit, the Earth will be seen to have passed the autumnal equinox, and will appear in the Sun's southern hemisphere, south of the Sun's equator, $17^{\circ} 44^{\prime} 43^{\prime \prime}$; the planet Mercury will be seen in its winter solstice, and in its return to a node with the Sun, or an equinox. The transit over the Sun's disk will be visible to that part of the Earth where the Sun can be seen. At Greenwich, it will be visible at about eight o'clock in the morning (20 h .6 m .) Though the transit of Mercury takes place every eighty-eight days through all time, the position of the Earth forbids our seeing it except at much longer intervals.

The process of finding a ship's latitude is fully worked out and explained on another of these cards; on which, at the same time, are exhibited the various changes and declinations for a solar year.

The plate intended to illustrate the method of ascertaining longitude by chronometer time will be found sufficient to give a true idea of the motions of the earth on her axis, and the rate of motion per hour, minute, and for every fifteen seconds. This motion of the Earth causes the apparent motion of all the heavenly bodies in a solar day.

Another plate exhibits the Moon in its changes; on which, also, the planets Mars, Jupiter, and Saturn are made to appear, for the purpose of showing their meridian passages, and their distances east and west of the Moon for lunar observations. This card also refers the navigator to the north polar star as an object of confidence in nautical science and practice; as it is one of the safest objects in space for finding latitude by altitude, if it be measured where it stands, without horizon or zenith being forced.

The altimeter measures the altitude of all bodies where it finds them, and gives the zenith distance at the same time. The day is coming when the accuracy of this instrument, in finding correct altitudes, will give it the precedence of all others.

The axis of the Earth is not supposed to be in an absolutely perfect line with the polar star, yet the Earth moves in her orbit from her summer solstice on the east side of the Sun to her winter solstice on the west side, one hundred and eighty millions of
miles, without producing any perceptible parallax-a fact from which may be inferred its enormous distance as well as that of all the fixed stars.

The polar star is always on the meridian, and all surrounding objects make their meridian passages above or below it, so that, if these passages were recorded accurately, they wonld furnish to the navigator the best method for finding longitude.

The axis motion of the earth will detect an error of less than thirty seconds with a proper instrument for this purpose.

The card or engraving relating to longitude will require a little attention. At first sight it will appear simple, but by taking up each idea or position separately this device will be found useful and interesting. This table shows the method of taking lunar observations and the distance of each planet from the Moon. It is practically operated by turning the wheel representing the Earth's motions on her axis, the hour, half-hour, and quarter-hour lines, degrees, \&c. This operation with the ship-master soon becomes perfectly easy and natural. By this wheel any place on the globe may be brought to the Sun's meridian by the aid of a chronometer with the time of Greenwich. This time will be found slow by traveling west, so that when Greenwich noon is at New York city, the Sun will pass the meridian at four hours and fifty-six minutes P. M.; this will show 74° west longitude from Greenwich. In like manner we may travel east or west with the correct time of any other place.

The meridian passage of the Sun in the place of the observer gives the longitude either east or west, the rate of motion of the earth on her axis being regular and reliable to a second of time in a solar year.

Thus, by this simple method of time and motion, the navigator can tell his precise locality, and his distance from London, St. Petersburg, San Francisco, or Canton in China. East or west 180° brings him under Greenwich, if he is in latitude 51° north. This is mentioned merely as an illustration to the student or new beginner, who; by the study of this simple card, may come to understand the whole subject of longitude.

The author hopes to be able, by close application, to introduce a better method of finding longitude by meridian passages of the fixed stars, which are alluded to in the card. He is confident that an accuracy within $30^{\prime \prime}$ may be attained by this rule, when carried out and tabled, or properly recorded.

Plate V., on local attraction, exhibits the action of the magnetic needle, when brought under the forces of atmospheric electricity, which is perpendicular to the geocentric line of the Earth's equator, on all sides of the earth, from pole to pole. The sides of an iron ship have the power of a strong battery; the iron being made to stand perpendicular, becomes a positive and a negative force in proportion to its mass. The upper end of a bar or of a smoke-pipe becomes a negative pole, and, as can be clearly demortstrated, attracts the north pole of the compass, as seen in the engraving. The ship-master will readily see the necessity of fully testing the liability of his compass to vary under quarter headings. North and south headings generally give a correct course. The compass is the most important instrument in the ship; it is, therefore, a matter of the first consideration to the navigator that he shonld have a good one. Probably the best is the "Improved Compass," invented by Hall Colby. This compass has proved its superior force as a binnacle compass, and being constructed with duplicate polar-line needles, as shown on the left of the engraving, the card has less oscillation and more directive force-its poles also being concentric, and there being four polar points in the line of two oscillating polar-line needles.

The following testimonials as to the superiority of this compass make comment unnecessary:
I certify that I have nsed the Improved Patent Compass, invented by Hall Colby, and find it a superior Marine Binnacle Compass, being accurate in calm weather, giving the ship's heading, and more steady in storms and rough seas than any Compass I bave ever seen. I can recommend this Compass to all ship-owners.

Jaoob Lokman, Sandy Hook and New York Pilot.

I certify that in the month of March, 1847, by request of myself, Mr. Hall Colby put on board the U. S. Iron Steamer "Scourge," three of his patent Marine Compasses, and by these Compasses I cruised the Mexican coast, in the late war with Mexico, to my perfect satisfaction, without any artificial arrangement of Magnets. These Compasses gave my courses correctly, under the most severe trial of local attractive properties of the brig. I can safely recommend these Compasses to be superior to the common Compass, being quick in their directive force, and superior as a heavy weather and storm Compass.

> C. G. HUNTER, Lt. Oom'dr., U. S. Navy.

New York, April 12, 1847.
Ship "Kensington:" I certify that the Compasses have been irregular and inaccurate, differing from each other, in the wheel-house half a point, and binnacle outside one point and a half. Mr. H. Colby hae fnrnished me with two of his improved Oompasses for the wheelhonse, which perfectly agree with each other, and has pointed out the causes of variation and local attraction, to our perfect satisfaction, on the subject of electricity and magnetic influences. I recommend all interested in sea-faring to see Mr. Colby on this aubject, and his Compase.
C. H. Christianson.

U. S. Surviying Steamer "Corwin," New York, January 25, 1854.

I have used one of Mr. Hall Colby'a Patent Improved Mariner's Compasses, for two years, on board of two U. S. vessels under my command, and have found it more perfect than any Mariner's Compass I have seen, being more steady and less affected by local attraction. I prefer it to any I bave yet used.
T. Augs. Craven, Lt. Com'dr.

$$
\left.\begin{array}{r}
\text { U. S. Steamer "Prinoerton," } \\
\text { NAVI YARD, NEW Yobr, May 9, 1854. }
\end{array}\right\}
$$

This is to certify, that there has been in use, on board of this ship, H. Oolby's Mariner's Compass, and that we consider it a superior instrument, vibrating less in a seaway than the ordinary Compass, and can with confidence recommend it to general use.

Henry Eagle, Commander. William W. Low, Act'g Master.
Nhw York, November 13, 1855.
Mr. Hall Colby: My Dear Sir-In April, 1853, you furnished me with one of your Patent Marine Compasses, which was placed in use in the binnacle of our ship, and to the best of my belief, the "Macedonian" was steered and navigated by that Compass entirely, during the outward passage to the East Indies, touching at Madeira, Canaries, Prince's Island, St. Helena, and at Anger Point. I noticed myself, and recollect the master of the ship frequently remarking, its great accaracy and its superiority over the other Compass which stood in another binnacle. Yonr obedient servant,

L. R. Avery, late 1st Lt. of U. S. Ship "Macedonian."

Hall Colby, Eaq.: Dear Sir-Having had your "Binnacle Compass" twelve months in constant use, it gives me plessure to say, that I consider it the best Compass now in use, being less affected by local attractions and the motion of the ship, in a seaway.

May 2, 1857.
Oharles S. Boegs, Commander, U. S. Navy, Commanding U. S. Mail Steamer "Illinois."

New York, March 1, 1858.
I hereby certify that Mr. Hall Colby's Patent Marine Compasses have been in constant use on board of the ship "New World," for the last eight years, and I am fully satisfied that they are more steady in heavy weather, and less subject to local attractions than any other Compass I have ever used.
H. Kıreit, Master Ship "New World."

I certify that having manufactured Hall Colby's Improved Oompass, and investigated its principles as a Marine Binnacle Compass, I believe it possesses decided merit over the common Compass for accuracy and directive force.

Robert Merrile,
Manofacturer, and Mathematical Instrument Maker,
No. 152 Front-street, New York.

sopeos anT
笕 ह

 This diagram of an Iron Ship's Hull exbbits its attractive powers. and constitutes the canses of local attraction under.
就虂
－
－
－

NAUTICAL ALMANAC FOR THE YEAR
 1859.

ECLIPSES OF.THE SUN AND MO0N FOR 1859.

I.-A Partial Eclipse of the $S U N$, February 2, 1859, invisible at Greenwich.

ELEMENTS.

©'s and ©'s Right Ascension 21437
(1)'s Declination S. $181_{15}^{1}{ }_{20}^{1 \prime}$
©'s Declination.
S. 164354

Longitude $58^{\circ} 53^{\prime} \mathrm{W}$. of Greenwich. Latitude $66^{\circ} 38^{\prime} \mathrm{S}$.
II.-A Total Eclipse of the MOON, February 16-17, 1859, invisible at Greenwich.
elements.
Greenwich Mean Time of 8 in R. A. Feb. $16 \begin{array}{llll}16 & 22 & \frac{\text { m }}{37} & 42 \\ 42\end{array}$
(1)'s Right Ascension 10148
(1)'s Declination .
N. $12{ }^{\circ} 1_{1}^{\prime \prime}{ }_{8}^{\prime \prime}$

C's Declination.
S. 12447

Longitude $117^{\circ} 57^{\prime} \mathrm{W}$. of Greenwich.
Latitude $12^{\circ} 58^{\prime} \mathrm{N}$.
III.-A Partial Eclipse of the SUN, March 4, 1859, invisible at Greenwich.

ELEMENTS.

©'s and ©'s Right Ascension $23 \quad 0 \quad 11$
(1)'s Declination
S. ${ }^{\circ} 45^{\prime} 44_{1}^{\prime \prime}$
©'s Declination
S. 62322

Longitude $166^{\circ} 46^{\prime} \mathrm{W}$. of Grcenwich. Latitude $36^{\circ} 47^{\prime} \mathrm{N}$.
IV.-A Partial Eclipse of the $S U N$, July 29, 1859, invisible at Greenwich. mements.
Greenwich Mean Time of δ in R. A. July $\begin{array}{lllll}\text { d. } & & \text { h. } & \text { m. } & 9 \\ 9 & \text { a. } \\ 15\end{array}$
©'s and (1)'s Right Ascension 8347
(al's Declination

N. | $\circ 0$ | 7 | |
| :--- | :--- | :--- |

©'s Declination.
N. 18456

Longitude $94^{\circ} 13^{\prime} \mathrm{E}$. of Greenwich.
Latitude $66^{\circ} 26^{\prime} \mathrm{N}$.
V.-A Total Eclipse of the MOON, August 13, 1859, invisible at Greenwich.
elements.

(1)'s Declination
S. $1^{\circ} 4{ }^{\prime}{ }^{\prime}{ }^{\prime \prime} 1$
©'s Declination.
N. 14436

Longitude $158^{\circ} 12^{\prime}$ E. of Greenwich.
Latitude $15^{\circ} 26^{\prime} \mathrm{S}$.
VI.-A Partial Eclipse of the $S U N$, August 27, 1859, invisible at Greenwich. ELEMENTS.

©'s and (10)'s Right Ascension
$1025 \quad 0$
(10)'s Declination .
N. ${ }^{\circ} 8{ }_{2}^{\prime} 8 .{ }_{51}^{\prime \prime}$
©'s Declination
Longitude $42^{\circ} 57^{\prime}$ E. of Greenwich.
N. 95449

PHASES OF THE	M00N FOR 1859.

1859.		AT	GREENWICH			APPARENT NOON.				1859.	
MARCH, 1859.						APRIL, 1859.					
		THE SUN'S Apparent Declination.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$	Equation of time, to be added to Apparent Time.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$			THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Tobime, to added to subt.from Apparent Aime.	Diff for 1 hr.
Tres.	1	S. ${ }^{7} 40{ }^{\prime \prime}$	57	$\begin{array}{r} \mathrm{m} . \mathrm{s} . \\ 12 \quad 37 \end{array}$	$\begin{gathered} \text { s. } \\ 0 \end{gathered}$	Fri.	1	N. ${ }^{4} 27^{\prime \prime}{ }^{\prime \prime}$	57	m. s. 4 4	s.
Wed.	2	71712	57	1225	0	Sat.	2	4507	57	344	0
Thur.	3	65416	57	1213	0	Sun.	3	51310	57	326	0
Fri.	4	63114	57	120	0	Mon.	4	$\begin{array}{lll}5 & 36 & 7\end{array}$	57	38	0
Sat.	5	$\begin{array}{lll}6 & 8 & 7\end{array}$	58	1147	0	Tues.	5	55858	56	251	0
Sun.	6	54455	58	1133	0	Wed.	6	62142	56	233	0
Mon.		52138	58	1119	0	Thur.		64420	56	216	0
Tues.	8	45817	58	114	0	Fri.	8	7651	55	159	0
Wed.	9	43452	58	1049	0	Sat.	9	72915	55	142	0
Thur.	10	41124	58	1033	0	Sun.	10	75131	55	125	0
Fri.	11	34753	58	1018	0	Mon.	11	81339	54	19	0
Sat.	12	32419	59	$\begin{array}{ll}10 & 1\end{array}$	0	Tues.	12	83539	54	053	0
Sun.	13	$\begin{array}{lll}3 & 0 & 44\end{array}$	59	945	0	Wed.	13	85730	54	037	0
Mon.	14	$237 \quad 6$	59	928	0	Thur.	14	91911	53	021	0
Tues.	15	21327	59	911	-	Fri.	15	94044	53	06	0
Wed.	16	14946	59	854	0	Sat.	16	$\begin{array}{lll}10 & 2 & 7\end{array}$	53	08	0
Thur.	17	1265	59	836	0	Sun.	17	102320	52	023	0
Fri.	18	1223	59	819	-	Mon.	18	104423	52	037	0
Sat.	19	03841	59	81	0	Tues.	19	$\begin{array}{lll}11 & 5 & 15\end{array}$	51	051	0
Sun.	20	S. $0 \quad 15 \quad 0$	59	743	0	Wed.	20	112557	51	14	0
Mon.	21	N. 08840	59	725	0	Thur.	21	114627	50	117	0
Tues.	22	03221	59	76	0	Fri.	22	12646	50	129	0
Wed.	23	0560	59	648	0	Sat.	23	122654	49	141	0
Thur.	24	11937	58	629	0	Sun.	24	124649	49	153	0
Fri.	25	14313	58	611	0	Mon.	25	$13 \quad 631$	48		0
Sat.	26	2646	58	552	0	Tues.	26	$\begin{array}{llll}13 & 26 & 1\end{array}$	48	215	0
Sun.	27	23017	58	534		Wed.	27	$\begin{array}{llll}13 & 45 & 18\end{array}$	47	225	0
Mon.	28	25345	58	515	0	Thur.	28	$14 \quad 421$	47	234	0
Tues.	29	31710	58	457	0	Fri.	29	142310	46	243	0
Wed.	30	34030	58	439	0	Sat.	30	144145	45	252	0
Thur.	31	$\begin{array}{llll}4 & 3 & 47\end{array}$	58		-	Sun.	31	N. 15 0 6		30	
Fri.	32	N. 4270		42							

1859.

AT GREENWICH APPARENT NOON.
1859.

M AY, 1859.						JUNE, 1859.					
		THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time subt. from Apparent time.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$			THE SUN'S Apparent Declination.	Diff. for 1 hr .	$\begin{array}{\|c} \text { Equation } \\ \text { of Time, } \\ \text { to be } \\ \text { subt.from } \\ \hline \begin{array}{c} \text { added to } \\ \text { Apparent } \end{array} \\ \text { Time. } \end{array}$	Diff
Sun.	1	N. 150	45	$\begin{array}{cr}\text { m. s. } \\ 3 & 0\end{array}$	s.	Wed.	1	N. $22014{ }^{1} 1{ }^{\prime \prime}$	20	m. s. 2 2	s.
Mon.	2	151812	44	37	0	Thur.	2	22948	19	224	0
Tues.	3	15363	43	314	0	Fri.	3	221730	18	214	0
Wed.	4	155338	43	320	0	Sat.	4	222448	17	24	0
Thur.	5	161058	42	326	0	Sun.	5	223143	16	154	0
Fri.	6	$\begin{array}{ll}16 & 28 \\ 1\end{array}$	41	331	0	Mon.	6	223814	15	143	0
Sat.	7	164448	41	336	0	Tues.	7	224422	14	133	0
Sun.	8	17118	40	340	0	Wed.	8	$2250 \quad 5$	13	122	0
Mon.	9	171731	39	343	0	Thur.	9	$2255 \quad 25$	12	110	0
Tues.	10	173327	39	346	0	Fri.	10	$\begin{array}{ll}23 & 020\end{array}$	11	059	0
Wed.	11	17495	38	349	0	Sat.	11	23451	10	047	0
Thur.	12	18425	37	351	0	Sun.	12	$23 \quad 857$	9	035	0
Fri.	13	181927	36	352	0	Mon.	13	231240	8	023	0
Sat.	14	183410	36	353	0	Tues.	14	231557	7	010	0
Sun.	15	184835	35	353	0	Wed.	15	231850	6	0	0
Mon.	16	$\begin{array}{ll}19 & 240\end{array}$	34	353	0	Thur.	16	232119	5	014	0
Tues.	17	191627	33	352	0	Fri.	17	232323	4	027	0
Wed.	18	192954	32	350	0	Sat.	18	$23 \quad 25 \quad 2$	3	040	0
Thur.	19	19431	31	348	0	Sun.	19	$\begin{array}{llll}23 & 2617\end{array}$		052	0
Fri.	20	195548	31	345	0	Mon.	20	$23 \quad 276$	1	15	0
Sat.	21	$20 \quad 815$	30	342	0	Tues.	21	232731	0	118	0
Sun.	22	202021	29	338	0	Wed.	22	232731	1	131	0
Mon.	23	20327	28	334	0	Thur.	23	23276	2	144	0
Tues.	24	204332	27	329	-	Fri.	24	232617	3	157	0
Wed.	25	205435	26	324	0	Sat.	25	$23 \quad 25 \quad 2$		210	0
Thur.	26	$21 \quad 517$	25	318	0	Sun.	26	232323	5	223	0
Fri.	27	$21 \quad 15 \quad 37$	24	312	-	Mon.	27	$23 \quad 2119$	6	235	0
Sat.	28	212535	24	$3 \quad 5$	0	Tues.	28	$\begin{array}{llll}23 & 18 & 51\end{array}$		248	0
Sun.	29	213511	23	257	0	Wed.	29	231557	-	30	0
Mon.	30	214424	22	250	0	Thur.	30	231240	9	312	0
Tues.	31	215315	21		0	Fri.	31	N. 23857		324	
Wed.	32	N. 22143		233							

1859.		AT GREENWICH				APPARENT NOON.			1859.		
JULY, 1859.						AUGUST, 1859.					
		THE SUN'S Apparent Decliuation.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$	Equation of Time, to be added to Apparent Time.	$\left\|\begin{array}{c} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} \end{array}\right\|$		Day of the Month.	THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be added to subt. from Apparent Time.	Diff. for 1 hr.
Fri.	1	N. 2388	10	m. 3 3	s. 0	Mon.	1	N. $188^{\circ} \quad 64{ }^{\prime \prime}$	37	$\begin{array}{cc}\text { m. } \\ 6 & 4\end{array}$	s. 0
Sat.	2	23	11	336	0	Tues.	2	$\begin{array}{llll}17 & 51 & 31\end{array}$	38	61	'0
Sun.	3	$23 \quad 020$	12	347	0	Wed.	3	$17 \quad 36$	39	556	0
Mon.	4	225525	13	359	0	Thur.	4	172018	40	552	0
Tnes.	5	$2250 \quad 7$	14	49	0	Fri.	5	17416	40	546	0
Wed.	6	224424	15	420	0	Sat.	6	164757	41	540	0
Thur.	7	$\begin{array}{llll}22 & 38 & 18\end{array}$	16	430	0	Sun.	7	$\begin{array}{lll}16 & 31 & 23\end{array}$	42	534	0
Fri.	8	$\begin{array}{lllllllllll}22 & 3148\end{array}$	17	439	0	Mon.	8	$\begin{array}{lll}16 & 14 & 32\end{array}$	42	526	0
Sat.	9	222455	18	449	0	Tues.	9	$15 \quad 5726$	43	519	0
Sun.	10	$\begin{array}{llll}22 & 17 & 39\end{array}$	19	458	0	Wed.	10	$1540 \quad 4$	44	510	0
Mon.	11	$22 \quad 10 \quad 0$	20	56	0	Thar.	11	152228	44	51	0
Tues.	12	22 1	21	514	0	Fri.	12	$\begin{array}{lll}15 & 4 & 37\end{array}$	45	452	0
Wed.	13	215333	21	521	0	Sat.	13	144631	45	442	0
Thur.	14	214446	22	528	0	Sun.	14	142811	46	431	0
Fri.	15	213537	23	535	0	Mon.	15	14938	46	420	0
Sat.	16	$2126 \quad 5$	24	541	0	Tues.	16	135050	47	48	0
Sun.	17	211612	25	546	0	Wed:	17	$\begin{array}{ll}13 & 3150\end{array}$	48	356	0
Mon.	18	$\begin{array}{llll}21 & 5 & 57\end{array}$	26	551	0	Thur.	18	$\begin{array}{llll}13 & 12 & 36\end{array}$	48	343	0
Tues.	19	$2055 \quad 20$	27	556	0	Fri.	19	$\begin{array}{lll}12 & 53 & 10\end{array}$	49	330	0
Wed.	20	$20 \quad 4423$	28	60	0	Sat.	20	$\begin{array}{ll}12 & 33 \\ 1\end{array}$	49	316	0
Thur.	21	$20 \quad 33 \quad 4$	29	63	0	Sun.	21	121341	50	32	0
Fri.	22	202125	30	$6 \quad 6$	0	Mon.	22	115339	50	247	0
Sat.	23	$\begin{array}{rrr}20 & 9 & 25\end{array}$	30	$6 \quad 9$	0	Tues.	23	$\begin{array}{llll}11 & 33 & 25\end{array}$	51	232	0
Sun.	24	19574	31	611	0	Wed.	24	11130	51	217	0
Mon.	25	194424	32	612	0	Thur.	25	105224	51	21	0
Tues.	26	193123	33	612	0	Fri.	26	$\begin{array}{ll}10 & 31\end{array}$	52	144	0
Wed.	27	19184	34	613	0	Sat.	27	101042	52	128	0
Thar.	28	$\begin{array}{lll}19 & 4 & 25\end{array}$	34	612	0	Sun.	28	94936	53	111	0
Fri.	29	$18 \quad 5027$	35	611	0	Mon.	29	92821	53	053	0
Sat.	30	183610	36	$6 \quad 9$	0	Tues.	30	$9 \quad 656$	53	035	0
Sun.	31	182135	37	$6 \quad 7$	0	Wed.	31	84523	54	017	0
Mon.	32	N. $18 \quad 642$		$6 \quad 4$		Thur.	32	N. 82342		00	

1859.		AT GREENWICH A				APPARENT NOON.			1859.		
SEPTEMEER, 1859.						OCTOEERE, 1859.					
		THE SUN'S Apparent Declination.	$\begin{array}{\|c\|} \hline \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{array}$	Equation of Time, subt. from Apparent Time.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$			THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be Apparent time.	Diff
Thuir.	1	N. $8823^{4 \prime \prime}$	54	m. ${ }_{\text {m. }}^{0} \mathrm{~s}$.	s.	Sat.	1	S. $\stackrel{\circ}{3}^{5} 511$	58	m. s. 10	s.
Fri.	2	$8 \quad 152$	54	019	0	Sun.	2	3 3	58	1031	0
Sat.	3	73955	55	038	0	Mon.	3	35136	58	1050	0
Sun.	4	71751	55	057	0	Tues.	4	41449	57	118	0
Mon.	5	65540	55	117	0	Wed.	5	4380	57	1126	0
Tues.	6	63321	56	137	0	Thur.	6	$\begin{array}{llll}5 & 1 & 7\end{array}$	57	1144	0
Wed.	7	61057	56	157	0	Fri.	7	52410	57	$12 \quad 2$	0
Thur.	8	54827	56	217	0	Sat.	8	5 4 78	57	1219	0
Fri.	9	52550	56	238	0	Sun.	9	$610 \quad 3$	57	1235	0
Sat.	10	$\begin{array}{llll}5 & 3 & 9\end{array}$	56	258	0	Mon.	10	63252	56	1251	0
Sun.	11	44022	57	319	0	Tues.	11	65536	56	$13 \quad 7$	0
Mon.	12	41730	57	340	0	Wed.	12	71815	56	1322	0
Tues.	13	35434	57	41	0	Thur.	13	74047	56	$\begin{array}{lll}13 & 37\end{array}$	0
Wed.	14	33134	57	422	0	Fri.	14	$8 \quad 314$	55	1351	0
Thur.	15	$3 \quad 830$	57	443	0	Sat.	15	82533	55	145	0
Fri.	16	24522	57	55	0	Sun.	16	84746	55	1418	0
Sat.	17	22211	58	526	0	Mon.	17	$9 \quad 951$	54	1430	0
Sun.	18	15856	58	547	0	Tues.	18	93149	54	1442	0
Mon.	19	13539	58	68	0	Wed.	19	95338	54	1453	0
Tues.	20	11220	58	629	0	Thur.	20	101519	53	154	0
Wed.	21	04859	58	650	0	Fri.	21	103651	53	1514	0
Thur.	22	02536	58	711	0	Sat.	22	105814	53	$15 \quad 23$	0
Fri.	23	N. $0 \quad 2 \quad 12$	58	732	0	Sun.	23	111926	52	$15 \quad 32$	0
Sat.	24	S. 002112	58	753	0	Mon.	24	114029	52	1539	0
Sun.	25	04437	58	813	0	Tues.	25	$12 \quad 121$	51	1547	0
Mon.	26	183	58	834	0	Wed.	26	$12 \quad 22 \quad 2$	51	$15 \quad 53$	0
Tues.	27	13128	58	854	-	Thur.	27	124231	50	1559	0
Wed.	28	15453	58	914	0	Fri.	28	$\begin{array}{lll}13 & 2 & 49\end{array}$	50	164	0
Thur.	29	21817	58	933	0	Sat.	29	132254	49	168	0
Fri.	30	24140	58	953	0	Sun.	30	$\begin{array}{r}13 \\ 13247 \\ 14 \\ \hline\end{array}$	49	$\begin{array}{lll}16 & 11 \\ 16 & 14\end{array}$	0
Sat.	31	S. $3 \quad 501$		1012		Tues.	32	S. $14 \begin{array}{rrrr}14 & 21 & 52\end{array}$	48	1616	0

1859.		AT	GREENWICH			APPARENT		T NOON.		1859.	
NOVEMEER, 1859.						DECEMEER, 1859.					
		the SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt. from Apparent Time.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$			THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt.from added to Apparent Time.	Diff
Tues.	1	S. $14{ }^{\circ} 21{ }^{\prime} 5{ }^{\prime \prime}$	48	$\begin{gathered} \mathrm{m} . \mathrm{s} . \\ 16 \quad 16 \end{gathered}$	$\begin{gathered} \mathrm{s} . \\ 0 \end{gathered}$	Thur.	1	S. $214{ }^{\circ} 1{ }^{\prime \prime} 17$	23	m. s. 10 10	s.
Wed.	2	14414	47	1617	0	Fri.	2	215630	22	1029	0
Thur:	- 3	$\begin{array}{lll}15 & 0 & 1\end{array}$	46	1618	0	Sat.	3	$\begin{array}{llll}22 & 518\end{array}$	20	106	0
Fri.	4	151844	46	1617	0	Sun.	4	221341	19	942	1
Sat.	5	153711	45	1616	0	Mon.	5	222137	18	918	1
Sun.	6	$15 \quad 5523$	44	1614	0	Tues.	6	$22 \quad 298$	17	852	1
Mon.	7	$\begin{array}{lll}16 & 13 & 19\end{array}$	44	1611	0	Wed.	7	223612	16	827	1
Tues.	8	$1630 \quad 59$	43	$16 \quad 7$	0	Thur.	8	224249	15	81	1
Wed.	9	164822	42	163	0	Fri.	9	22490	14	734	1
Thur.	10	$17 \quad 528$	42	1558	0	Sat.	10	225444	13	77	1
Fri.	11	$17 \quad 2216$	41	1551	0	Sun.	11	23001	12	640	1
Sat.	12'	173846	40	1544	0	Mon.	12	23450	10	612	1
Sun.	13	175459	39	1536	0	Tues.	13	$\begin{array}{ll}23 & 9 \\ 12\end{array}$	9	544	1
Mon.	14	181052	38	1528	0	Wed.	14	23137	8	515	1
Tnes.	15	182627	38	1518	0	Thur.	15	231633	7	446	1
Wed.	16	184142	37	157	0	Fri.	16	231932	6	417	1
Thur.	17	185637	36	1456	0	Sat.	17	23223	5	348	1
Fri.	18	191112	35	1444	0	Sun.	18	$23 \quad 24 \quad 5$	3	318	1
Sat.	19	192527	34	1431	0	Mon.	19	232540	2	249	1
Sun.	20	193920	33	1417	0	Tues.	20	232646	1	219	1
Mon.	21	195252	32	$14 \quad 2$	0	Wed.	21	$\begin{array}{llll}23 & 27 & 24\end{array}$	0	149	1
Tues.	22	$\begin{array}{llll}20 & 6 & 3\end{array}$	32	1347	0	Thar.	22	232733	0	119	1
Wed.	23	201851	31	1330	0	Fri.	23	232714	1	049	1
Thur.	24	203117	30	1313	0	Sat.	24	23 26 26	3	018	1
Fri.	25	204319	29	1255	0	Sun.	25	232511	4		1
Sat.	26	205459	28	1236	0	Mon.	26	$23 \quad 23 \quad 27$	5	041	1
Sun.	27	$21 \quad 615$	27	1217	0	Tues.	27	232115	6	110	1
Mon.	28	$2117 \quad 7$	26	1157	0	Wed.	28	231835	7	140	1
Tues.	29	212735	25	1136	0	Thur.	29	$\begin{array}{llll}23 & 15 & 26\end{array}$	9	210	1
Wed.	30	213738	24	1114	0	Fri.	30	$\begin{array}{llll}23 & 11 & 50\end{array}$	10	239	1
Thur.	31	S. 214717		1052		Sat. Sun.	31 32	S. 2383814	11	$\begin{array}{ll}3 & 8 \\ 3 & 37\end{array}$	1

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
JANUARY, 1859.				FEBRUAET, 1859.			
mean time.				mean time.			
rigit asoencion.		dechenation.		rigit ascension.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	$\begin{array}{cccc}\text { h. } & \text { m. } & \text { s. } \\ 17 & 1 \\ 17 & 1 & 0\end{array}$	S. $27{ }^{\circ}{ }^{\prime} 413$		1	$\begin{array}{lll} \hline \text { h. } & \mathrm{m} . & \mathrm{s} . \\ 20 & 16 & 33 \end{array}$		S. $22 \begin{array}{ccc}\circ \\ 18 & \prime \prime \\ 53\end{array}$
2	$17 \quad 5448$	27590	275655	2	$21 \quad 425$	202333	181633
3	$18 \quad 48 \quad 1$	$\begin{array}{llll}27 & 35 & 19\end{array}$	265441	3	215016	$15 \quad 5821$	$13 \quad 3024$
4	193938	255549	243945	4	223439	105412	8119
5	$20 \quad 294$	$\begin{array}{ll}23 & 744\end{array}$	$\begin{array}{lll}21 & 21 & 9\end{array}$	5	231820	S. 52242	S. 23016
6	211612	192123	$17 \quad 9 \quad 56$	6	$\begin{array}{lll}0 & 213\end{array}$	N. 02442	N. 312044
7	$22 \quad 123$	144813	$\begin{array}{llll}12 & 17 & 36\end{array}$	7	$\begin{array}{llll}0 & 47 & 21\end{array}$	61618	$\begin{array}{llll}9 & 9 & 47\end{array}$
8	224517	- 93928	- 6557	8	13450	$\begin{array}{llll}11 & 59 & 24\end{array}$	$\begin{array}{llll}14 & 43 & 14\end{array}$
9	$23 \quad 2847$	S. $4 \quad 548$	S. 11250	9	22547	$\begin{array}{lll}17 & 19 & 8\end{array}$	194444
10	01258	N. 14230	N. 43849	10	3215	$\begin{array}{llll}21 & 57 & 25\end{array}$	235420
11	05859	73435	$\begin{array}{lll}10 & 2810\end{array}$	11	$421 \quad 2$	$\begin{array}{ll}25 & 32 \\ 33\end{array}$	$\begin{array}{llll}26 & 49 & 2\end{array}$
12	1487	$\begin{array}{ll}13 & 17\end{array} 78$	16048	12	52453	27410	$\begin{array}{llll}28 & 5 & 59\end{array}$
13	24135	18359	205748	13	63042	$28 \quad 216$	${ }_{27} 2853$
14	34013	$\begin{array}{lll}23 & 5 & 34\end{array}$	245457	14	73555	$\begin{array}{lll}26 & 26 & 0\end{array}$	24545
15	44357	$\begin{array}{lll}26 & 22 & 24\end{array}$	272429	15	83822	$\begin{array}{llll}22 & 57 & 15\end{array}$	203622
16	51516	275813	$28 \quad 123$	16	9372	175531	145826
17	$6 \quad 5919$	273255	2633 3	17	$\begin{array}{llll}10 & 32 & 3\end{array}$	114859	83054
18	$8 \quad 5 \quad 5$	$25 \quad 314$	$\begin{array}{lll}23 & 6 & 8\end{array}$	18	112413	N. $5 \quad 7 \quad 49$	N. 1436
19	$\begin{array}{llll}9 & 6 & 37\end{array}$	204515	$18 \quad 433$	19	121440	S. 14013	S. $4 \begin{array}{lll}59 & 19\end{array}$
20	$\begin{array}{llll}10 & 3 & 30\end{array}$	$15 \quad 815$	$12 \quad 028$	20	$\begin{array}{llll}13 & 4 & 29\end{array}$	81145	$\begin{array}{llll}11 & 15 & 19\end{array}$
21	105626	8456	N. 52541	21	$13 \quad 5438$	$14 \quad 8 \quad 3$	164812
22	114635	N. 2522	S. 1136	22	144546	$\begin{array}{llll}19 & 14 & 14\end{array}$	$\begin{array}{llll}21 & 2444\end{array}$
23	$12 \quad 3513$	S. 42718	$\begin{array}{llll}7 & 35 & 9\end{array}$	23	$1 \begin{array}{llll}15 & 38 & 12\end{array}$	$\begin{array}{llll}23 & 18 & 29\end{array}$	$\begin{array}{ll}24 & 54 \\ 24\end{array}$
24	$\begin{array}{llll}13 & 23 & 32\end{array}$	$\begin{array}{llll}10 & 34 & 49\end{array}$	$\begin{array}{llll}13 & 24 \quad 39\end{array}$	24	163145	$\begin{array}{llll}26 & 11 & 47\end{array}$	$\begin{array}{lll}27 & 9 & 45\end{array}$
25	141228	$\begin{array}{llll}16 & 3 & 10\end{array}$	18290	25	$\begin{array}{llll}17 & 25 & 50\end{array}$	274758	$\begin{array}{lll}28 & 6 & 13\end{array}$
26	$\begin{array}{ll}15 & 241\end{array}$	204051	223733	26	181934	28 4 4	274322
27	$15 \quad 5426$	241758	25415	27	19122	$27 \quad 310$	26446
28	164729	$2646 \quad 0$	$\begin{array}{llll}27 & 32 & 2\end{array}$	28	$20 \quad 238$	S. 24498	S. $2317 \begin{array}{ll}17 & 24\end{array}$
29	$1741 \quad 9$	$\begin{array}{llll}27 & 58 & 42 \\ 27 & 53 & 13\end{array}$	$\begin{array}{rrr}28 & 5 & 45 \\ 27 & 21 & 28\end{array}$				
30 31	183429 $19 \quad 26 \quad 30$	$\begin{array}{rrrrr} & 27 & 53 & 13 \\ \text { S. } 26 & 31 & 5\end{array}$	S. $25 \begin{array}{rrrr}27 & 22 & 57\end{array}$				

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
MARCH, 1859.				APRIL, 1859.			
mean time.				mean time.			
RIGET ascension.		dechination.		RIGET ASCENSION.		dechination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	h. m. 20 51 1 6		S. $19 \begin{array}{ccc}0 & 30 & 37\end{array}$	1	h. m. 23 s. 		
2	213736	171814	$14 \quad 551$	2	02238	N. 25917	55831
3	$22 \quad 2237$	122222	94144	3	1101	85553	114917
4	$23 \quad 650$	65432	S. 4216	4	$\begin{array}{lll}2 & 0 & 19\end{array}$	143626	171452
5	23517	S. $1 \quad 6 \quad 27$	N. 15120	5	$2 \begin{array}{llll}2 & 54 & 18\end{array}$	194155	215451
6	03624	N. 44926	7464	6	35214	235050	$\begin{array}{ll}25 & 27\end{array} 6$
7	12340	103923	132723	7	$\begin{array}{llll}4 & 53 & 34\end{array}$	26416	273041
8	21356	$16 \quad 7 \quad 53$	183834	8	55647	275411	275039
9	$\begin{array}{lll}3 & 756\end{array}$	205659	$23 \quad 031$	9	65945	27 19	262231
10	$\begin{array}{lll}4 & 6 & 0\end{array}$	244631	$\begin{array}{llll}26 & 1219\end{array}$	10	$\begin{array}{llll}8 & 0 & 36\end{array}$	245950	231346
11	$\begin{array}{llll}5 & 7 & 34\end{array}$	271526	275344	11	85815	$21 \quad 640$	184110
12	6118	$28 \quad 533$	274952	12	9 5237	$\begin{array}{llll}16 & 0 & 3\end{array}$	$\begin{array}{llll}13 & 613\end{array}$
13	71434	$27 \quad 628$	255556	13	104421	$\begin{array}{ll}10 & 229\end{array}$	65137
14.	81557	241938	221935	14	113425	N. 33623	N. 01925
15	91413	195821	171850	15	122354	S. 25644	S. $6 \quad 9 \quad 33$
16	$\begin{array}{lll}10 & 9 & 16\end{array}$	142412	111742	16	$\begin{array}{llll}13 & 13 & 48\end{array}$	91636	121534
17	$11 \begin{array}{ll}1145\end{array}$	- $8 \quad 236$	N. 4.426	17	$\begin{array}{llll}14 & 4 & 57\end{array}$	$15 \quad 410$	174018
18	115236	N. 11919	S. 22249	18	$14 \quad 5746$	$\begin{array}{lll}20 & 157\end{array}$	$\begin{array}{lll}22 & 717\end{array}$
19	124254	S. 52129	8344	19	$15 \quad 5212$	235446	$25 \quad 23 \quad 2$
20	$\begin{array}{llll}13 & 33 & 34\end{array}$	11387	143124	20	$\begin{array}{llll}16 & 47 & 39\end{array}$	26316	271822
21		171152	193741	21	$17 \quad 436$	274434	274949
22	$\begin{array}{llll}15 & 18 & 23\end{array}$	214711	233859	22	$\begin{array}{llll}18 & 37 & 25\end{array}$	273438	265948
23	$\begin{array}{llll}16 & 12 & 43\end{array}$	251155	26256	23	192942	$26 \quad 621$	24.5531
24	$\begin{array}{lll}17 & 7 & 38\end{array}$	271758	275012	24	$20 \quad 1931$	$23 \quad 2836$	214659
25	$\begin{array}{lll}18 & 214\end{array}$	$28 \quad 151$	275315	25	$21 \quad 657$	195159	174458
26	$18 \quad 55 \quad 31$	$27 \quad 25 \quad 1$	263756	26	215230	152712	125955
27	194650	25334	241131	27	223653	102421	74141
28	203553	223432	204323	28	23212	S. 4538	S. 2001
29	212251	183921	162343	29	$0 \quad 5$ 0	N. 056619	$\begin{array}{lll} \text { N. } & 2 & 0 \\ \text { N. } & 54 & 18 \end{array}$
30 31	$\begin{array}{lll} 22 & 8 & 13 \\ 22 & 52 & 43 \end{array}$		S.11 22 50	30	05244	N. $65 \begin{array}{lll}62 & 16\end{array}$	N. 94818

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
MAY, 1859.				JuNE, 1859.			
mean time.				mean time.			
rigat ascrinston.		declination.		riget ascension.		deolination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1		N. 12×4011		1	h. m. 5 17 5 10	N. $27{ }^{\circ}{ }^{\prime} 5{ }^{\prime \prime}$	
2	$\begin{array}{llll}2 & 36 & 4\end{array}$	18 18	20 2522	2	62330	273445	$\begin{array}{llll}27 & 5 & 8\end{array}$
3	3 34	223352	242353	3	72820	$\begin{array}{ll}26 & 635\end{array}$	244051
4	43557	255222	265637	4	82936	225032	203845
5	54017	273429	274434	5	92634	18855	$\begin{array}{lll}15 & 24 & 29\end{array}$
6	64440	272623	264023	6	101940	122850	9255
7	74650	$25 \quad 2753$	235059	7	11955	N. $616 \quad 7$	N. $34 \begin{array}{lll} & 43\end{array}$
8	84525	215211	193425	8	115835	S. $0 \quad 7 \cdot 11$	S. 31654
9	94012	$17 \quad 038$	141350	9	124652	62233	92212
10	103148	111652	81230	10	133550	121358	14564
11	112118	N. $5 \quad 316$	Ṅ. 15139	11	$\begin{array}{llll}14 & 26 & 19\end{array}$	$\begin{array}{ll}17 & 2642\end{array}$	$\begin{array}{llll}19 & 44 & 9\end{array}$
12	$12 \quad 950$	S. 1204	S. 42940	12	151843	214646	$\begin{array}{llll}23 & 3256\end{array}$
13	125834	73458	103354	13	161252	$\begin{array}{lll}25 & 1 & 17\end{array}$	$\begin{array}{lll}26 & 10 & 37\end{array}$
14	134826	132421	16420	14	$\begin{array}{llll}17 & 8 & 4\end{array}$	$\begin{array}{lll}27 & 0 & 0\end{array}$	272854
15	14403	183150	204459	15	$\begin{array}{llll}18 & 3 & 8\end{array}$	$\begin{array}{llll}27 & 37 & 7\end{array}$	272455
16	153336	224158	242114	16	185651	265255	$\begin{array}{lll}26 & 2 & 2\end{array}$
17	$16 \quad 2842$	254125	264128	17	194817	245330	$\begin{array}{llll}23 & 28 & 42\end{array}$
18	$17 \quad 2422$	272046	27393	18	$\begin{array}{llll}20 & 37 & 5\end{array}$	214910	195626
19	181923	273630	271339	19	212322	$175 \overline{2} \quad 0$	$\begin{array}{llll}15 & 37 & 20\end{array}$
20	191234	263124	253056	20	$22 \quad 743$	131351	104251
21	$\begin{array}{llll}20 & 3 & 16\end{array}$	241334	224047	21	225055	$8 \quad 533$	S. 51238
22	205121	$\begin{array}{llll}20 & 54 & 1\end{array}$	185445	22	$23 \quad 3355$	S. 213646	N. 012124
23		164423	142414	23	$\begin{array}{llll}0 & 17 & 50\end{array}$	N. 3 3 319	55411
24	222125	115534	91935	24	$1 \begin{array}{lll}1 & 3 & 50\end{array}$	8442	11315
25	$\begin{array}{lll}23 & 4 & 58\end{array}$	63725	S. 315014	25	1538	141324	164848
26	234853	S. 05912	N. 15423	26	24651	191444	21 28 28 19
27	03416	N. 44910	74335	27	34537	232624	$\begin{array}{llll}25 & 5 & 36\end{array}$
28	12220	103549	$\begin{array}{llll}13 & 23 & 49\end{array}$	28	$449 \quad 9$	$\begin{array}{llll}26 & 22 & 32\end{array}$	$\begin{array}{lll}27 & 14 & 3\end{array}$
29	$\begin{array}{ll}2 & 1413\end{array}$	$16 \quad 511$	183713	29	$5 \begin{aligned} & 55 \\ & 5\end{aligned}$	273734	$\begin{array}{llll}27 & 31 & 19\end{array}$
30	$\begin{array}{llll}3 & 10 & 47\end{array}$	$20 \quad 56 \quad 52$	$23 \quad 051$	30	$7 \quad 232$	N. 265440	N. 254812
31	4128	N. 244546	$\begin{array}{llll}\text { N. } 26 & 8 & 17\end{array}$				

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
JULY, 1859.				AUGUST, 1859.			
mean time.				mean time.			
right ascension.		declination.		riget ascension.		declunation.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	$\begin{array}{ccc}\text { h. } & \text { m. } & \\ 8 \\ 8 & 6 & 52\end{array}$	N. $24.13{ }^{\circ} 1318$	N. $22.13{ }^{1} 13{ }^{\prime \prime}$	1	$\begin{array}{lcc} \hline \mathrm{h} . & \mathrm{m} . & \mathrm{s} . \\ 11 & 27 & 58 \end{array}$	N. ${ }^{\circ} 3{ }^{\prime} 47$$\prime \prime$	
2	$\begin{array}{lll}9 & 7 & 7\end{array}$	195137	171118	2	121856	S. 2586	S. 61415
	$\begin{array}{llll}10 & 3 & 6\end{array}$	141635	111114	3	$\begin{array}{lll}13 & 9 & 29\end{array}$	92247	122136
4	105536	75846	N. 42728	4	$14 \quad 035$	$15 \quad 846$	174235
5	114546	N. 12512	S. 155024	5	$14 \quad 5250$	$\begin{array}{llll}20 & 1 & 31\end{array}$	$\begin{array}{lll}22 & 4 & 8\end{array}$
6	123455	S. 5121	8732	6	154626	234914	$\begin{array}{llll}25 & 15 & 46\end{array}$
7	$\begin{array}{llll}13 & 24 & 9\end{array}$	11, 53	135246	7	16412	262253	$27 \quad 959$
8	141423	16291	185213	8	$17 \quad 35 \quad 52$	273646	274314
9	$15 \quad 612$	$21 \quad 052$	225332	9	$18 \quad 2952$	27 29 39	265638
10	$15 \quad 5940$	242856	254556	10	1922.7	$\begin{array}{lll}26 & 5 & 4\end{array}$	24563
11	$16 \quad 5416$	264337	272119	11	$2012{ }^{\circ} 3$	233051	215051
12	17495	273844	273551	12	$20 \quad 5931$	195733	175224
13	184256	27134	26316	13	214448	$\begin{array}{llll}15 & 36 & 54\end{array}$	$\begin{array}{lll}13 & 12 & 31\end{array}$
14	193450	253057	241352	14	$22 \quad 2829$	104041	8247
15	$20 \quad 2415$	224113	205433	15	231119	S. 5209	S. 2347
16	21118	185523	164515	16	$\begin{array}{llll}23 & 54 & 9\end{array}$	N. 0141	N. $3 \quad 252$
17	215553	142539	11580	17	03759	5518	83721
18	$\begin{array}{llll}22 & 39 & 9\end{array}$	92341	64359	18	12347	$1120 \quad 0$	$13 \quad 5725$
19	232148	S. 408	S. 11323	19	21236	$16 \quad 2748$	18499
20	$0 \quad 449$	N. 135	N. 42357	20	$\begin{array}{llll}3 & 518\end{array}$	$\begin{array}{lll}20 & 59 \\ 15\end{array}$	225543
21	04916	71158	95740	21	$4 \quad 220$	243558	$\begin{array}{llll}25 & 57 & 21\end{array}$
22	13617	123928	151535	22	$\begin{array}{llll}5 & 3 & 23\end{array}$	$\begin{array}{llll}26 & 57 & 14\end{array}$	273311
23	2271	174357	$20 \quad 216$	23	$\begin{array}{llll}6 & 7 & 7\end{array}$	27439	272542
24	32221.	$\begin{array}{llll}22 & 754\end{array}$	$\begin{array}{llll}23 & 57 & 59\end{array}$	24	71126	26408	25 26 88
25	42234	$25 \quad 2928$	263914	25	81413	234620	21419
26	52650	272422	274222	26	914	191342	$\begin{array}{llll}16 & 27 & 10\end{array}$
27	6336	273124	265038	27	$10 \quad 10 \quad 59$	$\begin{array}{ll}13 & 25\end{array}$	$\begin{array}{llll}10 & 11 & 4\end{array}$
28	73840	254019	$\begin{array}{ll}24 & 1 \\ 19\end{array}$	28	$\begin{array}{llll}11 & 5 & 13\end{array}$	N. 64856	N. $3 \begin{array}{lll}32 & 17\end{array}$
29	84122	$\begin{array}{llll}21 & 57 & 25\end{array}$	193021	29	$\begin{array}{llll}11 & 57 & 49\end{array}$	S. $0 \quad 522$	S. $3 \quad 3044$
30	94013	164412	134256	30	124950	$6 \quad 5048$	$\begin{array}{lll}10 & 248\end{array}$
31	$1035 \quad 27$	N. 103029	N. 71043	31	134212	S. 13414	S. 155253

THE MOON'S RIGHT ASCENSION AND DECLINATION.

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
NOVEMEER, 1859.				DECEMBER, 1859.			
mean time.				mean time.			
right ascension.		declination.		right ascension.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	h. m. s. 20 17 1	S. 221 16	S. 21 \prime $\prime \prime$	1	h. m. s. $22 \quad 17 \quad 37$		
2	$21 \quad 417$	$19 \quad 734$	$\begin{array}{lll}17 & 1 & 10\end{array}$	2	$23 \quad 024$	6 859	S. 3283
3	214917	144513	12212	3	234310	S. 04425	N. 2049
4	223252	94950	71249	4	0272	N. 44627	73112
5	$\begin{array}{llll}23 & 15 & 56\end{array}$	S. 4317	S. 14554	5	$1 \begin{array}{lll}13 & 5\end{array}$	101337	12520
6	235928	N. 11136	N. 3506	6	2225	152429	174852
7	04430	63810	92413	7	25554	$20 \quad 243$	$22 \quad 320$
8	1324	$\begin{array}{lll}12 & 6 & 29\end{array}$	144257	8	35353	234749	$25 \quad 1315$
9	2233	171125	192927	9	45546	261649	26561
10	$\begin{array}{llll}3 & 18 & 1\end{array}$	213426	232339	10	55952	$\begin{array}{llll}27 & 8 & 58\end{array}$	265433
11	41652	245424	$\begin{array}{lll}26 & 4 & 8\end{array}$	11	$7 \quad 346$	261234	$\begin{array}{llll}25 & 3 & 48\end{array}$
12	51835	$\begin{array}{llll}26 & 50 & 36\end{array}$	27128	12	$8 \quad 518$	$23 \quad 2953$	21338
13	62116	$27 \quad 741$	263659	13	$\begin{array}{lll}9 & 3 & 22\end{array}$	191625	164249
14	72252	$\begin{array}{ll}25 & 40 \\ 34\end{array}$	241941	14	95754	135531	105739
15	. 82149	$\begin{array}{llll}22 & 36 & 10\end{array}$	203220	15	104941	75215	N. $442 \quad 5$
16	91735	181044	15342	16	113949	N. 12949	S. 1426
17	101028	124459	94615	17	122931	S. 45123	75547
18	$\begin{array}{ll}11 & 120\end{array}$	64025	N. 3304	18	131953	$10 \quad 5313$	134136
19	$\begin{array}{llll}11 & 51 & 19\end{array}$	N. 01736	S. 25432	19	141118	161855	184312
20	124132	S. $6 \quad 3 \quad 57$	9819	20	$15 \quad 543$	205230	$2245 \quad 1$
21	13330	$12 \quad 513$	$\begin{array}{ll}14 & 52 \quad 19\end{array}$	21	$16 \quad 133$	24198	$\begin{array}{llll}25 & 33 & 27\end{array}$
22	142625	172717	194749	22	165828	262653	265848
23	152157	215149	233721	23	$\begin{array}{llll}17 & 55 & 12\end{array}$	$27 \quad 90$	$\begin{array}{llll}26 & 57 & 47\end{array}$
24	161910	$\begin{array}{ll}25 & 247\end{array}$	$26 \quad 652$	24	185021	262551	253422
25	171658	264852	$27 \quad 830$	25	194254	242447	225843
26	181340	$27 \quad 6 \quad 4$	264219	26	203224	211758	$\begin{array}{llll}19 & 2419\end{array}$
27	$\begin{array}{llll}19 & 8 & 11\end{array}$	$25 \quad 5826$	245553	27	$21 \quad 19 \quad 2$	$\begin{array}{ll}17 & 19\end{array}$	$\begin{array}{llll}15 & 5 & 10\end{array}$
28	$19 \quad 5942$	233621	$22 \quad 135$	28	$22 \quad 321$	124254	10147
29	20 48 6	201322	181324	29	$2246 \quad 9$	7407	S. 5
30	213350	S. $16 \quad 316$	S. 134427	30 31	$\begin{array}{r}23 \\ \hline 28 \\ \hline\end{array}$	S. 22 21 19 N. 3 4 26	N. 0.21814

AT GREENWICH MEAN NOON.
1859.

JANUARY.				FEBRUARY.				MARCCES.			
		THE MOON'S				THE MOON'S				THE MOON'S	
		Age.	Meridian			Age.	Meridian			Age.	Meridian
		Noon.	Passage			Noon.	Passage.			Noon.	Passage.
Sat	1	$\stackrel{\text { d. }}{27}{ }^{\text {d }}$	h. m. 42 38	Tues.	1	$\stackrel{\text { d. }}{28}$	h. m. $2351 \cdot 9$	Tues.	1	${ }_{26}{ }^{\text {d. }}$	h. m. $2233 \cdot 0$
Sun.	2	$28 \cdot 1$	$2330 \cdot 2$	Wed.	2	$29 \cdot 3$	¢	Wed.	2	$27 \cdot 5$	$2316 \cdot 1$
Mon.	3	$29 \cdot 1$	¢	Thur.	3	$0 \cdot 5$	$\begin{array}{ll}0 & 36\end{array} 1$	Thur.	3	$28 \cdot 5$	$23 \quad 57 \cdot 8$
Tues.	4	0.3	$020 \cdot 5$	Fri.	4	$1 \cdot 5$	118.3	Fri.	4	$29 \cdot 5$	ó
Wed.	5	$1 \cdot 3$	$18 \cdot 6$	Sat.	5	$2 \cdot 5$	$159 \cdot 4$	Sat.	5	$0 \cdot 7$	$0 \quad 39.9$
Thur.	6	$2 \cdot 3$	$154 \cdot \underline{ }$	Sun.	6	$3 \cdot 5$	$240 \cdot 3$	Sun.	6	$1 \cdot 7$	$121 \cdot 1$
Fri.	7	$3 \cdot 3$	$237 \cdot 4$	Mon.	7	$4 \cdot 5$	$322 \cdot 0$	Mon.	7	$2 \cdot 7$	$\begin{array}{ll}2 & 4.8\end{array}$
Sat.	8	$4 \cdot 3$	318.9	Tues.	8	$5 \cdot 5$	4 6.0	Tues.	8	$3 \cdot 7$	$251 \cdot 3$
Sun.	9	$5 \cdot 3$	$359 \cdot 6$	Wed.	9	$6 \cdot 5$	$453 \cdot 3$	Wed.	9	$4 \cdot 7$	$341 \cdot 6$
Mon.	10	6.3	$440 \cdot 7$	Thur.	10	$7 \cdot 5$	$545 \cdot 2$	Thur.	10	$5 \cdot 7$	$436 \cdot \frac{1}{4}$
Tues.	11	$7 \cdot 3$	$523 \cdot 3$	Fri.	11	$8 \cdot 5$	$642 \cdot 2$	Fri.	11	$6 \cdot 7$	$535 \cdot 5$
Wed.	12	$8 \cdot 3$	$6 \quad 9 \cdot 0$	Sat.	12	$9 \cdot 5$	$744 \cdot 0$	Sat.	12	$7 \cdot 7$	$6 \quad 37 \cdot 3$
Thur.	13	$9 \cdot 3$	$659 \cdot 1$	Sun.	13	$10 \cdot 5$	$848 \cdot 5$	Sun.	13	$8 \cdot 7$	7 89
Fri.	14	$10 \cdot 3$	$754 \cdot 9$	Mon.	14	$11 \cdot 5$	$952 \cdot 7$	Mon.	14	$9 \cdot 7$	$839 \cdot 9$
Sat.	15	$11 \cdot 3$	$856 \cdot 5$	Tues.	15	$12 \cdot 5$	$10 \quad 53 \cdot 9$	Tues.	15	$10 \cdot 7$	$936 \cdot 7$
Sun.	16	$12 \cdot 3$	$\begin{array}{lll}10 & 2 \cdot 5\end{array}$	Wed.	16	$13 \cdot 5$	$1150 \cdot 9$	Wed.	16	$11 \cdot 7$	$1030 \cdot 0$
Mon.	17	$13 \cdot 3$	$\begin{array}{ll}11 & 9 \cdot 6\end{array}$	Thur.	17	$14 \cdot 5$	$1243 \cdot 8$	Thur.	17	$12 \cdot 7$	$1120 \cdot 3$
Tues.	18	14:3	$12 \quad 14.2$	Fri.	18	$15 \cdot 5$	$13 \quad 33 \cdot 6$	Fri.	18	$13 \cdot 7$	$12 \quad 8 \cdot 9$
Wed.	19	$15 \cdot 3$	$1314 \cdot 1$	Sat.	19	$16 \cdot 5$	$1421 \cdot 6$	Sat.	19	$14 \cdot 7$	$1256 \cdot 7$
Thur.	20	$16 \cdot 3$	$14 \quad 8 \cdot 7$	Sun.	20	$17 \cdot 5$	$15 \quad 9 \cdot 0$	Sun.	20	$15 \cdot 7$	$1345 \cdot 1$
Fri.	21	$17 \cdot 3$	14 59.0	Mon.	21	$18 \cdot 5$	$1556 \cdot 8$	Mon.	21	$16 \cdot 7$	$1+34 \cdot 6$
Sat.	22	$18 \cdot 3$	$1546 \cdot 5$	Tues.	22	$19 \cdot 5$	$1645 \cdot 9$	Tues.	22	$17 \cdot 7$	$1525 \cdot 7$
Sun.	23	$19 \cdot 3$	1632.5	Wed.	23	$20 \cdot 5$	1736.3	Wed.	23	$18 \cdot 7$	1618.1
Mon.	24	$20 \cdot 3$	$1718 \cdot 3$	Thur.	24	21.5	$1827 \cdot 9$	Thur.	24	$19 \cdot 7$	$17 \quad 10 \cdot 9$
Tues.	25	$21 \cdot 3$	$18 \quad 5 \cdot 0$	Fri.	25	$22 \cdot 5$	$1919 \cdot 9$	Fri.	25	$20 \cdot 7$	$\begin{array}{ll}18 & 3 \cdot 2\end{array}$
Wed.	26	$22 \cdot 3$	$1853 \cdot 3$	Sat.	26	23.5	$2011 \cdot 1$	Sat.	26	$21 \cdot 7$	$1853 \cdot 8$
Thur.	27	$23 \cdot 3$	$1943 \cdot 2$	Sun.	27	$24 \cdot 5$	$21 \quad 0 \cdot 7$	Sun.	27	$22 \cdot 7$	$1942 \cdot 0$
Fri.	28	$24 \cdot 3$	$2034 \cdot 4$	Mon.	28	$25 \cdot 5$	$2148 \cdot 0$	Mon.	28	$23 \cdot 7$	$2027 \cdot 8$
Sat.	29	$25 \cdot 3$	$2125 \cdot 9$	Tues.	29	$26 \cdot 5$	$2233 \cdot 0$	Tues.	29	24.7	$2111 \cdot 5$
Sun.	30	$26 \cdot 3$	$2216 \cdot 5$					Wed.	30	$25 \cdot 7$	$2153 \cdot 6$
Mon.	31	$27 \cdot 3$	$23 \quad 5 \cdot 4$					Thur.	31	$26 \cdot 7$	$2235 \cdot 3$
Tues.	32	$28 \cdot 3$	23 51.9					Fri.	32	$27 \cdot 7$	2317.3

1859.			AT GREENWICH MEAN NOON.							1859.	
APRIL.				ITAY.				JUNE.			
		THE	MOON'S			THE MOON'S				THE MOON'S	
		Age.	Meridian			Age.	Meridian			Age.	Meridian
		Noon.	Passage.			Noon.	Passage.			Noon.	Passage.
		d.	h. m.			d.	$\mathrm{h} . \mathrm{m}$.			d.	h. m.
Fri.	1	$27 \cdot 7$	$2317 \cdot 3$	Sun.	1	$28 \cdot 1$	$23 \quad 28 \cdot 2$	Wed.	1	$0 \cdot 2$	$\begin{array}{lll}0 & 6.8\end{array}$
Sat.	2	$28 \cdot 7$	' ${ }^{\text {d }}$	Mon.	2	$29 \cdot 1$	d	Thur.	2	$1 \cdot 2$	$111 \cdot 8$
Sun.	3	$0 \cdot 1$	$\begin{array}{ll}0 & 0.9\end{array}$	Tues.	3	$0 \cdot 6$	$021 \cdot 9$	Fri.	3	$2 \cdot 2$	216.4
Mon.	4	$1 \cdot 1$	$047 \cdot 2$	Wed.	4	$1 \cdot 6$	$120 \cdot 4$	Sat.	4	$3 \cdot 2$	$317 \cdot 7$
Tues.	5	$2 \cdot 1$	$137 \cdot 2$	Thur.	5	$2 \cdot 6$	$222 \cdot 6$	Sun.	5	$4 \cdot 2$	$414 \cdot 4$
Wed.	6	$3 \cdot 1$	231.5	Fri.	6	$3 \cdot 6$	$326 \cdot 0$	Mon.	6	$5 \cdot 2$	$5 \quad 6 \cdot 4$
Thur.	7	4•1	$330 \cdot 0$	Sat.	7	$4 \cdot 6$	$427 \cdot 7$	Tues.	7	$6 \cdot 2$	$555 \cdot 0$
Fri.	8	$5 \cdot 1$	$431 \cdot 4$	Sun.	8	$5 \cdot 6$	$\begin{array}{ll}5 & 25 \cdot 7\end{array}$	Wed.	8	$7 \cdot 2$	$641 \cdot 4$
Sat.	9	$6 \cdot 1$	$533 \cdot 3$	Mon.	9	$6 \cdot 6$	$619 \cdot 4$	Thur.	9	$8 \cdot 2$	727.2
Sun.	10	$7 \cdot 1$	${ }_{6} 33 \cdot 2$	Tues.	10	$7 \cdot 6$	$7 \quad 9 \cdot 4$	Fri.	10	$9 \cdot 2$	$813 \cdot 5$
Mon.	11	$8 \cdot 1$	$729 \cdot 8$	Wed.	11	$8 \cdot 6$	$756 \cdot 8$	Sat.	11	$10 \cdot 2$	$\begin{array}{ll}9 & 1 \\ 9 & 3\end{array}$
Tues.	12	$9 \cdot 1$	$822 \cdot 6$	Thur.	12	$9 \cdot 6$	842.9	Sun.	12	$11 \cdot 2$	951.2
Wed.	13	$10 \cdot 1$	$912 \cdot 3$	Fri.	13	$10 \cdot 6$	$929 \cdot 0$	Mon.	13	$12 \cdot 2$	$1043 \cdot 1$
Thur.	14	$11 \cdot 1$	$10 \quad 0 \cdot 1$	Sat.	14	$11 \cdot 6$	$10 \quad 16 \cdot 3$	Tues.	14	$13 \cdot 2$	$1136 \cdot 2$
Fri.	15	12•1	$1047 \cdot 2$	Sun.	15	$12 \cdot 6$	$11 \quad 5 \cdot 5$	Wed.	15	$14 \cdot 2$	12 29.2
Sat.	16	13.1	$1134 \cdot 6$	Mon.	16	$13 \cdot 6$	$11 \quad 56 \cdot 8$	Thur.	16	15.2	$1320 \cdot 7$
Sun.	17	14.]	$12 \quad 23 \cdot 4$	Tues.	17	14.6	$1249 \cdot 9$	Fri.	17	$16 \cdot 2$	$\begin{array}{ll}14 & 9 \cdot 6\end{array}$
Mon.	18	$15 \cdot 1$	$1314 \cdot 1$	Wed.	18	$15 \cdot 6$	$1343 \cdot 5$	Sat.	18	$17 \cdot 2$	$1455 \cdot 6$
Tues.	19	$16 \cdot 1$	$14 \quad 6 \cdot 5$	Thur.	19	$16 \cdot 6$	$1436 \cdot 3$	Sun.	19	$18 \cdot 2$	$15 \quad 38 \cdot 9$
Wed.	20	17.1	$15 \quad 0 \cdot 0$	Fri.	20	$17 \cdot 6$	$15 \quad 27 \cdot 0$	Mon.	20	$19 \cdot 2$	$16 \quad 20 \cdot 2$
Thur.	21	$18 \cdot 1$	$15 \quad 53 \cdot 3$	Sat.	21	$18 \cdot 6$	$16 \quad 14 \cdot 9$	Tues.	21	$20 \cdot 2$	$17 \quad 0.5$
Fri.	22	$19 \cdot 1$	$1645 \cdot 1$	Sun.	22	$19 \cdot 6$	$16 \quad 59 \cdot 9$	Wed.	22	21.2	$1740 \cdot 7$
Sat.	23	$20 \cdot 1$	$17 \quad 34 \cdot 6$	Mon.	23	$20 \cdot 6$	$1742 \cdot 6$	Thur.	23	$22 \cdot 2$	$1822 \cdot 3$
Sun.	24	$21 \cdot 1$	$18 \quad 21 \cdot 3$	Tues.	24	$21 \cdot 6$	$18 \quad 23 \cdot 8$	Fri.	24	$23 \cdot 2$	$19 \quad 6 \cdot 5$
Mon.	25	$22 \cdot 1$	$19 \quad 5 \cdot 6$	Wed.	25	$22 \cdot 6$	$19 \quad 4 \cdot 5$	Sat.	25	$24 \cdot 2$	19 54.6
Tues.	26	$23 \cdot 1$	$1947 \cdot 9$	Thur.	26	$23 \cdot 6$	$1946 \cdot 0$	Sun.	26	$25 \cdot 2$	$2048 \cdot 1$
Wed.	27	$24 \cdot 1$	$20 \quad 29 \cdot 3$	Fri.	27	$24 \cdot 6$	$20 \quad 29 \cdot 5$	Mon.	27	$26 \cdot 2$	$2147 \cdot 2$
Thur.	28	$25^{\prime} 1$	$21 \quad 10 \cdot 9$	Sat.	28	$25 \cdot 6$	21 16.4	Tues.	28	$27 \cdot 2$	$2251 \cdot 1$
Fri.	29	$26^{\prime} 1$	$21 \quad 53 \cdot 7$	Sun.	29	$26 \cdot 6$	$22 \quad 7 \cdot 9$	Wed.	29	$28 \cdot 2$	23 57•1
Sat.	30	$27 \cdot 1$	$2239 \cdot 1$	Mon.	30	$27 \cdot 6$	$23 \quad 4 \cdot 9$	Thur.	30	$29 \cdot 2$	ठ
Sun.	31	$28^{1} 1$	$23 \quad 28 \cdot 2$	Tues.	31 32	28.6 0.2	$\begin{gathered} \\ \\ \\ 0 \\ 0 \end{gathered} \quad 6 \cdot 8$	Fri.	31	$0 \cdot 9$	11.7

1859.			AT GREENWICH MEAN NOON.						1859.		
JELY.				AUGUST.							
		THE	MOON'S	Day of the Week.	Day of the Month.	THE MOON'S				THE MOON'S	
		Age.	Meridian Passage.			Age.	Meridian Passage.			Age.	Meridian Passage.
		Noon.				Noon.				Noon.	
Fri.	1	d. 0.9	$\begin{array}{cl}\mathrm{h} & \mathrm{m} \\ 1 & 1.7\end{array}$	Mon.	1	d. $2 \cdot 6$	$\begin{array}{cc}\text { h. m. } \\ 2 & 28 \cdot 7\end{array}$	Thur.	1	d. $4 \cdot 3$	$\begin{array}{rll}\text { h. } & \text { m. } \\ 3 & 35 \cdot 6\end{array}$
Sat.	2	$1 \cdot 9$	$2 \quad 2 \cdot 3$	Tues.	2	$3 \cdot 6$	$317 \cdot 8$	Fri.	2	$5 \cdot 3$	$427 \cdot 7$
Sun.	3	$2 \cdot 9$	$258 \cdot 1$	Wed.	3	$4 \cdot 6$	$46 \cdot 0$	Sat.	3	$6 \cdot 3$	$520 \cdot 8$
Mon.	4	$3 \cdot 9$	$349 \cdot 5$	Thur.	4	$5 \cdot 6$	$454 \cdot 5$	Sun.	4	$7 \cdot 3$	$\begin{array}{lll}6 & 14 \cdot 4\end{array}$
Tues.	5	$4 \cdot 9$	$438 \cdot 0$	Fri.	5	$6 \cdot 6$	$544 \cdot 1$	Mon.	5	$8 \cdot 3$	$7 \quad 7 \cdot 3$
Wed.	6	$5 \cdot 9$	$524 \cdot 8$	Sat.	6	$7 \cdot 6$	$635 \cdot 2$	Tues.	6	$9 \cdot 3$	758.4
Thur.	7	$6 \cdot 9$	611.4	Sun.	7	$8 \cdot 6$	$727 \cdot 5$	Wed.	7	$10 \cdot 3$	$846 \cdot 9$
Fri.	8	$7 \cdot 9$	$659 \cdot 0$	Mon.	8	$9 \cdot 6$	$820 \cdot 3$	Thur.	8	$11 \cdot 3$	$932 \cdot 7$
Sat.	9	$8 \cdot 9$	748.2	Tues.	9	$10 \cdot 6$	$912 \cdot 3$	Fri.	9	$12 \cdot 3$	$1016 \cdot 1$
Sun.	10	$9 \cdot 9$	$839 \cdot 2$	Wed.	10	$11 \cdot 6$	$10 \quad 2 \cdot 5$	Sat.	10	$13 \cdot 3$	$10 \quad 57 \cdot 6$
Mon.	11	$10 \cdot 9$	$931 \cdot 6$	Thur.	11	$12 \cdot 6$	$10 \quad 50 \cdot 2$	Sun.	11	$14 \cdot 3$	$11 \begin{array}{ll}17 \cdot 9\end{array}$
Tues.	12	$11 \cdot 9$	$1024 \cdot 3$	Fri.	12	$13 \cdot 6$	$1135 \cdot 2$	Mon.	12	$15 \cdot 3$	$12 \quad 18 \cdot 2$
Wed.	13	$12 \cdot 9$	$1116 \cdot 1$	Sat.	13	$14 \cdot 6$	12 17•8	Tues.	13	$16 \cdot 3$	$12 \quad 59 \cdot 3$
Thur.	14	$13 \cdot 9$	$12 \quad 5 \cdot 8$	Sun.	14	$15 \cdot 6$	$12 \quad 58 \cdot 6$	Wed.	14	$17 \cdot 3$	$1342 \cdot 3$
Fri.	15	$14 \cdot 9$	$\cdot 12 \quad 52 \cdot 7$	Mon.	15	$16 \cdot 6$	$13 \quad 38 \cdot 5$	Thur.	15	$18 \cdot 3$	$14 \quad 28 \cdot 2$
Sat.	16	$15 \cdot 9$	$13 \quad 36 \cdot 8$	Tues.	16	17.6	$1418 \cdot 6$	Fri.	16	$19 \cdot 3$	$15 \quad 17 \cdot 9$
Sun.	17	$16 \cdot 9$	$1418 \cdot 6$	Wed.	17	$18 \cdot 6$	$14 \quad 59 \cdot 8$	Sat.	17	$20 \cdot 3$	$\begin{array}{lll}16 & 11 \cdot 9\end{array}$
Mon.	18	$17 \cdot 9$	$14 \quad 58 \cdot 9$	Thur.	18	$19 \cdot 6$	$1543 \cdot 3$	Sun.	18	$21 \cdot 3$	$17 \quad 9 \cdot 7$
Tues.	19	18.9	$15 \quad 38 \cdot 7$	Fri.	19	$20 \cdot 6$	$16 \quad 30 \cdot 2$	Mon.	19	$22 \cdot 3$	$18 \quad 10 \cdot 0$
Wed.	20	$19 \cdot 9$	$16 \quad 19 \cdot 0$	Sat.	20	$21 \cdot 6$	$1721 \cdot 6$	Tues.	20	$23 \cdot 3$	$1910 \cdot 7$
Thur.	21	$20 \cdot 9$	$17 \quad 1 \cdot 2$	Sun.	21	$22 \cdot 6$	$18 \quad 17 \cdot 9$	Wed.	21	$24 \cdot 3$	$20 \quad 9 \cdot 8$
Fri.	22	21-9	$1746 \cdot 4$	Mon.	22	$23 \cdot 6$	$19 \quad 18.4$	Thur.	22	25-3	$21 \quad 6 \cdot 2$
Sat.	23	$22 \cdot 9$	$18 \quad 35 \cdot 9$	Tues.	23	$24 \cdot 6$	$20 \quad 21 \cdot 2$	Fri.	23	$26 \cdot 3$	$2159 \cdot 7$
Sun.	24	$23 \cdot 9$	$1930 \cdot 8$	Wed.	24	$25 \cdot 6$	$21 \quad 23 \cdot 8$	Sat.	24	27.3	$2251 \cdot 0$
Mon.	25	24.9	$2031 \cdot 0$	Thur.	25	$26 \cdot 6$	22 24*0	Sun.	25	28•3	23 41.2
Tues.	26	$25 \cdot 9$	$2135 \cdot 1$	Fri.	26	$27 \cdot 6$	23 20•7	Mon.	26	29•3	d
Wed.	27	$26 \cdot 9$	$2240 \cdot 2$	Sat.	27	$28 \cdot 6$	¢	Tues.	27	$0 \cdot 9$	031.5
Thur.	28	27-9	$2343 \cdot 3$	Sun.	28	$0 \cdot 3$	${ }_{0} 14 \cdot 1$	Wed.	28	$1 \cdot 9$	$122 \cdot 7$
Fri.	29	$28 \cdot 9$	${ }^{6}$	Mon.	29	$1 \cdot 3$	$\begin{array}{rr}1 & 5 \cdot 2\end{array}$	Thur.	29	$2 \cdot 9$	$\begin{array}{ll}2 & 15 \cdot 4\end{array}$
Sat.	30	$0 \cdot 6$	$042 \cdot 5$	Tues.	30	$2 \cdot 3$	$155 \cdot 1$	Fri.	30	$3 \cdot 9$	$3 \quad 9 \cdot 5$
Sun.	31	$1 \cdot 6$	$137 \cdot 4$	Wed.	31	$3 \cdot 3$	$244 \cdot 9$	Sat.	31	$4 \cdot 9$	$4 \quad 4 \cdot 4$
Mon.	32	$2 \cdot 6$	$228 \cdot 7$	Thur.	32	$4 \cdot 3$	$335 \cdot 6$				

1859.			AT	GREENWICH MEAN				NOON.		1859.	
octorber.				NOVEMBER.				DECEMLBER.			
		THE MOON'S			Day of the Month.	THE MOON'S			B000000000	THE MOON'S	
		$\frac{\text { Age. }}{\frac{\text { Noon. }}{}}$	Meridian Passage.			Age.	Meridian Passage.			Age.	Meridian Passage.
Sat.	1	$\begin{aligned} & \text { d. } \\ & 4 \cdot 9 \end{aligned}$	$\begin{array}{rl}\text { h. } \\ 4 & \mathrm{~m} \\ 4 & 4 \\ 4\end{array}$	Tues.	1	${ }_{6}{ }_{6}{ }_{5}$	$\begin{array}{rcc}\text { h. } & \text { m. } \\ 5 & 21.6\end{array}$	Thur.	1	d. 6.9	$\begin{array}{ccc}\mathrm{h} . & \mathrm{m} \\ 5 & 25 \cdot 6\end{array}$
Sun.	2	$5 \cdot 9$	458.8	Wed.	2	$7 \cdot 5$	6 7	Fri.	2	$7 \cdot 9$	$\begin{array}{ll}6 & 5 \cdot 7\end{array}$
Mon.	3	$6 \cdot 9$	551.5	Thur.	3	$8 \cdot 5$	$649 \cdot 8$	Sat.	3	$8 \cdot 9$	645.5
Tues.	4	$7 \cdot 9$	641.4	Fri.	4	$9 \cdot 5$	$730 \cdot 7$	Sun.	4	$9 \cdot 9$	$726 \cdot 3$
Wed.	5	$8 \cdot 9$	728.3	Sat.	5	$10 \cdot 5$	$811 \cdot 0$	Mon.	5	$10 \cdot 9$	$\begin{array}{ll}8 & 9 \cdot 1\end{array}$
Thur.	6	$9 \cdot 9$	$812 \cdot 5$	Sun.	6	$11 \cdot 5$	$851 \cdot 6$	Tues.	6	$11 \cdot 9$	$855 \cdot 4$
Fri.	7	$10 \cdot 9$	$854 \cdot 6$	Mon.	7	$12 \cdot 5$	$933 \cdot 6$	Wed.	7	$12 \cdot 9$	946.2
Sat.	8	$11 \cdot 9$	935.3	Tues.	8	$13 \cdot 5$	$1018 \cdot 3$	Thur.	8	$13 \cdot 9$	$1042 \cdot 0$
Sun.	9	$12 \cdot 9$	$1015 \cdot 7$	Wed.	9	$14 \cdot 5$	116	Fri.	9	$14 \cdot 9$	$1142 \cdot 3$
Mon.	10	$13 \cdot 9$	$1056 \cdot 8$	Thar.	10	$15 \cdot 5$	11 59.6	Sat.	10	$15 \cdot 9$	$1245 \cdot 0$
Tues.	11	$14 \cdot 9$	$1139 \cdot 6$	Fri.	11	$16 \cdot 5$	1256.7	Sun.	11	$16 \cdot 9$	$1347 \cdot 5$
Wed.	12	$15 \cdot 9$	$12 \quad 25 \cdot 2$	Sat.	12	$17 \cdot 5$	$13 \quad 57 \cdot 0$	Mon.	12	$17 \cdot 9$	$14 \quad 47 \cdot 2$
Thur.	13	16.9	1314.4	Sun.	13	18.5	$1458 \cdot 2$	Tues.	13	$18 \cdot 9$	$1542 \cdot 9$
Fri.	14	$17 \cdot 9$	$14 \quad 7 \cdot 7$	Mon.	14	19.5	$15 \quad 58 \cdot 0$	Wed.	14	$19 \cdot 9$	$1634 \cdot 7$
Sat.	15	$18 \cdot 9$	$\begin{array}{ll}15 & 4 \cdot 8\end{array}$	Tues.	15	20.5	$16 \quad 54 \cdot 5$	Thur.	15	$20 \cdot 9$	$1723 \cdot 7$
Sun.	16	$19 \cdot 9$	16	Wed.	16	$21 \cdot 5$	$1747 \cdot 5$	Fri.	16	$21 \cdot 9$	$1811 \cdot 2$
Mon.	17	$20 \cdot 9$	$17 \quad 4 \cdot 3$	Thur.	17	$22 \cdot 5$	$1837 \cdot 5$	Sat.	17	$22 \cdot 9$	$18 \quad 58 \cdot 6$
Tues.	18	$21 \cdot 9$	$18 \quad 2 \cdot 7$	Fri.	18	$23 \cdot 5$	$19 \quad 25 \cdot 6$	Sun.	18	$23 \cdot 9$	$1947 \cdot 0$
Wed.	19	$22 \cdot 9$	$1858 \cdot 3$	Sat.	19	24.5	2013.2	Mon.	19	$24 \cdot 9$	$2037 \cdot 3$
Thur.	20	$23 \cdot 9$	$1951 \cdot 0$	Sun.	20	$25 \cdot 5$	$21 \quad 1 \cdot 3$	Tues.	20	$25 \cdot 9$	$2129 \cdot 9$
Fri.	21	$24 \cdot 9$	$20 \quad 41 \cdot 3$	Mon.	21	26.5	$2151 \cdot 2$	Wed.	21	$26 \cdot 9$	$2224 \cdot 4$
Sat.	22	$25 \cdot 9$	$2130 \cdot 4$	Tues.	22	27.5	$2243 \cdot 5$	Thur.	22	$27 \cdot 9$	$2319 \cdot 5$
Sun.	23	$26 \cdot 9$	$2219 \cdot 4$	Wed.	23	$28 \cdot 5$	$23 \quad 37 \cdot 9$	Fri.	23	$28 \cdot 9$	d'
Mon.	24	$27 \cdot 9$	$23 \quad 9 \cdot 5$	Thur.	24	$29 \cdot 5$	¢	Sat.	24	27 $0 \cdot 3$	013.6
Tues.	25	28.9		Fri.	25	$0 \cdot 9$	$033 \cdot 7$	Sun.	25	$1 \cdot 3$	$1 \quad 5 \cdot 3$
Wed.	26	0.5	$\begin{array}{ll}0 & 1.4\end{array}$	Sat.	26	$1 \cdot 9$	$129 \cdot 2$	Mon.	26	$2 \cdot 3$	$153 \cdot 8$
Thur.	27	$1 \cdot 5$	055.4	Sun.	27	$2 \cdot 9$	$222 \cdot 8$	Tues.	27	$3 \cdot 3$	$239 \cdot 0$
Fri.	28	$2 \cdot 5$	$150 \cdot 9$	Mon.	28	$3 \cdot 9$	313.3	Wed.	28	$4 \cdot 3$	$321 \cdot 3$
Sat.	29	$3 \cdot 5$	$246 \cdot 7$	Tues.	29	$4 \cdot 9$	$4 \quad 0.3$	Thur.	29	$5 \cdot 3$	4 1
Sun.	30	$4 \cdot 5$	$341 \cdot 1$	Wed.	30	$5 \cdot 9$	$444 \cdot 1$	Fri.	30	$6 \cdot 3$	441.2
Mon.	31	$5 \cdot 5$	$433 \cdot 0$					Sat.	31	$7 \cdot 3$	$520 \cdot 8$
Tues.	32	6.5	521.6	Thur.	31	$6 \cdot 9$	$525 \cdot 6$	Sun.	32	$8 \cdot 3$	$\begin{array}{ll}6 & 1.7\end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

GREENWICH MEAN TIME.					
LUNAR DISTANOES.					
Day of the Month.	Star's Name and Position.	Midnight.	XYh.	XVIII.	XXI'.
1	Spica W. SUN E.	$\begin{array}{rrr} 55 & 0 & 23 \\ 24 & 39 & 26 \end{array}$	$\begin{array}{lll} 56 \\ 56 & 29 & 42 \\ 23 & 18 & 45 \end{array}$	$\begin{array}{lll} 57 & 58 & 57 \\ 21 & 58 & 16 \end{array}$	$$
6	Sun W. a Pegasi E. a Arietis E.	$\begin{array}{rrr} 30 & 0 & 28 \\ 40 & 20 & 9 \\ 79 & 52 & 18 \end{array}$	$\begin{array}{rrr} 31 & 21 & 32 \\ 39 & 1 & 15 \\ 78 & 23 & 19 \end{array}$	$\begin{array}{lll} 32 & 42 & 44 \\ 37 & 42 & 55 \\ 76 & 54 & 15 \end{array}$	$\begin{array}{rrr} 34 & 4 & 3 \\ 36 & 25 & 15 \\ 75 & 25 & 7 \end{array}$
7	Sun W. a Pegasi E. a Arietis E. Aldebaran E. Jupiter E.	$\begin{array}{rrr} 40 & 52 & 34 \\ 30 & 9 & 55 \\ 67 & 58 & 10 \\ 99 & 39 & 9 \\ 104 & 46 & 11 \end{array}$	$\begin{array}{rrr} 42 & 14 & 40 \\ 28 & 58 & 20 \\ 66 & 28 & 29 \\ 98 & 10 & 36 \\ 103 & 15 & 49 \end{array}$	$\begin{array}{rrr} 43 & 36 & 54 \\ 27 & 48 & 17 \\ 64 & 58 & 41 \\ 96 & 41 & 55 \\ 101 & 45 & 20 \end{array}$	$\begin{array}{rrr} 44 & 59 & 17 \\ 26 & 40 & 0 \\ 63 & 28 & 46 \\ 95 & 13 & 6 \\ 100 & 14 & 44 \end{array}$
8	Sun W. a Arietis E. Aldebaran E. Jupiter E.	$\begin{array}{lll} 51 & 53 & 32 \\ 55 & 57 & 21 \\ 87 & 46 & 55 \\ 92 & 39 & 35 \end{array}$	$\begin{array}{rrr} 53 & 16 & 54 \\ 54 & 26 & 39 \\ 86 & 17 & 13 \\ 91 & 8 & 6 \end{array}$	$\begin{array}{lll} 54 & 40 & 26 \\ 52 & 55 & 48 \\ 84 & 47 & 21 \\ 89 & 36 & 26 \end{array}$	$\begin{array}{rrr} 56 & 4 & 10 \\ 51 & 24 & 48 \\ 83 & 17 & 19 \\ 88 & 4 & 36 \end{array}$
9	Sun W. a Arietis E. Aldebaran E. Jupiter E.	$\begin{array}{rrr} 63 & 5 & 53 \\ 43 & 47 & 20 \\ 75 & 44 & 30 \\ 80 & 22 & 34 \end{array}$	$64 \quad 30 \quad 53$ $\begin{array}{lll}42 & 15 & 19\end{array}$ $\begin{array}{lll}74 & 13 & 22\end{array}$ $78 \quad 4932$	65 56 8 40 43 8 72 42 2 77 16 17	$\begin{array}{lll} 67 & 21 & 37 \\ 39 & 10 & 46 \\ 71 & 10 & 29 \\ 75 & 42 & 48 \end{array}$
10	Son W. Fomalhaut W. a Arietis E. Aldebaran E. Jupiter E.	74 33 0 40 16 3 31 26 15 63 29 33 67 51 42	$\begin{array}{rrr} 76 & 0 & 7 \\ 41 & 35 & 11 \\ 29 & 52 & 51 \\ 61 & 56 & 42 \\ 66 & 16 & 42 \end{array}$	$\begin{array}{lll} 77 & 27 & 32 \\ 42 & 55 & 27 \\ 28 & 19 & 19 \\ 60 & 23 & 37 \\ 64 & 41 & 25 \end{array}$	$\begin{array}{rrr} 78 & 55 & 15 \\ 44 & 16 & 47 \\ 26 & 45 & 41 \\ 58 & 50 & 18 \\ 63 & 5 & 51 \end{array}$
11	Son W. Fomalhaut W. Mars W. a Pegasi W. Aldebaran E. Jupiter E. Saturn E.	$\begin{array}{rrr} 86 & 18 & 44 \\ 51 & 17 & 27 \\ 32 & 50 & 14 \\ 29 & 50 & 37 \\ 51 & 0 & 21 \\ 55 & 3 & 32 \\ 112 & 32 & 12 \end{array}$	$\begin{array}{rrr} 87 & 48 & 28 \\ 52 & 44 & 5 \\ 34 & 21 & 54 \\ 31 & 9 & 18 \\ 49 & 25 & 41 \\ 53 & 26 & 8 \\ 110 & 54 & 9 \end{array}$	$\begin{array}{rrr} 89 & 18 & 33 \\ 54 & 11 & 28 \\ 35 & 53 & 55 \\ 32 & 29 & 49 \\ 47 & 50 & 50 \\ 51 & 48 & 25 \\ 109 & 15 & 45 \end{array}$	$\begin{array}{rrr} 90 & 48 & 59 \\ 55 & 39 & 35 \\ 37 & 26 & 20 \\ 33 & 52 & 1 \\ 46 & 15 & 46 \\ 50 & 10 & 23 \\ 107 & 36 & 58 \end{array}$
12	Sun W. Fomalhant W. Mars W. a Pegasi W. Aldebaran E. Jupiter E. Pollux E. Saturn E.	98 26 56 63 10 17 45 14 11 41 3 39 38 18 8 41 55 15 80 1 53 99 17 25	99 59 43 64 42 19 46 48 58 42 33 28 36 42 19 40 15 14 78 21 31 97 36 19	$\begin{array}{rrr} 101 & 32 & 53 \\ 66 & 14 & 58 \\ 48 & 24 & 9 \\ 44 & 4 & 17 \\ 35 & 6 & 29 \\ 38 & 34 & 55 \\ 76 & 40 & 45 \\ 95 & 54 & 49 \end{array}$	$\begin{array}{rrr} 103 & 6 & 29 \\ 67 & 48 & 10 \\ 49 & 59 & 44 \\ 45 & 36 & 2 \\ 33 & 30 & 42 \\ 36 & 54 & 17 \\ 74 & 59 & 35 \\ 94 & 12 & 54 \end{array}$
13	Sun W. Fomalhant W. Mars W. a Pegasi W. Jupiter E. Pollux E. Saturn E. Regulus E.	$\begin{array}{rrr} 111 & 0 & 44 \\ 75 & 42 & 33 \\ 58 & 4 & 6 \\ 53 & 27 & 26 \\ 28 & 26 & 54 \\ 66 & 27 & 30 \\ 85 & 37 & 0 \\ 103 & 20 & 11 \end{array}$	$\begin{array}{rrr} 112 & 36 & 52 \\ 77 & 19 & 0 \\ 59 & 42 & 15 \\ 55 & 4 & 1 \\ 26 & 44 & 46 \\ 64 & 43 & 48 \\ 83 & 52 & 32 \\ 101 & 36 & 17 \end{array}$	$\begin{array}{rrr} 114 & 13 & 25 \\ 78 & 55 & 58 \\ 61 & 20 & 51 \\ 56 & 41 & 17 \\ 25 & 2 & 31 \\ 62 & 59 & 41 \\ 82 & 7 & 38 \\ 99 & 51 & 56 \end{array}$	115 50 25 80 33 24 62 59 53 58 19 13 23 20 12 61 15 9 80 22 19 98 7 10

GREENWICH MEAN TIME.						
lunar distances.						
Day of the Month.	Star's Na ${ }_{\text {Position }}^{\text {and }}$		Noon.	III.	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
14	Sun	W.	$117^{\circ} 27^{\prime \prime} 5$	$119^{\circ} 541^{\prime \prime}$	$120^{\circ} 43^{\prime \prime} 5$	$122^{\circ} 22^{\prime} 40$
	Fomalhaut	W.	821119	834942	852831	$87 \quad 747$
	Mars	W.	643921	661916	675936	694022
	${ }^{\text {a Pegasi }}$	W.	595749	6137	631653	645719
	Pollux	E.	593012	574449	55590	541247
	Saturn	E.	783633	$76 \quad 5021$	758343	731639
	Regulus	E.	$\begin{array}{llll}96 & 21 & 57\end{array}$	$\begin{array}{llllll}94 & 36 & 19\end{array}$	925014	91344
15	Mars	W.	781035	795352	813733	832137
	a Pegasi	W.	732744	751120	$7655 \quad 25$	783957
	a Arietis	W.	301153	315912	33474	353528
	Pollux	E.	451533	432656	413757	394836
	Saturn	E.	641458	622523	603525	$5845 \quad 3$
	Regulus	E.	82451	801550	782626	763638
16	Mars	W.	92 7 29	935341	954012	$97 \quad 270$
	a Arietis	W.	444425	$46 \quad 35 \quad 27$	482651	501835
	Aldebaran	W.	$1623 \quad 2$	175012	192145	205648
	Pollux	E.	30375	284558	265438	$25 \quad 3 \begin{array}{ll}25\end{array}$
	Saturn	E.	492743	473513	454225	$\begin{array}{llll}43 & 49 & 19\end{array}$
	Regulus	E.	67225	$6530 \quad 9$	$63 \quad 3754$	614521
17	a Arietis	W.	594144	$\begin{array}{lll}61 & 35 & 6\end{array}$	$63 \quad 2840$	65 22 25 14
	Aldebaran	W.	292531	311137	325840	344633
	Jupiter	W.	235645	25486	$2740 \quad 2$	293226
	Saturn	E.	341958	322527	303045	283555
	Regulus	E.	521844	502444	483035	463615
	Spica	E.	106204	1042610	102325	1003750
18	a Arietis	W.	$74 \quad 5259$	764719	784139	
	Aidebaran	W.	435441	454531	473636	$49 \quad 2753$
	Jupiter	W.	385910	40536	$4247 \quad 9$	444116
	Regulus	E.	$\begin{array}{lll}37 & 3 & 2\end{array}$	$\begin{array}{llll}35 & 8 & 13\end{array}$	331323	311834
	Spica	E.	91458	891013	871528	852043
19					935415	954743
	Aldebaran	W.	$5845 \quad 53$	603731	62296	$64 \quad 2035$
	Jupiter	W.	$\begin{array}{llll}54 & 11 & 50 \\ 15 & 32\end{array}$	$\begin{array}{llll}56 & 5 & 44\end{array}$		$\begin{array}{llll}59 & 53 & 8 \\ 21 & 8\end{array}$
	Pollux	W.	153237	172419	191622	$\begin{array}{llll}21 & 8 & 35\end{array}$
	Spica	E.	754757	$73 \quad 5345$	715943	$70 \quad 551$
20	Aldebaran	W.	$\begin{array}{lllll}73 & 35 & 37\end{array}$	752558	7716	$\begin{array}{llll}79 & 5 & 51\end{array}$
	Jupiter	W.	69187	711021	$\begin{array}{llll}73 & 2 & 18\end{array}$	745355
	Pollux	W.	302918	32210	341228	$\begin{array}{llll}36 & 3 & 39\end{array}$
	Spica	E.	60404	584743	$56 \quad 5542$	$\begin{array}{llll}55 & 4 & 0\end{array}$
	Antares	E.	1063211	1043945	1024738	1005550
	Venus	E.	1175823	1161222	1142636	112417
21	Aldebaran	W.	88 9 50 84	89 87 85 56	914448 87 14513	
	Jupiter	W.	84 6	$85 \quad 56 \quad 12$	87 78 48	$\begin{array}{lll} 89 & 33 & 49 \\ 50 & 41 & 24 \end{array}$
	Pollux	W.	$\begin{array}{llll}45 & 14 & 58 \\ 26 & 32 & 56\end{array}$	$\begin{array}{lrr} 47 & 4 & 10 \\ 28 & 23 & 1 \end{array}$	$\begin{array}{llll}48 & 52 & 59 \\ 30 & 12 & 43\end{array}$	$\begin{array}{ccc}50 & 41 & 24 \\ 32 & 2 & 1\end{array}$
	Saturn	W.	$\begin{array}{llll}26 & 3256\end{array}$	$\begin{array}{rrr} 28 & 23 & 1 \\ 44 & 1 & 33 \end{array}$	$\begin{array}{lll} 30 & 12 & 43 \\ 42 & 12 & 32 \end{array}$	$\begin{array}{lrr} 32 & 1 \\ 40.23 & 58 \end{array}$
	Spica	E.	455058			

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV.	XVIII ${ }^{\text {b }}$	XXI.
14	Sun	W.	$12418{ }^{\circ} 1$	$125^{\circ} 41{ }^{\text {ín }}$	$1272{ }^{\circ} 2{ }^{\prime \prime}$	$12981{ }^{\circ} \mathrm{i}$
	Fomalhaut	W.	884728	902733	$\begin{array}{llll}92 & 8 & 2\end{array}$	934853
	Mars	W.	712134	$73 \quad 311$	744514	762742
	a Pegasi	W.	663819	681953	$70 \quad 159$	714436
	Pollux	E.	52268	50395	485138	$\begin{array}{lll}47 & 3 & 47\end{array}$
	Saturn	E.	71299	694114	675253	$\begin{array}{llll}66 & 4 & 8\end{array}$
	Regulus	E.	891648	872927	854140	835328
15	Mars	W.	$85 \quad 6 \quad 4$	865054	$88 \quad 36 \quad 5$	$\begin{array}{llll}90 & 21 & 37\end{array}$
	a Pegasi	W.	802454	821016	83561	85429
	a Arietis	W.	372421	391343	$41 \quad 3 \quad 32$	$42 \quad 5346$
	Pollux	E.	375855	36854	341834	322758
	Saturu	E.	565418	$55 \quad 311$	$\begin{array}{llll}53 & 1142\end{array}$	511953
	Regulus	E.	744627	725553	71458	691342
16	Mars	W.	99145	$\begin{array}{lll}101 & 1 & 27\end{array}$	102492	1043652
	a Arietis	W.	$52 \quad 10 \quad 39$	$54 \begin{array}{lll}54 & 3\end{array}$	555540	574835
	Aldebaran	W.	223440	241450	255653	274032
	Pollux	E.	231132	211951	192811	173639
	Saturn	E.	415557	$40 \quad 218$	$38 \quad 825$	361418
	Regulus	E.	$59 \quad 5232$	575926	$\begin{array}{lll}56 & 6 & 6\end{array}$	541231
17	a Arietis	W.	$67 \quad 1619$	691020	71428	725842
	Aldebaran	W.	$3635 \quad 9$	382420	4014	$\begin{array}{llll}42 & 4 & 10\end{array}$
	Jupiter	W.	$\begin{array}{llll}31 & 2513\end{array}$	331820	351144	$37 \quad 5 \quad 21$
	Saturn	E.	264057	244553	325044	205531
	Regulus	E.	444148	424714	405234	385749
	Spica	E.	984327	964857	945421	925941
18	a Arietis	W.	823018	842433	861844	881249
	Aldebaran	W.	511920	531053	$55 \quad 232$	$\begin{array}{lll}56 & 54 & 12\end{array}$
	Jupiter	W.	463526	482936	$50 \quad 2344$	521749
	Regulus	E.	292347	27293	253425	233952
	Spica	E.	83260	813121	793646	774218
19	a Arietis	W.	974059	99341	1012649	
	Aldebaran	W.	661156	$68 \quad 3 \quad 9$	695411	71451
	Jupiter	W.	614634	633948	653250	$67 \quad 2530$
	Pollux	W.	$\begin{array}{lll}23 & 0 & 51\end{array}$	24538	264520	28 37
	Spica	E.	$68 \quad 1213$	661847	642537	623242
20	Aldebaran	W.	805520	824429	843318	862145
	Jupiter	W.	764513	78369	802644	821657
	Pollux	W.	375434	394511	413528	432524
	Spica	E.	531239	512140	49312	474049
	Antares	E.	99 4 10	971316	$95 \quad 2232$	$93 \quad 3211$
	Veuus	E.	1105556	109114	1072632	1054222
21	Aldebaran	W.	95187	$97 \quad 4 \quad 7$	984941	1003447
	Jupiter	W.	91220	$93 \quad 944$	$94 \quad 57 \quad 2$	$\begin{array}{r}96 \\ 93 \\ \hline 153\end{array}$
	Pollux	W.	522924	54170	$\begin{array}{llll}56 & 410\end{array}$	575054
	Saturn	W.	335053	353919	372720	391454
	Spica	E.	383549	$3648 \quad 7$	$35 \quad 053$	$3314 \quad 7$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Noon.	III.	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
21	Antares	E.	$91^{\circ} 42{ }^{\prime \prime} 1^{\prime \prime}$	$89^{\circ} 52{ }^{\prime \prime} 3$	$88^{\circ} 3^{\prime} 2^{\prime \prime}$	$86^{\circ} 1444{ }^{\prime \prime}$
	Venus	E.	1035835	1021510	100328	$98 \quad 4932$
22	Jupiter	W.	983016	1001612	102141	1034642
	Pollux	W.	593712	61233	$\begin{array}{ll}63 & 828\end{array}$	645325
	Saturn	W.	$\begin{array}{llll}41 & 2 & 1\end{array}$	424841	$44 \quad 34 \quad 54$	462040
	Regulus	W.	22388	242414	$\begin{array}{lll}26 & 9 & 52\end{array}$	2755
	Antares	E.	$77 \quad 1733$	753127	73 45	$72 \quad 0 \quad 38$
	Venus	E.	90230	88434	$87 \quad 3 \begin{array}{lll}87\end{array}$	$85 \quad 2434$
	Sun	E.	1313433	1295614	1281821	1264055
23	Pollux	W.	$\begin{array}{lllll}73 & 31 & 26\end{array}$	$\begin{array}{llll}75 & 13 & 41\end{array}$	76 765 29	$\begin{array}{llll}78 & 36 & 50\end{array}$
	Saturn	W.	$55 \quad 238$	564540	$\begin{array}{lllll}58 & 28 & 14\end{array}$	601022
	Regulus	W.	36.346	$\begin{array}{llll}38 & 16 & 32\end{array}$	395831	41404
	Antares	E.	632136	613910	595711	581539
	Venus	E.	$77 \quad 1643$	$75 \quad 40 \quad 36$	$74 \quad 457$	$72 \quad 2948$
	Sun	E.	1184033	$117 \quad 549$	1153133	1135743
24	Pollux	W.	$\begin{array}{llll}86 & 57 & 2\end{array}$	883548	$\begin{array}{llll}90 & 14 & 9\end{array}$	91525
	Saturn	W.	$68 \quad 3424$	$\begin{array}{llll}70 & 13 & 56\end{array}$	7153	$\begin{array}{lllll}78 & 31 & 45\end{array}$
	Regulus	W.	$\begin{array}{llll}50 & 1 & 9\end{array}$	$5140 \quad 5$	$\begin{array}{llll}53 & 18 & 36\end{array}$	$\begin{array}{lllll}54 & 56 & 43\end{array}$
	Antares	E.	$49 \quad 5436$	481541	$46 \quad 3710$	$44 \quad 59 \quad 4$
	Venus	E.	644112	6385	61375	$60 \quad 543$
	Sun	E.		1044351	103130	1014234
25	Pollux	W.	99 595 56	1013135	103653	1044151
	Saturn	W.	813926	831552	845156	$86 \quad 2740$
	Regulus	W.	$\begin{array}{llll}63 & 1 & 26\end{array}$	$\begin{array}{llll}64 & 37 & 15\end{array}$	$\begin{array}{llll}66 & 12 & 44\end{array}$	$\begin{array}{lllll}67 & 47 & 51\end{array}$
	Antares	E.	$\begin{array}{llll}36 & 54 & 25\end{array}$	$\begin{array}{llll}35 & 18 & 37\end{array}$	33439	3288
	Venus	E.	523549	$\begin{array}{llll}51 & 7 & 11\end{array}$	$\begin{array}{llll}49 & 39 & 1\end{array}$	$\begin{array}{llll}48 & 11 & 17\end{array}$
	Sun	E.	$\begin{array}{llll}94 & 16 & 12\end{array}$	92483	912014	$89 \quad 5246$
26	Saturn	W.	942127	$\begin{array}{llll}95 & 55 & 18\end{array}$	$97 \quad 2852$	$\begin{array}{lll}99 & 210\end{array}$
	Regulus	W.	$\begin{array}{llll}75 & 38 & 39\end{array}$	$\begin{array}{llll}77 & 11 & 55\end{array}$	784453	$\begin{array}{llll}80 & 17 & 35\end{array}$
	Spica	W.	214228	$\begin{array}{llll}23 & 15 & 17\end{array}$	$\begin{array}{llll}24 & 47 & 53\end{array}$	26 20 15 6 45 50
	Venus	E.	405925	393424	$\begin{array}{rrrr}38 & 9 & 53\end{array}$	$\begin{array}{llll}36 & 45 & 50\end{array}$
	Sun	E.	824015	811439	79 49 19	$78 \quad 2416$
27	Saturn	W.	$\begin{array}{llll}106 & 44 & 55\end{array}$	1081648	1094827	1111955
	Regulus	W.	875721	892838	$\begin{array}{llll}90 & 59 & 41\end{array}$	$\begin{array}{llll}92 & 30 & 33\end{array}$
	Spica	W.	$33 \quad 5846$	$\begin{array}{llll}35 & 29 & 51\end{array}$	$37 \quad 0 \quad 44$	$\begin{array}{llll}38 & 31 & 26\end{array}$
	Venus	E.	295330	283248	271248	$\begin{array}{llll}25 & 53 & 32\end{array}$
	Sun	E.	$71 \quad 2244$	69 59	$68 \quad 3541$	671227
28		W.		$\begin{array}{rrr}101 & 32 & 7 \\ 47 & 32 & 13\end{array}$		
	Spica	W.	$46 \quad 2 \quad 28$	$\begin{array}{llll}47 & 32 & 13 \\ 58 & 56 & 45\end{array}$	$\begin{array}{lrrr}49 & 1 & 51 \\ 57 & 34 & 39\end{array}$	$\begin{array}{lll} 50 & 31 & 21 \\ 56 & 12 & 41 \end{array}$
	SUN	E.	601858	$\begin{array}{lllll}58 & 56 & 45\end{array}$	573439	561241
29		W.	$\begin{array}{llll}57 & 57 & 17\end{array}$	$\begin{array}{llll}59 & 26 & 13\end{array}$	$60 \quad 554$	$\begin{array}{llll}62 & 23 & 51\end{array}$
	Sun	E.	$49 \quad 2430$	$48 \quad 3 \quad 8$	464151	$45 \quad 20 \quad 38$
30	Spica	W.	$6947 \quad 4$	$\begin{array}{llll}71 & 15 & 36\end{array}$	$\begin{array}{llll}72 & 44 & 7\end{array}$	$\begin{array}{llll}74 & 12 & 38\end{array}$
	Antares	W.	$\begin{array}{llll}23 & 53 & 12\end{array}$	$\begin{array}{llll}25 & 21 & 46\end{array}$	$\begin{array}{llll}26 & 50 & 19\end{array}$	$\begin{array}{llll}28 & 18 & 52\end{array}$
	Sun	E.	$3835 \quad 20$	371423	$35 \quad 5327$	$34 \quad 32 \quad 33$

GREENWICH MEAN TTME.

LUNAR DISTANCES.

Day of the Month.	$\begin{gathered} \text { Star's } \\ \text { an } \\ \text { Posi } \end{gathered}$		Midnight.	XVh.	XVIII ${ }^{\text {h }}$	$\mathrm{XXI}{ }^{\text {b }}$
21	Antares Venus	E. E.	$\begin{array}{rrr}84 & 26 & 2 \prime \prime \\ 97 & 7 & 21\end{array}$	$\begin{array}{llll}82^{\circ} & 38 & 3 \prime \prime \\ 95 & 25 & 36\end{array}$	$\begin{array}{lll} 80^{\circ} & 51 & \prime \prime \\ 93 & 44 & 17 \end{array}$	$$
22	Jupiter	W.	1053114	$\begin{array}{llll}107 & 1519\end{array}$	1085855	110423
	Pollux	W.	$66 \quad 37 \quad 56$	682159	$70 \quad 5 \quad 35$	714844
	Saturn	W.	$48 \quad 5 \quad 59$	495050	$\begin{array}{llll}51 & 35 & 13\end{array}$	5319
	Regulus	W.	293947	31243	$\begin{array}{llll}33 & 7 & 52\end{array}$	345113
	Antares	E.	$\begin{array}{llll}70 & 15 & 54\end{array}$	683138	664750	$65 \quad 429$
	Venus	E.	$83 \quad 46 \quad 2$	$82 \quad 759$	803025	$78 \quad 5320$
	Sun	E.	$125 \quad 356$	$123 \quad 27 \quad 25$	1215120	1201543
23	Pollux	W.	801745	815813	$83 \quad 3815$	$\begin{array}{llll}85 & 17 & 51\end{array}$
	Saturn	W.	61522	$\begin{array}{llll}63 & 33 & 17\end{array}$	$\begin{array}{llll}65 & 14 & 5\end{array}$	665428
	Regulus	W.	$43 \quad 21 \quad 9$	45148	$46 \quad 42 \quad 1$	482148
	Antares	E.	563434	545356	531343	513357
	Venus	E.	$7055 \quad 7$	692055	$67 \quad 4713$	661358
	Sun	E.	1122419	1105122	1091851	1074646
24	Pollux	W.	$\begin{array}{llll}93 & 29 & 38\end{array}$	$\begin{array}{lll}95 & 6 & 47\end{array}$	$96 \quad 43 \quad 32$	$98 \quad 1956$
	Saturn	W.	$\begin{array}{llll}75 & 10 & 3\end{array}$	764758	782530	$80 \quad 239$
	Regulus	W.	$\begin{array}{llll}56 & 34 & 26\end{array}$	581145	594841	$61 \quad 2514$
	Antares	E.	$\begin{array}{llll}43 & 21 & 22\end{array}$	41443	$40 \quad 78$	383035
	Veuas	E.	$\begin{array}{llll}58 & 34 & 49\end{array}$	57423	$\begin{array}{llll}55 & 34 & 25\end{array}$	$54 \quad 453$
	Sun	E.	1001232	984253	$\begin{array}{llll}97 & 13 & 37\end{array}$	$95 \quad 4444$
25	Pollux	W.	1061628	1075045	1092443	1105822
	Saturn	W.	$\begin{array}{llll}88 & 3\end{array}$	$\begin{array}{llll}89 & 38 & 7\end{array}$	911252	$9247 \quad 18$
	Regulus	W.	692239	$\begin{array}{llll}70 & 57 & 7\end{array}$	$\begin{array}{llll}72 & 31 & 16\end{array}$	$\begin{array}{llll}74 & 5 & 7\end{array}$
	Antares	E.	$\begin{array}{llll}30 & 33 & 16\end{array}$	$28 \quad 5849$	272442	$\begin{array}{llll}25 & 50 & 53\end{array}$
	Venus	E.	$\begin{array}{llll}46 & 44 & 1\end{array}$	$\begin{array}{llll}45 & 17 & 11\end{array}$	435048	$42 \quad 2453$
	Sun	E.	$88 \quad 2538$	865849	85 $32 \quad 19$	$84 \quad 6 \quad 8$
26	Saturn	W.	1003512	10280	1034032	1051250
	Regulus	W.	81501	83 2213	$8454 \quad 9$	862552
	Spica	W.	$27 \quad 5223$	292418	3056	322729
	Venus	E.	$\begin{array}{llll}35 & 22 & 17\end{array}$	$33 \quad 5915$	32 7646	311450
	Sun	E.	$76 \quad 5928$	$75 \quad 3456$	74. $10 \quad 38$	724634
27	Saturn	W.	1125111	1142217	1155313	1172359
	Regulus	W.	$\begin{array}{llll}94 & 1 & 14\end{array}$	953144	$\begin{array}{llll}97 & 2 & 4\end{array}$	$\begin{array}{llll}98 & 3214\end{array}$
	Spica	W.	$40 \quad 158$	413220	$43 \quad 2 \quad 31$	$\begin{array}{llll}44 & 32 & 34\end{array}$
	Venus	E.	24356	231736	$\begin{array}{lll}22 & 1 & 8\end{array}$	204551
	Sun	E.	654925	642634	$\begin{array}{llll}63 & 3 & 52\end{array}$	614121
28		W.		1073019	1085936	1102846
	Spica	W.	$52 \quad 044$	$\begin{array}{llll}53 & 30 & 1\end{array}$	$\begin{array}{r}54 \\ 59 \\ \hline 12\end{array}$	$\begin{array}{r}56 \\ 56 \\ \hline 17\end{array}$
	Sun	E.	$54 \quad 50 \quad 50$	53296	$52 \quad 728$	$5045 \quad 57$
29	Spica	W.	635235	652116	664954	681830
	Sun	E.	$43 \quad 5928$	423822	$41 \quad 17 \quad 19$	$\begin{array}{llll}39 & 5618\end{array}$
30	Spica	W.	$\begin{array}{llll}75 & 41 & 7\end{array}$	$\begin{array}{llll}77 & 9 & 37\end{array}$	$\begin{array}{llll}78 & 38 & 6\end{array}$	$80 \quad 637$
	Antares	W.	294725	$\begin{array}{lll}31 & 15 & 57\end{array}$	324429	$34 \quad 13 \quad 2$
	Sun	E.	331140	315047	$30 \quad 2954$	$\begin{array}{lll} 29 & 9 & 2 \end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
5	Sun	W.	$27^{\circ} \quad 74{ }^{\prime \prime}$	28 32́ 4	$29^{\circ} 5.56{ }^{\prime \prime \prime}$	$31^{\circ} 21^{\prime \prime} 1{ }^{\prime \prime}$
	a Arietis	E.	524626	511459	$49 \quad 4325$	$48 \quad 11 \cdot 45$
	Aldebaran	E.	843931	$83 \quad 9 \quad 7$	813834	$80 \quad 753$
	Jupiter*	E.	$\begin{array}{llll}88 & 14 & 3\end{array}$	$8642 \quad 27$	851043	$\begin{array}{llll}83 & 38 & 51\end{array}$
6	'Sun	W.	$\begin{array}{llll}38 & 27 & 2\end{array}$	$\begin{array}{llll}39 & 52 & 42\end{array}$	411834	$42 \quad 44 \quad 36$
	a Arietis	E.	$\begin{array}{llll}40 & 31 & 34\end{array}$	385911	372641	$\begin{array}{llll}35 & 54 & 5\end{array}$
	Aldebaran	E.	$\begin{array}{llll}72 & 32 & 27\end{array}$	$71 \quad 058$	692920	675733
	Jupiter	E.	$\begin{array}{llll}75 & 57 & 14\end{array}$	742426	725129	711821
	Pollux	E.	115859	$\begin{array}{lllll}113 & 35 & 54\end{array}$	$112 \quad 238$	1102910
7	Sun		495740	512453	525219	541958
	a Pegasi	W.	225033	$23 \quad 53 \quad 3$	245854	$26 \quad 743$
	Aldebaran	E.	6016139	$5844 \quad 4$	571121	$\begin{array}{llll}55 & 38 & 30\end{array}$
	Jupiter	E.	$\begin{array}{llll}63 & 30 & 7\end{array}$	615555	602132	584658
	Pollux	E.	1023859	101420	$99 \quad 2929$	975425
8	Sun	W.	614139	631043	$6440 \quad 2$	$\begin{array}{llll}66 & 9 & 37\end{array}$
	a Pegasi	W.	$\begin{array}{llll}32 & 26 & 4\end{array}$	$\begin{array}{llll}33 & 47 & 3\end{array}$	$\begin{array}{llll}35 & 9 & 24\end{array}$	$\begin{array}{llll}36 & 33 & 1\end{array}$
	Mars	W.	15479	171613	184551	201558
	Aldebaran	E.	$47 \quad 52 \quad 33$	46 19	444531	4311154
	Jupiter	E.	50516	491519	$47 \quad 3920$	$46 \quad 3 \quad 8$
	Pollux	E.	895538	$\begin{array}{llll}88 & 19 & 10\end{array}$	864226	$\begin{array}{rrrr}85 & 5 & 27\end{array}$
	Saturn	E.	10759	1052756	1035028	1021244
9	Sun	W.	73 41	$\begin{array}{llll}75 & 12 & 46\end{array}$	764418	$\begin{array}{llll}78 & 16 & 7\end{array}$
	a Pegasi	W.	434652	$45 \quad 1617$	464629	481723
	Mars	W.	275250	292520	$\begin{array}{llll}30 & 58 & 12\end{array}$	323125
	Aldebaran	E.	$\begin{array}{llll}35 & 23 & 53\end{array}$	335031	321721	304427
	Jupiter	E.	3759	$\begin{array}{llll}36 & 21 & 39\end{array}$	$3444 \quad 3$	$\begin{array}{lll}33 & 6 & 17\end{array}$
	Pollux	E.	$\begin{array}{llll}76 & 56 & 33\end{array}$	751756	$73 \quad 39 \quad 2$	715949
	Saturn	E.	$\begin{array}{rrr}94 & 0 & 5\end{array}$	$\begin{array}{llll}92 & 20 & 42\end{array}$	9041	$\begin{array}{rrr}89 & 1 & 5\end{array}$
	Regulus	E.	1135057	112129	110333	1085340
10	Sun	W.	855953	87 33	$89 \quad 7 \quad 39$	$\begin{array}{llll}90 & 42 & 1\end{array}$
	a Pegasi	W.	561141	$57 \quad 3619$	591130	604712
	Mars	W.	$\begin{array}{llll}40 & 22 & 43\end{array}$	$4158 \quad 2$	43×3341	$45 \quad 941$
	Pollux	E.	$\begin{array}{llll}63 & 39 & 15\end{array}$	$\begin{array}{llll}61 & 58 & 12\end{array}$	$\begin{array}{llll}60 & 16 & 50\end{array}$	$\begin{array}{llll}58 & 35 & 9\end{array}$
	Saturn	E.	803639	$78 \quad 5448$	$77 \quad 1238$	7530
	Regulus	E.	100325	$\begin{array}{lllll}98 & 50 & 48\end{array}$	$97 \quad 9 \quad 12$	$\begin{array}{llll}95 & 27 & 16\end{array}$
11	Sun	W.	$\begin{array}{llll}98 & 39 & 0\end{array}$	1001525	1015212	1032919
	a Pegasi	W.	68 583	$70 \quad 3144$	$\begin{array}{llll}72 & 10 & 46\end{array}$	$\begin{array}{llll}73 & 50 & 13\end{array}$
	Mars	W.	$\begin{array}{llll}53 & 15 & 2\end{array}$	$\begin{array}{llll}54 & 53 & 11\end{array}$	$\begin{array}{llll}56 & 31 & 40\end{array}$	$\begin{array}{llll}58 & 10 & 31\end{array}$
	a Arietis	W.	$25 \quad 2844$	271036	$28 \quad 53 \quad 2$	$\begin{array}{llll}30 & 36 & 1\end{array}$
	Pollux	E.	$\begin{array}{lll}50 & 1 & 46\end{array}$	$\begin{array}{llll}48 & 18 & 6\end{array}$	$46 \quad 34 \quad 7$	444948
	Saturn	E.	$\begin{array}{llll}66 & 52 & 35\end{array}$	$\begin{array}{lll}65 & 8 & 2\end{array}$	$\begin{array}{llll}63 & 23 & 9\end{array}$	$\begin{array}{llll}61 & 37 & 55\end{array}$
	Regulus	E.	$86 \quad 5231$	$85 \quad 833$	832413	813932
12	Sun	W.	$\begin{array}{llll}111 & 40 & 12\end{array}$	113 83 195	$\begin{array}{rrrr}114 & 58 & 58 \\ 85 & 37 & \end{array}$	116 87 88
	a Pegasi	W.	$\begin{array}{ll}82 & 13 \\ 39\end{array}$	$83 \quad 55 \quad 29$	$\begin{array}{llll}85 & 37 & 41\end{array}$	$87 \quad 2013$
	Mars	W.	$\begin{array}{llll}66 & 30 & 7\end{array}$	$\begin{array}{llll}68 & 11 & 5\end{array}$	$\begin{array}{llll}69 & 52 & 24\end{array}$	$\begin{array}{llll}71 & 34\end{array}$
	a Arietis	W.	$\begin{array}{llll}39 & 18 & 7\end{array}$	$\begin{array}{llll}41 & 3 & 51\end{array}$	4250	$\begin{array}{llll}44 & 36 & 33\end{array}$
	Pollux	E.	36	341712	323043	$30 \quad 43 \quad 58$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.	$\begin{gathered} \text { Star's } \mathrm{Na} \\ \text { and } \\ \text { Positition } \end{gathered}$		Midnight.	X7.	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
5	Sun a Arietis Aldebaran Jupiter	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 32 & 46 & 4 \\ 46 & 39 & 57 \\ 78 & 37 & 4 \\ 82 & 6 & 50 \end{array}$	$$	$\begin{array}{rrr} 35 & 36 & 13 \\ 43 & 35 & 13 \\ 75 & 35 & 2 \\ 79 & 2 & 20 \end{array}$	37 1 32 42 3 50 74 3 49 77 29 52
6	Son a Arietis Aldebaran Jupiter Pollux	W. E. E. E. E.	$\begin{array}{rrr} 44 & 10 & 49 \\ 34 & 21 & 23 \\ 66 & 25 & 39 \\ 69 & 45 & 4 \\ 108 & 55 & 31 \end{array}$	$\begin{array}{rrr} 45 & 37 & 14 \\ 32 & 48 & 35 \\ 64 & 53 & 36 \\ 68 & 11 & 35 \\ 107 & 21 & 41 \end{array}$	$\begin{array}{rrr} 47 & 3 & 50 \\ 31 & 15 & 43 \\ 63 & 21 & 25 \\ 66 & 37 & 57 \\ 105 & 47 & 39 \end{array}$	$\begin{array}{rrr} 48^{\circ} & 30 & 39 \\ 29 & 42 & 46 \\ 61 & 49 & 6 \\ 65 & 4 & 7 \\ 104 & 13 & 25 \end{array}$
7	Sun a Pegasi Aldebaran Jupiter Pollux	W. W. E. E. E.	$\begin{array}{rrr} 55 & 47 & 50 \\ 27 & 19 & 10 \\ 54 & 5 & 32 \\ 57 & 12 & 12 \\ 96 & 19 & 7 \end{array}$	57 15 56 28 32 58 52 32 27 55 37 14 94 43 36	$\begin{array}{lll} 58 & 44 & 18 \\ 29 & 48 & 51 \\ 50 & 59 & 15 \\ 54 & 2 & 4 \\ 93 & 7 & 51 \end{array}$	$\begin{array}{rrr} 60 & 12 & 50 \\ 31 & 6 & 37 \\ 49 & 25 & 57 \\ 52 & 26 & 41 \\ 91 & 31 & 52 \end{array}$
8	Sun a Pegasi Mars Aldebaran Jupiter Pollux Saturn	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{r} 673927 \\ 375748 \\ 214632 \\ 413816 \\ 442644 \\ 8328 \\ 100 \\ 100 \end{array} 3445$	69 9 33 39 23 39 23 17 31 40 4 36 42 50 7 81 50 43 98 56 30	$\begin{array}{lll} 70 & 39 & 56 \\ 40 & 50 & 29 \\ 24 & 48 & 55 \\ 38 & 30 & 58 \\ 41 & 13 & 18 \\ 80 & 12 & 56 \\ 97 & 17 & 58 \end{array}$	72 10 35 42 18 15 26 20 41 36 57 23 39 36 16 78 34 53 95 39 10
9	Son a Pegasi Mars Aldebaran Jupiter Pollux Saturn Regulus	W. W. W. E. E. E. E. E.	$\begin{array}{rrr} 79 & 48 & 15 \\ 49 & 48 & 59 \\ 34 & 4 & 59 \\ 29 & 11 & 55 \\ 31 & 28 & 22 \\ 70 & 20 & 19 \\ 87 & 20 & 49 \\ 107 & 13 & 58 \end{array}$	$\begin{array}{rrr} 81 & 20 & 41 \\ 51 & 21 & 14 \\ 35 & 38 & 53 \\ 27 & 39 & 51 \\ 29 & 50 & 19 \\ 68 & 40 & 31 \\ 85 & 40 & 14 \\ 105 & 33 & 58 \end{array}$	$\begin{array}{rrr} 82 & 53 & 26 \\ 52 & 54 & 7 \\ 37 & 13 & 9 \\ 26 & 8 & 24 \\ 28 & 12 & 10 \\ 67 & 0 & 25 \\ 83 & 59 & 21 \\ 103 & 53 & 39 \end{array}$	$\begin{array}{rrr} 84 & 26 & 30 \\ 54 & 27 & 37 \\ 38 & 47 & 46 \\ 24 & 37 & 44 \\ 26 & 33 & 56 \\ 65 & 19 & 59 \\ 82 & 18 & 10 \\ 102 & 13 & 2 \end{array}$
10	Sun ${ }_{a}$ Pegasi Mars Pollux Saturn Regulus	W. W. W. E. E. E.	92 16 44 62 23 25 46 46 3 56 53 7 73 47 18 93 45 0	93 51 47 64 0 8 48 22 46 55 10 47 72 4 8 92 2 24	$\begin{array}{lll} 95 & 27 & 11 \\ 65 & 37 & 20 \\ 49 & 59 & 50 \\ 53 & 28 & 6 \\ 70 & 20 & 37 \\ 90 & 19 & 27 \end{array}$	97 2 55 67 15 0 51 37 16 51 45 6 68 36 46 88 36 9
11	Sun a Pegasi Mars a Arietis Pollux Saturn Regulus	W. W. W. W. E. E. E.	$\begin{array}{rrr} 105 & 6 & 48 \\ 75 & 30 & 6 \\ 59 & 49 & 44 \\ 32 & 19 & 30 \\ 43 & 5 & 9 \\ 59 & 52 & 21 \\ 79 & 54 & 31 \end{array}$	106 44 38 77 10 24 61 29 18 34 3 28 41 20 11 58 6 25 78 9 8	$\begin{array}{rrr} 108 & 22 & 48 \\ 78 & 51 & 6 \\ 63 & 9 & 13 \\ 35 & 47 & 55 \\ 39 & 34 & 54 \\ 56 & 20 & 8 \\ 76 & 23 & 25 \end{array}$	$\begin{array}{rrr} 110 & 1 & 20 \\ 80 & 32 & 11 \\ 64 & 49 & 29 \\ 37 & 32 & 48 \\ 37 & 49 & 18 \\ 54 & 33 & 31 \\ 74 & 37 & 21 \end{array}$
12	Sun a Pegasi Mars α Arietis Pollux	W. W. W. W. E.	$\begin{array}{rrr} 118 & 19 & 5 \\ 89 & 3 & 5 \\ 73 & 16 & 3 \\ 46 & 23 & 28 \\ 28 & 56 & 58 \end{array}$	$\begin{array}{rrr} 119 & 59 & 38 \\ 90 & 46 & 16 \\ 74 & 58 & 22 \\ 48 & 10 & 47 \\ 27 & 9 & 44 \end{array}$	$\begin{array}{rrr} 121 & 40 & 31 \\ 92 & 29 & 45 \\ 76 & 41 & 1 \\ 49 & 58 & 27 \\ 25 & 22 & 17 \end{array}$	$\begin{array}{rrr} 123 & 21 & 43 \\ 94 & 13 & 32 \\ 78 & 23 & 59 \\ 51 & 46 & 28 \\ 23 & 34 & 40 \\ \hline \end{array}$

GREENWICH MEAN TIME.

lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nan } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III.	VI'.	IXb.
12	Saturn Regulus	E.	$\begin{array}{llll}50 \\ 52 & 46 & 3 \prime \prime \\ 72 & 50 & 56\end{array}$	$\begin{array}{crrr}50 & 59 & 1 \prime \\ 71 & 4 & 10\end{array}$	49 11 37 69 17 68	$\begin{array}{lll} 47 & 23^{\prime \prime} & 38 \\ 67 & 29 & 38 \end{array}$
13	Sun	W.	$\begin{array}{llll}125 & 3 & 13\end{array}$	$12645 \quad 2$	128 27	$\begin{array}{llll}130 & 9 & 33\end{array}$
	Mars	W.	$80 \quad 716$	815051	833444	851854
	a Arictis	W.	533450	55 23	571233	$\begin{array}{lll}59 & 1 & 54\end{array}$
	Aldebaran	W.	235138	252934	$27 \quad 96$	$28 \quad 50 \quad 2$
	Jupiter	W.	183030	201451	$22 \quad 0 \quad 14$	234628
	Saturn	E.	381855	36293	343854	324827
	Regulus	E.	$58 \quad 2733$	563812	544833	525837
	Spica	E.	$\begin{array}{ll}112 & 28 \\ 37\end{array}$	1103921	1084947	1065956
14	Mars	W.	$\begin{array}{llll}94 & 3 & 43\end{array}$	954924	973516	992121
	a Arietis	W.	681249	$70 \quad 346$	715456	734618
	Aldebaran	W.	373012	391632	41328	425054
	Jupiter	W.	32470	343630	362621	381632
	Regulus	E.	434458	415331	$\begin{array}{llll}40 & 1 & 51\end{array}$	$3810 \quad 0$
	Spica	E.	974641	$95 \quad 5518$	$94 \quad 344$	921157
15	Mars	W.	108146	$\begin{array}{llll}110 & 1 & 1\end{array}$	111480	11335
	a Arictis	W.	$83 \quad 541$	$84 \quad 5757$	865019	884244
	Aldebaran	W.	515416	534352	553342	572344
	Jupiter	W.	473113	492244	511423	$\begin{array}{llll}53 & 6 & 8\end{array}$
	Regulus	E.	284819	265536	$\begin{array}{ll}25 & 249\end{array}$	$\begin{array}{llll}23 & 9 & 57\end{array}$
	Spica	E.	825038	80580	$\begin{array}{lll}79 & 517\end{array}$	771230
16	a Arietis	W.	$\begin{array}{llll}98 & 5 & 13\end{array}$	$99 \quad 5740$	$101 \quad 50 \quad 2$	1034219
	Aldebaran	W.	663546	$68 \quad 2622$	701657	$\begin{array}{ll}72 & 7 \\ 30\end{array}$
-	Jupiter	W.	622547	641744	$66 \quad 938$	$\begin{array}{ll}68 & 129\end{array}$
	Pollux	W.	232450	251633	$27 \quad 822$	$\begin{array}{lll}29 & 0 & 13\end{array}$
	Spica	E.	674812	655524	$64 \quad 240$	62101
	Antares	E.	1134039	1114746	1095456	$108 \quad 212$
17	Aldebaran	W.	81194	83858	845840	864810
	Jupiter	W.	$77 \quad 19 \quad 2$	$79 \quad 104$	$81 \quad 0 \quad 54$	825130
	Pollux	W.	381852	401015	$\begin{array}{lll}42 & 1 & 29\end{array}$	$43 \quad 5231$
	Saturn	W.	214432	233649	$25 \quad 2854$	272047
	Spica	E.	524839	505654	$49 \quad 5 \quad 22$	47143
	Antares	E.	$9840 \quad 19$	964827	945647	$93 \quad 520$
18	Aldebaran	W.	955153			
	Jupiter	W.	$92 \quad 041$	934938	953814	$\begin{array}{llll}97 & 26 & 31\end{array}$
	Pollux	W.	-53 488	545338	564248	583140
	Saturn	W.	363628	382645	401641	$42 \quad 618$
	Regulus	W.	$16 \quad 354$	175340	19437	213213
	Spica	E.	$\begin{array}{lll}38 & 1 & 33\end{array}$	361158	342245	323353
	Antares	E.	83520	$\begin{array}{ll}82 & 213\end{array}$	801246	782339
	Venus	E.	1185448	1171325	7153221	1135134
19	Jupiter	W.	1062217	$\cdots 108815$	1095347	
	Pollux	W.	673035	691714	$\begin{array}{llll}71 & 3 & 29\end{array}$	724919
	Saturn	W.	$51 \quad 854$		544313	56 29
	Regulus	W.	$30 \quad 3218$	32199	$\begin{array}{lll}34 & 5 & 36\end{array}$	$\begin{array}{llll}35 & 51 & 38 \\ 18 & 17\end{array}$
	Spica	E.	233532	214911	$20 \quad 3 \quad 20$	181759

GREENWICH MEAN TIME.						
LUNAR distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star’s Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XVb.	XVIII.	XXI' ${ }^{\text {. }}$
12	Saturn Regulus	$\underset{\mathrm{E} .}{\mathrm{E} .}$	$\begin{array}{lll} 45 & 35 & 2 \prime \prime \\ 65 & 41 & 52 \end{array}$	$\begin{array}{lll} 43^{\circ} & 46^{\prime} & 42 \\ 63 & 53 & 46 \end{array}$	$\begin{array}{rrrr} 41^{\circ} & 57^{\prime \prime \prime} & 45 \\ 62 & 5 & 21 \end{array}$	$\begin{array}{lrr} 40^{\circ} & 8 & 2 \prime \prime \\ 60 & 16 & 36 \end{array}$
13	Sun	W.	1315213	$133 \quad 3510$	$\begin{array}{llll}135 & 18 & 23\end{array}$	137150
	Mars	W.	$87 \quad 321$	88484	90332	921816
	a Arietis	W.	605132	624127	643139	66227
	Aldebaran	W.	303212	321524	335932	354430
	Jupiter	W.	253327	27214	$\begin{array}{lll}29 & 9 & 14\end{array}$	305753
	Saturn	E.	$\begin{array}{llll}30 & 5745\end{array}$	$29 \quad 647$	271534	$25 \quad 247$
	Regulus	E.	$51 \quad 824$	491755	472711	$\begin{array}{llll}45 & 36 & 11\end{array}$
	Spica	E.	105948	1031924	1012844	993750
14	Mars	W.	101736	102542	1044035	1062717
	a Arietis	W.	$\begin{array}{llll}75 & 37 & 52\end{array}$	772936	792130	811332
	Aldebaran	W.	443849	$46 \quad 2710$	481552	$50 \quad 455$
	Jupiter	W.	$\begin{array}{llll}40 & 7 & 0\end{array}$	415744	434842	453952
	Regulus	E.	$\begin{array}{lll}36 & 17 & 58\end{array}$	342546	323325	304055
	Spica	E.	901959	882752	863535	844310
15	Mars	W.	$115 \quad 228$	$117 \quad 915$	1185622	1204328
	a Arietis	W.	903512	922743	942014	961244
	Aldebaran	W.	591356	61416	625442	644513
	Jupiter	W.	$\begin{array}{llll}54 & 57 & 59\end{array}$	564953	584150	603349
	Regulus	E.	$2117 \quad 3$	19246	17319	153813
	Spica	E.	751940	732648	713355	69413
16	a Arietis	W.	1053430	1072633	1091827	1111012
	Aldebaran	W.	$\begin{array}{llll}73 & 58 & 1\end{array}$	754827	773847	79290
	Jupiter	W.	695315	714454	$73 \quad 3626$	75 27 49
	Pollux	W.	30525	324354	343539	$\begin{array}{llll}36 & 27 & 19\end{array}$
	Spica	E.	$60 \quad 17 \quad 28$	$58 \quad 25 \quad 2$	563245	544037
	Antares	E.	106933	104171	1022438	1003223
17	Aldebaran	W.	$88 \quad 3727$	902628	$92 \quad 1514$	$94 \quad 343$
	Jupiter	W.	844152	86320	882151	901125
	Pollux	W.	454320	473355	492416	511421
	Saturn	W.	291227	$\begin{array}{llll}31 & 3 & 52\end{array}$	$3255 \quad 1$	344554
	Spica	E.	$45 \quad 230$	433211	414140	395127
	Antares	E.	91148	892310	873229	85426
18	Aldebaran	W.	103111	1044735	1063335	1081910
	Jupiter	W.	991426	101158	102498	1043555
	Pollux	W.	602010	$62 \quad 820$	63 56 8	654333
	Saturn	W.	435533	454427	473259	49218
	Regulus	W.	232059	$25 \quad 922$	265724	$2845 \quad 3$
	Spica	E.	304524	285718	$\begin{array}{lll}27 & 9 & 37\end{array}$	252221
	Antares	E.	763454	744630	725828	711050
	Venus	E.	112117	1103059	1085112	1071147
19	Jupiter	W.	1132336	$115 \quad 751$	1165139	118350
	Pollux	W.	743444	$76 \quad 1944$	$\begin{array}{r}78 \\ \hline 1819\end{array}$	$\begin{array}{r}79 \\ \hline 18\end{array}$
	Saturn	W.	$5815 \quad 53$	$\begin{array}{lll}60 & 135\end{array}$	614652	$63 \quad 3142$
	Regulus	W.	373716	392227	$41 \quad 714$	425134
	Spica	E.	163312	14492	$13 \quad 533$	112253

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.	Star's Name and Position		Noon.	IIIT.	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
19	Antares Venus	E.	$\begin{array}{r} 6923 \\ 69^{\prime \prime \prime} \\ 1053244 \end{array}$	$\begin{array}{rr} 67 & 36 \\ 104 \\ 103 & 54 \end{array}$	$\begin{array}{r} 6 \circ \\ 65 \\ 50 \\ 10215 \\ 10 \end{array} 17$	$\begin{array}{rrr} 64 & 4 & 15 \\ 100 & 37 & 54 \end{array}$
20	${ }_{\text {Pollux }}$	W.	$\begin{array}{llrr}81 & 32 & 12 \\ 65 & 16 & 7\end{array}$	$\begin{array}{rrr}83 & 15 & 29 \\ 67 & 0 & 6\end{array}$	$\begin{array}{llll}84 & 58 & 20 \\ 68 & 43 & 38\end{array}$	$\begin{array}{lll} 86 & 40 & 45 \\ 70 & 26 & 44 \end{array}$
	Regulus	W.	443528	46 46 18 57	48 1 59	494434
	Antares	E.	552027	533659	515357	501122
	Venus	E.	923440	905918	892421	874951
	a Aquilæ	E.	1065919	1053249	104627	1024013
	Sun	E.	1385523	1371926	1354355	134850
21	Pollux	W.	$\begin{array}{lll}95 & 6 & 18 \\ 78 & 55\end{array}$	96 96 80	$\begin{array}{llll}98 & 25 & 29 \\ 82 & 10\end{array}$	$\begin{array}{rrr}100 & 4 & 27\end{array}$
	Saturn	W.	785540	$8036 \quad 9$	821613	835551
	Regulus	W.	581110	595059	613032	$\begin{array}{lll}63 & 9 & 40\end{array}$
	Antares	E.	41451	$\begin{array}{llll}40 & 5 & 3\end{array}$	382530	364623
	Venus	E.	$80 \quad 350$	785356	$77 \quad 028$	752925
	${ }^{\text {a Aquilæ }}$	E.	$95 \quad 32 \quad 5$	$\begin{array}{llll}94 & 714\end{array}$	92.4241	911827
	Sun	E.	1261958	1244730	1231527	1214350
22	Saturn	W.	$\begin{array}{lll}92 & 7 & 51\end{array}$			965819
	Regulus	W.	711911	725554	743214	$76 \quad 811$
	Spica	W.	172450	$\begin{array}{llll}19 & 0 & 51 \\ 27 & 0\end{array}$	203635	$\begin{array}{llll}22 & 12 & 1\end{array}$
	Antares	E.	283659	$\begin{array}{llll}27 & 0 & 18\end{array}$	$25 \quad 241$	23486
	Venus	E.	$68 \quad 0 \quad 26$	663151	$\begin{array}{llll}65 & 3 & 40\end{array}$	$63 \quad 3552$
	\boldsymbol{a} Aquilæ	E.	842238	83038	81393	801754
	Sun	E.	1141152	1124240	1111351	1094525
23	Saturn	W.	1045510	1062931	$108 \quad 334$	1093717
	Regulus	W.	$84 \quad 235$	853628	87101	884316
	Spica	W.	$\begin{array}{lll}30 & 4 & 39\end{array}$	313816	$\begin{array}{llll}33 & 11 & 36 \\ 53 & 31\end{array}$	344438
	Venus	E.	$\begin{array}{llll}56 & 22 & 26 \\ 73\end{array}$	545649	$\begin{array}{llll}53 & 31 & 32 \\ 71 & 2 & 51\end{array}$	$\begin{array}{lllll}52 & 6 & 36\end{array}$
	a Aquilæ	E.	$73 \quad 39$ 0	722040	$\begin{array}{llll}71 & 2 & 51\end{array}$	694534
	Sun	E.	1022833	101211	99368	$98 \quad 10 \quad 24$
24	Regulus	W.	962512	975648	992810	$10059 \quad 17$
	Spica	W.	422544	$\begin{array}{llll}43 & 57 & 11\end{array}$	452825	$\begin{array}{llll}46 & 59 & 25\end{array}$
	Venus	E.	$45 \quad 6 \quad 35$	434329	$42 \quad 2039$	40587
	a Aquilæ	E.	$63 \quad 27 \quad 32$	621344	$\begin{array}{llll}61 & 0 & 35\end{array}$	$5948 \quad 6$
	Sun	E.	$\begin{array}{llll}91 & 6 & 1\end{array}$	894155	88184	865427
25	Spica	W.	543125	$\begin{array}{llll}56 & 1 & 16\end{array}$	$57 \quad 30 \quad 59$	$\begin{array}{llll}59 & 0 & 32\end{array}$
	Venus	E.	$34 \quad 927$	324831	312750	$30 \quad 725$
	Sun	E.	795928	7837	771444	755236
26	Spica	W.	$\begin{array}{llll}66 & 26 & 27\end{array}$	675519	$\begin{array}{llll}69 & 24 & 6\end{array}$	
	Antares	W.	203228	$22 \quad 122$	233011	245856
	Sun	E.	$\begin{array}{llll}69 & 3 & 51\end{array}$	674225	66214	645947
27	Spica	W.				
	Antares	W.	$32 \quad 21 \quad 57$	$3350 \quad 28$	351858	364728
	Sun	E.	581413	565312	553211	541111
28				91326	$\begin{array}{llll}93 & 0 & 44\end{array}$	
	Antares	W.	441012	453850	$47 \quad 7$47	$48 \quad 36 \quad 16$
	Sun	E.	$47 \quad 26 \quad 0$	$46 \quad 452$	444342	432228

GREENWICH MEAN TIME.						
LUNAR DIStances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV4.	XVIII.	XXIF.
19	Antares	E.	$62^{\circ} 18{ }^{\prime \prime} 8^{\prime \prime}$	$60^{\circ} 3{ }^{\prime}{ }^{\prime \prime}{ }^{\prime \prime}$	$5848{ }^{\circ} 411$	$5{ }^{\circ} 4{ }^{4} 11$
	Venus	E.	$99 \quad 025$	972321	954642	941028
20	Pollux	W.	882244	$\begin{array}{llll}90 & 4 & 17\end{array}$	914523	93264
	Saturn	W.	$72 \quad 924$	$\begin{array}{llllll}73 & 51 & 37\end{array}$	$75 \quad 3324$	771445
	Regulus	W.	512644	$\begin{array}{llll}53 & 8 & 27\end{array}$	544944	563035
	Antares	E.	482913	$\begin{array}{llll}46 & 47 & 31\end{array}$	$\begin{array}{lll}45 & 615\end{array}$	432525
	Venus	E.	861546	84428	$83 \quad 856$	813610
	a Aquilæ	E.	101149	994817	$98 \quad 2238$	$\begin{array}{llll}96 & 57 & 13\end{array}$
	Sun	E.	1323411	1305959	1292613	1275252
21	Pollux	W.	1014259	103217	1045850	106369
	Saturn	W.	85354	871352	885216	903015
	Regulus	W.	644823	662642	$\begin{array}{llll}68 & 4 & 36\end{array}$	69425
	Antares	E.	$35 \quad 741$	332924	315132	30143
	Venus	E.	735847	722835	705847	692924
	a Aquilæ	E.	895433	88310	$87 \quad 750$	$8545 \quad 2$
	Sun	E.	1201237	1184149	1171126	11541.27
22	Saturn	W.	983423	100106	1014528	1032029
	Regulus	W.	774346	791859	805352	822824
	Spica	W.	23479	252159	265631	283044
	Antares	E.	221233	203723	$19 \quad 234$	17286
	Venus	E.	$\begin{array}{llll}62 & 8 & 27\end{array}$	60 41 1	$\begin{array}{llll}59 & 14 & 44\end{array}$	574824
	a Aquilæ	E.	$78 \quad 5712$	$77 \quad 3657$	$\begin{array}{llll}76 & 17 & 9\end{array}$	$\begin{array}{ll}74 & 57 \\ 50\end{array}$
	Sun	E.	1081720	1064937	1052215	1035514
23	Saturn	W.	1111043	1124351	1141642	1154917
	Regulus	W.	901613	914852	932115	945321
	Spica	W.	36 17 1	374952	39224	40541
	Venus	E.	504158	491740	475340	462959
	a Aquilæ	E.	$68 \quad 2849$	671237	$65 \quad 57 \quad 0$	644158
	Sun	E.	964458	951949	$\begin{array}{llll}93 & 54 & 57\end{array}$	$\begin{array}{llll}92 & 30\end{array}$
24	Regulus	W.	1023012	104053	1053123	107142
	Spica	W.	483012	$\begin{array}{lll}50 & 0 & 47\end{array}$	513111	$\begin{array}{lll}53 & 1 & 23\end{array}$
	Venus	E.	393551	381351	36528	353039
	a Aquilæ	E.	583619	572515	561456	$55 \quad 524$
	Sus	E.	85313	$84 \quad 752$	824453	81225
25	Spica	W.	602957		632825	645729
	Venus	E.	284717	$27 \quad 27 \quad 26$	$26 \quad 7 \quad 52$	244838
	Sun	E.	$7430 \quad 37$	$73 \quad 845$	71470	702522
26	Spica	W.	$72 \quad 2129$	73505	751838	76479
	Antares	W.	262738	275616	292452	305325
	Sun	E.	633835	621726	605619	59 35
27	Spica	W.	$84 \quad 929$	853757	$87 \quad 626$	88345
	Antares	W.	381559	394430	$4113 \quad 2$	424136
	Sun	E.	525011	512910	$\begin{array}{llll}50 & 8 & 8\end{array}$	$4847 \quad 5$
28	Spica	W.	$95 \quad 5811$	$\begin{array}{lll}97 & 27 & 1\end{array}$	$98 \quad 5555$	1002454
	Antares	W.	$\begin{array}{llll}50 & 5 & 5\end{array}$	513358	$53 \quad 255$	543157
	Sun	E.	$42 \quad 110$	403949	391823	375653

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Name and Position.		Noon.	III ${ }^{\text {² }}$	VI'.	IX ${ }^{\text {h }}$
1	Spica	W.	$101^{\circ} 533^{\prime \prime}$	$103{ }^{\circ} 23^{\prime \prime}$, $104{ }^{\circ} 522^{\prime \prime}$	$106^{\circ} 21^{\prime} 44^{\prime \prime}$
	Antares	W.	$\begin{array}{llll}56 & 1\end{array}$	$57 \quad 3017$	585936	60291
	Sun	E.	363518	351337	$\begin{array}{llll}33 & 5151\end{array}$	322958
6	Sun	W.	$19 \quad 50 \quad 30$	211825	224631	$\begin{array}{llll}24 & 1450\end{array}$
	Aldebaran	E.	631754	614426	601052	$\begin{array}{llll}58 & 37 & 10\end{array}$
	Jupiter	E.	$67 \quad 56 \quad 4$	$\begin{array}{llll}66 & 21 & 41\end{array}$	$\begin{array}{llll}64 & 47 & 9\end{array}$	$6312 \quad 26$
	Saturn	E.	121832	1193236	1175628	1162010
7	Sun	W.	$31 \quad 3926$	$\begin{array}{llll}33 & 8 & 56\end{array}$	343838	$36 \quad 8 \quad 32$
	Aldebaran	E.	504718	$4913 \quad 7$	$\begin{array}{llll}47 & 38 & 54\end{array}$	$46 \quad 4 \quad 39$
	Jupiter	E.	$\begin{array}{llll}55 & 16 & 22\end{array}$	534040	$\begin{array}{llll}52 & 4 & 48\end{array}$	$\begin{array}{llll}50 & 28 & 47\end{array}$
	Pollux	E.	92 555	$91 \quad 19 \quad 5$	$8942 \quad 1$	$88 \quad 4 \quad 44$
	Saturn	E.	1081549	1063823	105046	1032257
8	Sun	W.	434058	$\begin{array}{llll}45 & 12 & 3\end{array}$	$\begin{array}{llll}46 & 4319\end{array}$	481448
	Aldebaran	E.	$\begin{array}{ll}38 & 13 \\ 43\end{array}$	$\begin{array}{llll}36 & 39 & 48\end{array}$	$35 \quad 6 \quad 4$	$33 \quad 3235$
	Jupiter	E.	$42 \quad 2629$	$\begin{array}{llll}40 & 49 & 36\end{array}$	$\begin{array}{llll}39 & 12 & 36\end{array}$	$\begin{array}{llll}37 & 35 & 29\end{array}$
	Pollux	E.	$79 \quad 5530$	$\begin{array}{llll}78 & 17 & 5\end{array}$	$76 \quad 3828$	$74 \quad 5940$
	Saturn	E.	951113	$\begin{array}{llll}93 & 32 & 5\end{array}$	915256	$\begin{array}{llll}90 & 13 & 35\end{array}$
9	Sun	W.	$55 \quad 5511$	572752	$59 \quad 046$	603352
	Mars	W.	175212	192416	205654	$2230 \quad 3$
	Jupiter	E.	$29^{\circ} 2838$	27518	$\begin{array}{llll}26 & 13 & 39\end{array}$	243615
	Pollux	E.	664241	$\begin{array}{llll}65 & 2 & 42\end{array}$	$\begin{array}{llll}63 & 22 & 31\end{array}$	$\begin{array}{llll}61 & 42 & 8\end{array}$
	Saturn	E.	815352	801320	$78 \quad 3235$	$\begin{array}{llll}76 & 51 & 38\end{array}$
	Regulus	E.	1033553	1015541	1001516	$98 \quad 3440$
10	Sun	W.	682231	$\begin{array}{llll}69 & 5654\end{array}$	713129	$\begin{array}{llll}73 & 6 & 17\end{array}$
	Mars	W.	302153	315717	$\begin{array}{llll}33 & 32 & 58\end{array}$	$\begin{array}{llll}35 & 8 & 58\end{array}$
	a Arietis	W.	$\begin{array}{lllll}22 & 18 & 14\end{array}$	235726	$\begin{array}{llll}25 & 37 & 10\end{array}$	2717123
	Pollux	E.	$\begin{array}{llll}53 & 17 & 12\end{array}$	$\begin{array}{llll}51 & 35 & 37\end{array}$	$\begin{array}{llll}49 & 53 & 50\end{array}$	481151
	Saturn	E.	$\begin{array}{lllll}68 & 23 & 46\end{array}$	664133	64 69 8	$\begin{array}{llll}63 & 16 & 30\end{array}$
	Regulus	E.	90888	882635	864430	$85 \quad 211$
11	Sun	N.	81335	823942	$\begin{array}{llll}84 & 16 & 2\end{array}$	$85 \quad 5236$
	Mars	W.	$\begin{array}{lll}43 & 13 & 1\end{array}$	445037	462828	$48 \quad 6 \quad 34$
	a Arietis	W.	354430	$\begin{array}{llll}37 & 2657\end{array}$	$\begin{array}{lll}39 & 9 & 42\end{array}$	$40 \quad 5246$
	Pollux	E.	393856	375547	$\begin{array}{lll}36 & 12 & 27\end{array}$	$\begin{array}{llll}34 & 28 & 56\end{array}$
	Saturn	E.	54406	52569	$\begin{array}{llll}51 & 12 & 0\end{array}$	492738
	Regulus	E.	$76 \quad 2722$	744344	$72 \quad 5953$	$\begin{array}{llll}71 & 15 & 49\end{array}$
12	Sun	W.	$93 \quad 5843$	$\begin{array}{llll}95 & 36 & 36\end{array}$	$\begin{array}{llll}97 & 14 & 42\end{array}$	98531
	Mars	W.	$56 \quad 2044$	$58 \quad 0 \quad 17$	59404	61204
	a Arietis	W.	$\begin{array}{llll}49 & 32 & 14\end{array}$	$\begin{array}{llll}51 & 16 & 55\end{array}$	$\begin{array}{llll}53 & 1 & 51\end{array}$	$5447 \quad 2$
	Aldebaran	W.	$\begin{array}{llll}20 & 18 & 7\end{array}$	214824	$\begin{array}{llll}23 & 20 & 54\end{array}$	245514
	Saturn	E.	$\begin{array}{lllll}40 & 42 & 31\end{array}$	$\begin{array}{llll}38 & 56 & 51\end{array}$	$\begin{array}{rrrrr}37 & 10 & 58 \\ 50 & 1 & 8\end{array}$	$\begin{array}{llll}35 & 24 & 53 \\ 57 & 15 & 19\end{array}$
	Regulus	E.	$62 \quad 329$	604645	59118	$\begin{array}{llll}7 & 15 & 19\end{array}$
13	Sun	W.	$107 \quad 742$	1084715	1102659	
	Mars	W.	694324	$\begin{array}{llll}71 & 24 & 42\end{array}$	$\begin{array}{llll}73 & 6 & 12\end{array}$	$\begin{array}{llll}74 & 47 & 54\end{array}$
	a Arietis	W.	$\begin{array}{llll}63 & 36 & 26\end{array}$	$\begin{array}{llll}65 & 22 & 58 \\ 3\end{array}$	$\begin{array}{lrr}67 & 9 & 43\end{array}$	$\begin{array}{llll}68 & 56 & 41 \\ 38 & 11 & 20\end{array}$
	Aldebaran	W.	$\begin{array}{llll}33 & 6 & 18\end{array}$	$\begin{array}{llll}34 & 47 & 18 \\ 28 & 1 & 53\end{array}$	$\begin{array}{rrr}36 & 29 & 0 \\ 29 & 46 & 16\end{array}$	381120
	Jupiter		$\begin{array}{llll}26 & 17 & 57\end{array}$	28153	294616	31313

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month			Midnight.	XV.	XVIIP.	XXI ${ }^{\text {. }}$
1	Spica Antares Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 107 & 51 & 12 \\ 61 & 58 & 32 \\ 31 & 8 & 0 \end{array}$	$\begin{array}{rrr} 109 & 20 & 47 \\ 63 & 28 & 11 \\ 29 & 45 & 55 \end{array}$	$\begin{array}{rrr} 110 & 50 & 2 \prime \prime \\ 64 & 57 & 57 \\ 28 & 23 & 44 \end{array}$	$\begin{array}{rrr} 112 & 20^{\prime \prime} \\ 66 & 27 & 17 \\ 27 & 1 & 25 \end{array}$
6	Sun Aldebaran Jupiter Saturn	W. E. E. E.	$\begin{array}{rrr} 25 & 43 & 22 \\ 57 & 3 & 22 \\ 61 & 37 & 33 \\ 114 & 43 & 40 \end{array}$	$\begin{array}{rrr} 27 & 12 & 5 \\ 55 & 29 & 29 \\ 60 & 2 & 30 \\ 113 & 6 & 59 \end{array}$	$\begin{array}{rrr} 28 & 41 & 0 \\ 53 & 55 & 30 \\ 58 & 27 & 17 \\ 111 & 30 & 7 \end{array}$	$\begin{array}{rrr} 30 & 10 & 7 \\ 52 & 21 & 26 \\ 56 & 51 & 54 \\ 109 & 53 & 4 \end{array}$
7	Sun Aldebaran Jupiter Pollux Saturn	W. E. E. E. E.	$\begin{array}{rrr} 37 & 38 & 38 \\ 44 & 30 & 23 \\ 48 & 52 & 37 \\ 86 & 27 & 16 \\ 101 & 44 & 57 \end{array}$	$\begin{array}{rrr} 39 & 8 & 55 \\ 42 & 56 & 8 \\ 47 & 16 & 18 \\ 84 & 49 & 37 \\ 100 & 646 \end{array}$	40 39 24 41 21 55 45 39 50 83 11 46 98 28 23	$\begin{array}{rrr} 42 & 10 & 5 \\ 39 & 47 & 46 \\ 44 & 3 & 14 \\ 81 & 33 & 44 \\ 96 & 49 & 49 \end{array}$
8	Son Aldebaran Jupiter Pollux Saturn	W. E. E. E. E.	49 46 28 31 59 22 35 58 16 73 20 39 88 34 2	51 18 21 30 26 32 34 20 57 71 41 28 86 54 18	52 50 25 28 54 11 32 43 34 70 2 4 85 14 21	$\begin{array}{rrr} 54 & 22 & 42 \\ 27 & 22 & 25 \\ 31 & 6 & 7 \\ 68 & 22 & 29 \\ 83 & 34 & 13 \end{array}$
9	Sun Mars Jupiter Pollux Saturn Regulus	W. W. E. E. E. E.	62 7 11 24 3 39 22 58 58 60 1 33 75 10 29 96 53 51	$\begin{array}{lll} 63 & 40 & 42 \\ 25 & 37 & 40 \\ 21 & 21 & 54 \\ 58 & 20 & 46 \\ 73 & 29 & 7 \\ 95 & 12 & 49 \end{array}$	65 14 26 27 12 4 19 45 7 56 39 47 71 47 32 93 31 35	$\begin{array}{lrr} 66 & 48 & 22 \\ 28 & 46 & 49 \\ 18 & 8 & 46 \\ 54 & 58 & 36 \\ 70 & 5 & 45 \\ 91 & 50 & 8 \end{array}$
10	Sun Mars a Arietis Pollux Saturn Regulus	W. W. W. E. E. E.	$\begin{array}{lll} 74 & 41 & 18 \\ 36 & 45 & 14 \\ 28 & 58 & 3 \\ 46 & 29 & 39 \\ 61 & 33 & 39 \\ 83 & 19 & 40 \end{array}$	$\begin{array}{lll} 76 & 16 & 33 \\ 38 & 21 & 47 \\ 30 & 39 & 7 \\ 44 & 47 & 16 \\ 59 & 50 & 35 \\ 81 & 36 & 55 \end{array}$	$\begin{array}{rrr} 77 & 52 & 0 \\ 39 & 58 & 35 \\ 32 & 20 & 34 \\ 43 & 4 & 41 \\ 58 & 7 & 19 \\ 79 & 53 & 57 \end{array}$	$\begin{array}{rrr} 79 & 27 & 41 \\ 41 & 35 & 40 \\ 34 & 2 & 22 \\ 41 & 21 & 54 \\ 56 & 23 & 49 \\ 78 & 10 & 46 \end{array}$
11	Sun Mars a Arietis Pollux Saturn Regulus	W. W. W. E. E. E.	$\begin{array}{lll} 87 & 29 & 23 \\ 49 & 44 & 55 \\ 42 & 36 & 7 \\ 32 & 45 & 15 \\ 47 & 43 & 3 \\ 69 & 31 & 31 \end{array}$	$\begin{array}{rrr} 89 & 6 & 23 \\ 51 & 23 & 31 \\ 44 & 19 & 45 \\ 31 & 1 & 25 \\ 45 & 58 & 14 \\ 67 & 47 & 1 \end{array}$	90 43 37 53 2 21 46 3 39 29 17 25 44 13 13 66 2 16	$\begin{array}{lll} 92 & 21 & 4 \\ 54 & 41 & 26 \\ 47 & 47 & 49 \\ 27 & 33 & 18 \\ 42 & 27 & 58 \\ 64 & 17 & 19 \end{array}$
12	Sun Mars a Arietis Aldebaran Saturn Regulus	W. W. W. W. E. E.	$\begin{array}{rrr} 100 & 31 & 32 \\ 63 & 0 & 18 \\ 56 & 32 & 27 \\ 26 & 31 & 7 \\ 33 & 38 & 35 \\ 55 & 29 & 17 \end{array}$	$\begin{array}{rrr} 102 & 10 & 16 \\ 64 & 40 & 45 \\ 58 & 18 & 6 \\ 28 & 8 & 21 \\ 31 & 52 & 6 \\ 53 & 43 & 1 \end{array}$	$\begin{array}{rrr} 103 & 49 & 13 \\ 66 & 21 & 25 \\ 60 & 3 & 59 \\ 29 & 46 & 42 \\ 30 & 5 & 24 \\ 51 & 56 & 34 \end{array}$	$\begin{array}{rrr} 105 & 28 & 21 \\ 68 & 2 & 18 \\ 61 & 50 & 6 \\ 31 & 26 & 4 \\ 28 & 18 & 31 \\ 50 & 9 & 54 \end{array}$
18	Sun Mars a Arietis Aldebaran Jupiter	W. W. W. W. W.	$\begin{array}{rrr} 113 & 47 & 0 \\ 76 & 29 & 48 \\ 7043 & 50 \\ 39 & 54 & 13 \\ 33 & 16 & 11 \end{array}$	$\begin{array}{rrr} 115 & 27 & 17 \\ 78 & 11 & 52 \\ 72 & 31 & 11 \\ 41 & 37 & 37 \\ 35 & 1 & 38 \end{array}$	$\begin{array}{rrr} 117 & 7 & 45 \\ 79 & 54 & 7 \\ 74 & 18 & 42 \\ 43 & 21 & 29 \\ 36 & 47 & 24 \end{array}$	$\begin{array}{rrr} 118 & 48 & 22 \\ 81 & 36 & 33 \\ 76 & 6 & 24 \\ 45 & 5 & 46 \\ 38 & 33 & 26 \end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Noon.	IIIT.	VI',	IX ${ }^{\text {h }}$
13	Regulus	E.	$48^{\circ} 23{ }^{\prime \prime}$	$46^{\circ} 355^{\prime \prime} 7$	$44^{\circ} 488^{\prime \prime}$	$43^{\circ} 11^{\prime \prime} 1^{\prime \prime}$
	Spica	E.	1022445	1003746	$98 \quad 50 \quad 35$	$\begin{array}{llll}97 & 3 & 12\end{array}$
14	Sun	W.	120298	$\begin{array}{llll}122 & 10 & 4\end{array}$	123518	$\begin{array}{llll}125 & 32\end{array}$
	Mars	W.	$\begin{array}{llll}83 & 19 & 8\end{array}$	85153	864447	882749
	a Arietis	W.	$\begin{array}{llll}77 & 54 & 16\end{array}$	794218	813029	831849
	Aldebaran	W.	$46 \quad 5026$	483528	502050	$52 \quad 6 \quad 29$
	Jupiter	W.	$\begin{array}{llll}40 & 19 & 43\end{array}$	$42 \quad 6 \quad 15$	43530	$45 \quad 3957$
	Regulus	E.	$\begin{array}{lll}34 & 1 & 18\end{array}$	$\begin{array}{llll}32 & 12 & 49\end{array}$	$\begin{array}{llll}30 & 24 & 12\end{array}$	$\begin{array}{llll}28 & 35 & 26\end{array}$
	Spica	E.	$88 \quad 3 \quad 36$	86 15 12	84 266	$\begin{array}{llll}82 & 37 & 57\end{array}$
15	Mars	W.	$97 \quad 449$	984830	1003216	102165
	Aldebaran	W.	$60 \quad 5831$	624530	$64 \quad 3239$	661956
	Jupiter	W.	$\begin{array}{llll}54 & 37 & 12\end{array}$	$\begin{array}{llll}56 & 25 & 4\end{array}$	$\begin{array}{llll}58 & 13 & 1\end{array}$	$\begin{array}{llll}60 & 1 & 3\end{array}$
	Pollux	W.	174543	193312	$21 \quad 21 \quad 5$	$\begin{array}{llll}23 & 9 & 17\end{array}$
	Spica	E.	$\begin{array}{llll}73 & 3240\end{array}$	$\begin{array}{ll}71 & 4319\end{array}$	695353	$68 \quad 424$
16	Mars	W.	1105540	$\begin{array}{llll}112 & 39 & 36\end{array}$	1142329	116721
	Aldebaran	W.	$\begin{array}{llll}75 & 17 & 42\end{array}$	$77 \quad 525$	$78 \quad 538$	804050
	Jupiter	W.	$\begin{array}{llll}69 & 2 & 7\end{array}$	$70 \quad 5024$	$\begin{array}{llll}72 & 38 & 40\end{array}$	$74 \quad 2655$
	Pollux	W.	$\begin{array}{llll}32 & 13 & 1\end{array}$	$34 \quad 2 \begin{array}{lll}34\end{array}$	$35 \quad 51 \quad 9$	$\begin{array}{llll}37 & 40 & 16\end{array}$
	Spica	E.	$\begin{array}{llll}58 & 56 & 27\end{array}$	$57 \quad 650$	$\begin{array}{llll}55 & 17 & 15\end{array}$	$\begin{array}{llll}53 & 27 & 43\end{array}$
	Antares	E.	1044830	1025847	10196	991927
17	Aldebaran	W.	893840	$\begin{array}{llll}91 & 25 & 58\end{array}$	$\begin{array}{llll}93 & 13 & 9\end{array}$	$\begin{array}{llll}95 & 0 & 11\end{array}$
	Jupiter	W.	$83 \quad 2717$	$8515 \quad 5$	$\begin{array}{llll}87 & 2 & 46\end{array}$	885018
	Pollux	W.	464524	$48 \quad 3714$	$\begin{array}{llll}50 & 22 & 57\end{array}$	521133
	Saturn	W.	314741	331323	$\begin{array}{llll}35 & 2618\end{array}$	371525
	Spica	E.	4421	$4232-0$	$\begin{array}{llll}40 & 43 & 7\end{array}$	385422
	Antares	E.	90128	$88 \quad 2257$	$\begin{array}{llll}86 & 33 & 54\end{array}$	844459
18	Jupiter	W.	$\begin{array}{llll}97 & 45 & 25\end{array}$	993149	101180	$103 \quad 356$
	Pollux	W.	611213	625947	64 47	$\begin{array}{llll}66 & 34 & 14\end{array}$
	Saturn	W.	$46 \quad 18 \quad 30$	$48 \quad 6 \quad 32$	$\begin{array}{llll}49 & 54 & 20\end{array}$	$\begin{array}{llll}51 & 41 & 53\end{array}$
	Regulus	W.	$\begin{array}{llll}24 & 13 & 5\end{array}$	$\begin{array}{rrr}26 & 0 & 54\end{array}$	274828	293549
	Antares	E.	754257	$\begin{array}{llll}73 & 55 & 9\end{array}$	$72 \quad 7 \quad 34$	$\begin{array}{llll}70 & 20 & 14\end{array}$
19	Pollux	W.	75 55	7711124	$\begin{array}{llll}78 & 56 & 35\end{array}$	$\begin{array}{lll}80 & 41 & 27\end{array}$
	Saturn	W.	603543	622138	$64 \quad 713$	$65 \quad 5230$
	Regulus	W.	382833	401414	415936	$\begin{array}{llll}43 & 44 & 40\end{array}$
	Antares	E.	612731	594150	575628	$\begin{array}{llll}56 & 11 & 25\end{array}$
	a Aquilæ	E.	112231	1103519	109759	1074034
20	Pollux	W.	892048	$\begin{array}{llll}91 & 3 & 37\end{array}$	$9246 \quad 6$	$\begin{array}{llll}94 & 28 & 12\end{array}$
	Saturn	W.	$74 \quad 3352$	$\begin{array}{llll}76 & 17 & 5\end{array}$	775957	794227
	Regulus	W.	$\begin{array}{llll}52 & 24 & 57\end{array}$	$54 \quad 758$	$\begin{array}{llll}55 & 50 & 37\end{array}$	$57 \quad 3255$
	Antares	E.	47319	$\begin{array}{lll}45 & 48 & 9\end{array}$	$\begin{array}{llll}44 & 5 & 30\end{array}$	$\begin{array}{llll}42 & 23 & 13\end{array}$
	a Aquilæ	E.	1002336	$\begin{array}{llll}98 & 56 & 29\end{array}$	972932	$\begin{array}{lll}96 & 2 & 17\end{array}$
	Venus	E.	1141018	1123538	111120	1092723
21	Saturn	W.	$88 \quad 922$	894937	$\begin{array}{llll}91 & 29 & 30\end{array}$	$\begin{array}{ccc}93 & 9 & 0\end{array}$
	Regulus	W.	$\begin{array}{llll}65 & 58 & 49\end{array}$	$\begin{array}{llll}67 & 38 & 52\end{array}$	$\begin{array}{llll}69 & 18 & 33 \\ 30 & 37 & 41\end{array}$	$\begin{array}{llll}70 & 57 & 52 \\ 28 & 58\end{array}$
	Antares	E.	$\begin{array}{llll}33 & 57 & 23\end{array}$	$\begin{array}{llll}32 & 17 & 21 \\ 87 & 27\end{array}$	$\begin{array}{rrrr}30 & 37 & 41 \\ 86 & 3 & 0\end{array}$	28 84 84 88
	a Aquilæ	E.	885248	$87 \quad 2743$	$86 \quad 30$	843839

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { hon } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { ansitior } \end{gathered}$		Midnight.	X ${ }^{\text {br }}$.	XVIII ${ }^{\text {b }}$	XXI'.
13	Regulus Spica	$\begin{aligned} & \text { E. } \\ & \mathbf{E .} \end{aligned}$	41 13 36 95 15 158	39 25 47 93 27 9	$\begin{array}{lll} 37 & 37 & 47 \\ 91 & 39 & 57 \end{array}$	$\begin{array}{lll} 35 & 49 & 3 \prime \prime \\ 89 & 51 & 52 \end{array}$
14	Sun	W.	1271340	$128 \quad 55 \quad 7$	1303640	1321819
	Mars	W.	$90 \quad 10 \quad 59$	915417	$\begin{array}{llll}93 & 37 & 41\end{array}$	$95 \quad 2112$
	a Arietis	W.	$\begin{array}{lll}85 & 717\end{array}$	865553	884435	903324
	Aldebaran	W.	$\begin{array}{lll}53 & 52 & 26\end{array}$	553837	$5725 \quad 3$	591141
	Jupiter	W.	$\begin{array}{llll}47 & 27 & 5\end{array}$	491423	$\begin{array}{lll}51 & 151\end{array}$	524928
	Regulus	E.	264632	245731	$23 \quad 822$	21-19 8
	Spica	E.	80497	$79 \quad 010$	77116	752155
15	Mars	W.	1035957	1054352	1072747	1091144
	Aldebaran	W.	$68 \quad 720$	695449	714224	$73 \quad 30 \quad 2$
	Jupiter	W.	614910	633721	652535	$6713 \quad 50$
	Pollux	W.	245743	264621	$2835 \quad 7$	30241
	Spica	E.	661452	642517	623541	60464
16	Mars	W.	117518	1193452	1211830	$\begin{array}{lll}123 & 2 & 2\end{array}$
	Aldebaran	W.	822831	841610	$86 \quad 344$	$87 \quad 5115$
	Jupiter	W.	$\begin{array}{lll}76 & 15 & 7\end{array}$	$\begin{array}{llll}78 & 3 & 17\end{array}$	795122	813922
	Pollux	W.	392922	411828	$43 \quad 730$	445629
	Spica	E.	513813	494847	475926	461011
	Antares	E.	972950	954017	935049	92 1 15
17	Aldebaran	W.	$9647 \quad 3$	983346	1002016	102634
	Jupiter	W.	903741	922454	941156	955847
	Pollux	W.	$54 \quad 0 \quad 1$	554820	573629	592426
	Saturn	W.	$\begin{array}{lll}39 & 423\end{array}$	405312	424149	443016
	Spica	E.	$\begin{array}{lll}37 & 548\end{array}$	351724	$33 \quad 2912$	314114
	Antares	E.	825613	$81 \quad 737$	791912	773059
18		W.	104493 斤	106351	$10820 \quad 9$	$\begin{array}{ll}110 & 459\end{array}$
	Pollux	W.	68216	70 7	71 54	73408
	Saturn	W.	53 31 12	551615	$\begin{array}{llll}57 & 3 & 1\end{array}$	584931
	Regulus	W.	312254	$33 \quad 944$	345617	364234
	Antares	E.	$68 \quad 33 \quad 9$	664619	645946	$6313 \quad 30$
19	Pollux	W.	822559	841012	85545	873737
	Saturn	W.	673727	$69 \quad 22 \quad 4$	$71 \quad 621$	72 50 17
	Regulus	W.	452924	471348	$48 \quad 5752$	504135
	Antares	E.	542641	524217	505813	491431
	a Aquilæ	E.	106136	1044538	1031813	1015051
20	Pollux	W.		975118	993218	1011255
	Saturn	W.	812435	$83 \quad 620$	844743	862844
	Regulus	W.	591450	605623	623734	641823
	Antares	E.	404119	385946	371836	353748
	a Aquilæ	E.	943615	93958	9143.57	901813
	Venus	E.	1075349	1062036	1044745	1031517
21	Saturn	W.	94488	962653	$\begin{array}{llll}98 & 516\end{array}$	994316
	Regulus	W.	723647	$7415 \quad 21$	$75 \begin{array}{llll}75 & 52\end{array}$	773122
	Antares	E.	271929	254057	$24 \quad 248$	22250
	a Aquilæ	E.	831441	81518	80281	$79 \quad 520$

GREENWICH MEAN TIME.						
lunar distances.						
Day of Month.			Noon.	$\mathrm{III}^{\text {b }}$	VIL.	IX ${ }^{\text {b }}$
21	Venus	E.	$101{ }^{\circ} 431^{\prime \prime} 11$	$100^{\circ} 11^{\prime} 28^{\prime \prime}$	$9840{ }^{\circ}$	$97{ }^{\circ} \mathrm{9}$ 9' ${ }^{\prime \prime}$
22	Saturn	W.	1012055	1025812	104357	1061141
	Regulus	W.	798849	804555	822239	83592
	Spiea	W.	251120	26485	282431	$30 \quad 038$
	${ }_{\text {a A Aquilæ }}$	E.	7743	$\begin{array}{llll}76 & 21 & 22\end{array}$	$\begin{array}{lll}75 & 0 & 7\end{array}$	$\begin{array}{ll}73 & 39 \\ 85\end{array}$
	Venus	E.	893951	88115	864240	851437
	Sun ${ }^{\text {r }}$	E.	1341116	1324146	1311237	1294349
23	Regulus	W.	915549	933011	$\begin{array}{llll}95 & 4 & 15\end{array}$	96380
	Spica	W.	375622	393034	$41 \quad 429$	42385
	a Aquilæ	E.	$\begin{array}{llll}67 & 3 & 59 \\ 77 & 50\end{array}$	654642	$\begin{array}{llll}64 & 30 \\ 75\end{array}$	$\begin{array}{llll}63 & 14 & 3\end{array}$
	Venus	E.	775930	763328	$75 \quad 744$	734220
	Fomalhaut	E.	$90 \quad 439$	883644	$87 \quad 96$	854147
	Sun	E.	1222450	$\begin{array}{llll}120 & 58 & 1\end{array}$	1193130	$118 \quad 518$
24	Regulus	W.	1042224	1055429	1072618	1085753
	Spica	W.	502154	515352	532535	$\begin{array}{lll}54 & 57 & 5\end{array}$
	a Aquilæ	E.	$57 \quad 457$	$55 \quad 5330$	544254	533312
	Venus	E.	663936	651553	$\begin{array}{lll}63 & 52 & 24\end{array}$	$\begin{array}{llll}62 & 2910\end{array}$
	Fomalhaut	E.	782948	$77 \quad 420$	753910	741419
	Sun	E.	1105833	109341	108943	1064540
25	Spica	W.				
	Antares	W.	163711	18 7	193734	$\begin{array}{ll}21 & 7 \\ \\ 51\end{array}$
	Venus	E.	553618	541420	525232	513054
	Fomalhaut	E.	671449	655152	642916	$\begin{array}{lll}63 & 7 & 0\end{array}$
	Sun	E.	994842	982553	$\begin{array}{llll}97 & 316\end{array}$	954048
26	Spica	W.	742856	$75 \quad 584$	$\begin{array}{llll}77 & 27 & 6\end{array}$	$\begin{array}{llll}78 & 56 & 4\end{array}$
	Antares	W.	28359	30420	313325	$33 \quad 225$
	Venus	E.	444455	$43 \quad 24 \quad 5$	$42 \quad 321$	404242
	Fomalhaut	E.	562054	55048	$\begin{array}{llll}53 & 41 \\ 7\end{array}$	522150
	Sun	E.	885039	872859	$86 \quad 725$	844556
27	Spica	W.	861954	874833	$89 \quad 1711$	904549
	Antares	W.	$40 \cdot 2630$	415512	432353	445234
	Venus	E.	$\begin{array}{llll}34 & 0 & 25\end{array}$	$3240 \quad 5$	311946	295928
	Fomalhaut	E.	$45 \quad 5237$	443624	$\begin{array}{llll}43 & 20 & 49\end{array}$	$\begin{array}{llll}42 & 5 & 56\end{array}$
	Sun	E.	775928	763818	$\begin{array}{llll}75 & 17 & 9\end{array}$	$\begin{array}{lll}73 & 56 & 0\end{array}$
28						
	Antares	W.	521613	53454	551358	564257
	Fomalhaut	E.	$\begin{array}{llll}36 & 4 & 1\end{array}$	345444	$33 \quad 46 \quad 44$	32409
	Sun	E.	$67 \quad 10 \quad 6$	654849	$64 \quad 27 \quad 29$	$\begin{array}{llll}63 & 6 & 5\end{array}$
29	Antares	W.	$\begin{array}{llll}64 & 9 & 8\end{array}$	653842	$67 \quad 8 \quad 23$	683813
	Sun	E.	$\begin{array}{llll}56 & 17 & 52\end{array}$	545555	533351	521139
30	Antares	W.	$76 \quad 936$	774022	791120	$8042 \quad 29$
	Sun	E.	451838	435534	423221	41857
31	Antares		882113	$8953 \quad 36$	$\begin{array}{llll}91 & 2612\end{array}$	92592
	a Aquilæ	W.	445414	455634	$\begin{array}{lrr}47 & 0 & 21 \\ 31 & 20\end{array}$	48 5 30 29 55
	Sun	E.	$34 \quad 9 \quad 23$	324456	312019	295531

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIIP.	XXI.
21	Venus	E.	953883	$99^{\circ} \quad 8119$	92388	$91^{\circ} \quad 885$
22	Saturn	W.	1074754	1092346	1105918	1123429
	Regulus	W.	85354	871046	88467	90218
	Spica	W.	313625	331153	34471	362151
	a Aquilæ	E.	721911	705931	694025	682154
	Venus	E.	834655	821934	805233	792551
	Sun	E.	1281521	1264713	1251926	1235158
23	Regulns	W.	981127	994436	1011729	102505
	Spica	W.	441124	454426	471711	484940
	a Aquilæ	E.	615845	604410	593019	581714
	Venus	E.	721713	705224	692751	$\begin{array}{lll}68 & 3 & 36\end{array}$
	Fomalhaut	E.	841447	82484	812140	795535
	Sun	E.	1163923	1151346	1134825	1122321
24	Regulus	W.	1102914	$112 \quad 021$	1133116	115158
	Spica	W.	562820	575922	593012	$\begin{array}{ll}61 & 0\end{array} 49$
	a Aquilæ	E.	$\begin{array}{lll}52 & 24 & 27\end{array}$	511642	$\begin{array}{ll}50 & 9 \\ 59\end{array}$	49420
	Venus	E.	$\begin{array}{lll}61 & 6 & 9\end{array}$	594323	$\begin{array}{llll}58 & 20 & 49\end{array}$	565828
	Fomalhaut	E.	724947	712534	70 1 9	68384
	Sun	E.	1052151	1035815	1023452	1011141
25	Spica	W.	683115	$70 \quad 0 \quad 52$	713020	725941
	Antares	W.	223718	$24 \quad 657$	253628	27552
	- Venus	E.	$50 \quad 926$	48486	472655	$46 \quad 5 \quad 52$
	Fomalhaut	E.	61454	602329	$59 \quad 215$	574123
	Sun	E.	941830	925621	913420	901226
26	Spica	W.	802456	815345	832231	845113
	Antares	W.	343121	$\begin{array}{lll}36 & 0 & 12\end{array}$	37291	385747
	Venus	E.	39227	$\begin{array}{lll}38 & 1 & 37\end{array}$	364110	352047
	Fomalhaut	E.	$\begin{array}{lll}51 & 3 & 0\end{array}$	494438	482646	$47 \quad 925$
	Sun	E.	832431	$82 \quad 311$	804154	792040
27	Spica	W.	921427	93436	951146	964028
	Antares	W.	462115	474957	491841	504726
	Venus	E.	28399	271850	$25 \quad 5829$	24387
	Fomalhaut	E.	405147	393826	382558	371428
	Sun	E.	723452	711343	695232	$68 \quad 3120$
28	Spica	W.	104445	1053850	$107 \quad 30$	1083217
	Antares	W.	58120	59418	611022	623942
	Fomalhaut	E.	31358	303152	293033	283123
	Sun	E.	614437	60234	$59 \quad 126$	573942
29	Antares	W.	$70 \quad 811$	713818	$73 \quad 834$	74390
	Sun	E.	504920	492653	$\begin{array}{lll}48 & 4 & 17\end{array}$	464132
30	Antares	W.	821349	834521	85176	86493
	Sun	E.	394523	382139	365744	353339
31	Antares	W.	94325	$96 \quad 5 \quad 23$	973855	991241
	a Aquilæ	W.	491157	501936	512825	523820
	Sun	E.	283033	$27 \quad 5 \quad 26$	$2540 \quad 9$	241444

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Naa } \\ \text { and } \\ \text { aosition } \end{gathered}$		Noon.	IIIL.	VI'.	IX ${ }^{\text {b }}$
5	Sun	W.	$26^{\circ} \quad 0{ }^{\prime} 23$	$27^{\circ} 33^{\prime \prime} 4{ }^{\prime \prime}$	29° '18	$30^{\circ} 419$
	Jupiter	E.	362030	344116	$\begin{array}{lll}33 & 158\end{array}$	312236
	Pollux	E.	$\begin{array}{llll}70 & 8 & 6\end{array}$	682641	66456	$65 \quad 321$
	Saturn	E.	843617	825440	811251	793052
	Regulus	E.	107125	1051948	1033759	1015559
6	Sun	W.	$38 \quad 3344$	$40 \quad 851$	41449	$\begin{array}{lllll}43 & 19 & 37\end{array}$
	Pollux	E.	$\begin{array}{llll}56 & 32 & 9\end{array}$	544927	$\begin{array}{llll}53 & 6 & 38\end{array}$	512340
	Saturn	E.	705824	$6915 \quad 26$	$67 \quad 3219$	65494
	Regulus	E.	932329	914030	895723	88146
7	Sun	W.	511921	525544	543215	$\begin{array}{llll}56 & 8 & 53\end{array}$
	Mars	W.	21344	224010	24171	255413
	Pollux	E.	42476	41328	391945	373557
	Saturn	E.	571044	$55 \quad 2641$	534231	515815
	Regulus	E.	793538	775133	$76 \quad 721$	$7423 \quad 2$
8	Sun	W.	641353	655113	$67 \quad 2839$	$69 \quad 611$
	Mars	W.	$34 \quad 422$	$3543 \quad 2$	372153	$39 \quad 0 \quad 53$
	Aldebarau	W.	173820	19346	203212	$22 \quad 3 \quad 2$
	Pollux	E.	$28 \quad 56 \quad 9$	27127	$25 \quad 287$	$\begin{array}{llll}23 & 44 & 9\end{array}$
	Saturn	E.	431514	413020	394521	$38 \quad 0 \quad 16$
	Regulus	E.	653946	635448	$62 \quad 945$	602436
9	Sun	W.	771510	785313	803120	$82 \quad 932$
	Mars	W.	471758	485744	$50 \quad 3737$	$\begin{array}{llll}5217 & 36\end{array}$
	Aldebaran	W.	$30 \quad 052$	313935	$\begin{array}{llll}33 & 19 & 0\end{array}$	34592
	Jupiter	W.	192147	$21 \quad 239$	$\begin{array}{llll}22 & 44 & 7\end{array}$	$\begin{array}{llll}24 & 26 & 2\end{array}$
	Saturn	E.	291342	272810	254235	235656
	Regulus	E.	513733	495154	$48 \quad 611$	$\begin{array}{llll}46 & 20 & 23\end{array}$
	Spica	E.	1053934	103540	102820	1002237
10	Sun	W.	902128	$\begin{array}{lll}92 & 0 & 2\end{array}$	$\begin{array}{lllll}93 & 38 & 39\end{array}$	$95 \quad 1718$
	Mars	W.	603846	621914	635945	654021
	Aldebaran	W.	$43 \quad 26 \quad 7$	$45 \quad 835$	465119	483418
	Jupiter	W.		344359	$\begin{array}{llll}36 & 27 & 42\end{array}$	$\begin{array}{llll}38 & 11 & 33 \\ 38\end{array}$
	Regulus	E.	373026	354417	$\begin{array}{llll}33 & 58 & 4\end{array}$	321148
	Spica	E.	91330	894654	$88 \quad 045$	861433
11	Sun	W.	1033110	$\begin{array}{llll}10510 & 1\end{array}$	1064854	1082747
	Mars	W.	$74 \quad 4 \quad 3$	754455	772548	$79 \quad 643$
	Aldebaran	W.	$\begin{array}{llll}57 & 12 & 1\end{array}$	58561	$\begin{array}{llll}60 & 40 \\ 7\end{array}$	$\begin{array}{ll}62 & 2420\end{array}$
	Jupiter	W.	465230	483657	502128	$\begin{array}{llll}52 & 6 & 1\end{array}$
	Pollux	W.	$14 \quad 341$	154658	173054	$\begin{array}{llll}19 & 15 & 18\end{array}$
	Spica	E.	772257	$75 \quad 3632$	73506	$\begin{array}{lllll}72 & 3 & 38\end{array}$
12	Sun	W.	1164217	118219	$120 \quad 0 \quad 0$	1213849
	Mars	W.	873132	891230	$\begin{array}{llll}90 & 53 & 28\end{array}$	923424
	Aldebaran	W.	71631	72516	743542	762020
	Jupiter	W.	604924	62347	$\begin{array}{llll}6418 & 52 \\ 31\end{array}$	$\begin{array}{llll}66 \quad 3 & 36\end{array}$
	Pollux	W.	$28 \quad 122$	$2947 \quad 2$	313247	331836
	Spica	E.	$\begin{array}{r}631112 \\ \hline 109\end{array}$	612444 107645	$\begin{array}{r}59 \\ 59 \\ 10516 \\ \hline 1012\end{array}$	575150 1034340
	Antares	E.	$\begin{array}{ll}109 & 319\end{array}$	1071645	1053012	1034340

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { Hon } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's } \mathrm{N} \text { N } \\ \text { and } \\ \text { aositic } \end{gathered}$		Midnight.	XVb.	XVIIT.	XXI'.
5	Sun	W.	$32^{\circ} 1514$	$33^{\circ} 49^{\prime} 33^{\prime \prime}$	$3524 \quad 4$	$36^{\circ} 58{ }^{\text {c }} 48$
	Jupiter	E.	294312	$28 \quad 349$	262428	244511
	Pollux	E.	632125	613920	59575	581441
	Saturn	E.	774842	$\begin{array}{llll}76 & 6 & 22\end{array}$	742353	
	Regulus	E.	1001349	983129	964859	$95 \quad 619$
6	Sun	W.	445516	46314	$\begin{array}{llll}48 & 7 & 1\end{array}$	49437
	Pollux	E.	494035	475722	$4614 \quad 3$	443037
	Saturn	E.	$64 \quad 540$	62228	603827	585439
	Regulus	E.	863040	84477	$83 \quad 325$	811935
7	Sun	W.	574539	592233	605933	623640
	Mars	W.	273145	$29 \quad 933$	304736	322553
	Pollux	E.	$35 \quad 525$	34810	322411	30,4010
	Saturn	E.	501351	482921	464445	$45 \quad 0 \quad 3$
	Regulus	E.	723835	70542	$69 \quad 923$	$67 \quad 2437$
8	Sov	W.	704348	722131	735919	753712
	Mars	W.	$4040 \quad 2$	421920	435845	453818
	Aldebaran	W.	233551	251018	$2646 \quad 5$	28230
	Pollux	E.	22017	201634	1833	164949
	Saturn	E.	$\begin{array}{llll}36 & 15 & 7\end{array}$	342952	324433	305910
	Regulus	E.	583921	56542	$\begin{array}{lll}55 & 8 & 37\end{array}$	$\begin{array}{lll}53 & 23 & 7\end{array}$
9	Sun	W.	834748	$85 \quad 26 \quad 7$	87431	884258
	Mars	W.	535740	553749	5718	585823
	Aldebaran	W.	$\begin{array}{llll}36 & 39 & 36\end{array}$	$38 \quad 2039$	$\begin{array}{llll}40 & 2 & 7\end{array}$	414357
	Jupiter	W.	$26 \quad 821$	275059	293354	31173
	Saturn	E.	221115	202530	183944	165357
	Regulus	E.	443431	424835	$41 \quad 236$	391633
	Spica	E.	983649	965057	$\begin{array}{lll}95 & 5 & 2\end{array}$	93 19
10	Sun	W.	96560	. 983445	1001331	1015220
	Mars	W.	67210	$69 \quad 141$	704226	$72 \quad 2313$
	Aldebaran	W.	501729	$52 \quad 0 \quad 52$	534426	552810
	Jupiter	W.	395532	413938	43 43	4588
	Regrilus	E.	302530	$28 \quad 39 \quad 9$	265246	25621
	Spica	E.	842818	$8242 \quad 1$	805542	$79 \quad 920$
11	Sun	W.	$110 \quad 641$	1114535	1132430	115
	Mars	W.	804740	$82 \quad 2837$	$84 \quad 935$	155 85
	Aldebaran	W.	$64 \quad 838$	65531	$67 \quad 3728$	692158
	Jupiter	W.	535038	553517	571958	$59 \quad 440$
	Pollux	W.	$21 \quad 0 \quad 4$	22457	243023	261549
	Spica	E.	$70 \quad 1710$	683041	664411	$64 \quad 5742$
12	Sun	W.	1231735	1245620	126351	1281338
	Mars	W.	941520	955613	12737 97	99 17 1
	Aldebaran	W.	$78 \quad 458$	794935	813412	831848
	Jupiter	W.	674819	69332	$\begin{array}{ll}71 & 17 \\ 43\end{array}$	$73 \quad 222$
	Pollux	W.	$\begin{array}{lll}35 & 4 & 27\end{array}$	$\begin{array}{llll}36 & 50 & 19\end{array}$	383613	$40 \quad 22 \quad 7$
	Spica	E.	$\begin{array}{lll}56 & 5 & 25\end{array}$	$\begin{array}{llll}54 & 19 & 2\end{array}$	523241	504623
	Antares	E.	1015710	1001041	$98 \quad 2414$	963749

GREENWICH MEAN TIME.

lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Mone. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III.	VI' ${ }^{\text {b }}$	IXb.
13	Mars	W.	$100^{\circ} 5883{ }^{\prime \prime}$		$104{ }^{\circ} 20^{\prime \prime} 11$	$106^{\circ} \quad 0 \quad 36$
	Aldebaran	W.	$85 \quad 322$	864753	883221	901646
	Jupiter	W.	744658	763132	7816	$80 \quad 031$
	Pollux	W.	4280	435352	453942	472530
	Saturn	W.	272854	$2915 \quad 2$	$31 \begin{array}{lll}31 & 7\end{array}$	32479
	Spica	E.	$\begin{array}{llll}49 & 0 & 8\end{array}$	471357	$45 \quad 2749$	434146
	Antares	E.	945127	$\begin{array}{lll}93 & 5 & 8\end{array}$	911853	893242
14	Aldebaran	W.	985733	1004122	102254	104837
	Jupiter	W.	884136	902532	92921	$\begin{array}{llll}93 & 53 & 2\end{array}$
	Pollux	W.	561332	575854	59449	612918
	Saturn	W.	41367	432138	$\begin{array}{llll}45 & 7 & 1\end{array}$	465218
	Regulus	W.	19 13 13	2059	224436	24300
	Spica	E.	345255	$\begin{array}{llll}33 & 7 & 29\end{array}$	312211	$2937 \quad 2$
	Antares	E.	804259	785720	771147	752622
15	Jupiter	W.	1022921	104128	1055444	107379
	Pollux	W.	7013	715721	734139	752526
	Saturn	W.	553635	572059	$59 \quad 511$	604914
	Regulus	W.	$\begin{array}{llll}33 & 14 & 56\end{array}$	345928	36 43 43 49	38 67 1
	Antares	E.	664123	645651	631230	612819
	a Aquilæ	E,	1161949	1145445	$113 \quad 2920$	$\begin{array}{llll}112 & 3 & 37\end{array}$
16	Pollux	W.	$84 \quad 218$	$8545 \quad 3$	872733	$89 \quad 950$
	Saturn	W.	692625	$71 \quad 913$	725147	74347
	Regulus	W.	$47 \quad 5 \quad 53$	484850	503133	$5214 \quad 2$
	Antares	E.	525025	$51 \quad 728$	492445	474217
	a Aquilæ	E.	104522	1032524	1015844	100325
17	Pollux	W.	973732	$\begin{array}{llll}99 & 18 & 17\end{array}$	1005847	102390
	Saturn	W.	$83 \quad 2$	844252	862325	$88 \quad 340$
	Regulus	W.	604244	622342	$\begin{array}{lll}64 & 4 & 24\end{array}$	654449
	Antares	E.	391335	373237	355156	341131
	a Aquilæ	E.	93201	91542	902815	89241
18	Saturn				993732	1011529
	Regulus	W.	$74 \quad 242$	754125		$78 \quad 5758$
	Spica	W.	$20 \quad 556$	21449	$\begin{array}{llll}23 & 22 & 8\end{array}$	245953
	a Aquilæ	E.	$8159 \quad 2$	$\begin{array}{lllll}80 & 35 & 17\end{array}$	791155	774857
	Fomalhaut	E.	1064436	1051317	103427	102119
19	Saturn	W.	1092049	110570	1123253	114828
	Regulus	W.	$87 \quad 412$	884034	901638	915225
	Spica	W.	$\begin{array}{lll}33 & 4 & 44\end{array}$	344053	361646	375223
	a Aquilæ	E.	71.049	$\begin{array}{llll}69 & 40 & 41\end{array}$	$\begin{array}{llll}68 & 21 \\ 9\end{array}$	$\begin{array}{lrr}67 & 2 & 6 \\ 90 & 11 & 7\end{array}$
	Fomalhaut	E.	943920	$\begin{array}{llll}93 & 9 & 41\end{array}$	914016	$\begin{array}{llll}90 & 11 & 7\end{array}$
	Venus,	E.	1132725	1115951	1103235	109536
20	Regulus	W.	$9947 \quad 2$	101217	1025456	1042829
	Spica	W.	454618	472016	485359	502726
	a Aquilæ	E.	$\begin{array}{llll}60 & 36 & 37\end{array}$	592137	$58 \quad 7 \quad 24$	565359
	Fomalhaut	E.	824931	81224	795455	78286
	∇ enus	E.	101550	1002944	99444	973959
	a Pegasi	E.	1044251	1031316	1014353	1001442

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Mone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { aositior } \end{gathered}$		Midnight.	XV.	XVIII.	Xxpr.
13	Mars	W.	107418	1092132	$111{ }^{\circ} 151$	$112{ }^{1} 42$
	Aldebaran	W.	9216	934522	$\begin{array}{llll}95 & 29 & 32\end{array}$	19713 96
	Jupiter	W.	814454	832913	851326	$\begin{array}{llll}86 & 57 & 34\end{array}$
	Pollux	W.	491115	505656	524233	54285
	Saturn	W.	34337	36190	$38 \quad 448$	395031
	Spica	E.	415548	$40 \quad 955$	38249	363828
	Antares	E.	874635	$86 \quad 032$	841435	822844
14	Aldebaran	W.	$\begin{array}{llll}105 & 52 & 1\end{array}$	1073515	1091818	111110
	Jupiter	W.	95 36	97 20	$\begin{array}{llll}99 & 3 & 17\end{array}$	1004624
	Pollux	W.	631419	645913	664358	682835
	Saturn ${ }^{\text {a }}$	W.	483727	502227	$\begin{array}{llll}52 & 719\end{array}$	$5352 \quad 2$
	Regulus	W.	261516	$28 \quad 0 \quad 25$	294524	313015
	Spica	E.	27523	$\begin{array}{lll}26 & 714\end{array}$	242236	223811
	Antares	E.	73415	715556	701056	$68 \quad 26 \quad 5$
15	Jupiter	W.	1091922	$\begin{array}{lll}111 & 1 & 23\end{array}$	1124311	1142446
	Pollux	W.	$77 \quad 912$	785247	80 3610	821920
	Saturn	W.	$6233 \quad 4$	641643	$66 \quad 0 \quad 10$	674324
	Regulus	W.	401158	415546	433921	452244
	Antares	E.	594420	$58 \quad 033$	561658	543335
	a Aquilæ	E.	1103739	1091127		$\begin{array}{ll} 106 \quad 18 \quad 37 \end{array}$
16	Pollux	W.	905153	923340	941513	955630
	Saturn	W.	761613	7758	$\begin{array}{ll}79 & 39 \\ 39\end{array}$	81210
	Regulus	W.	535616	553816	$5720{ }^{5} 1$	$\begin{array}{llll}59 & 130\end{array}$
	Antares	E.	$46 \quad 0 \quad 2$	44182	$\begin{array}{llll}42 & 36 & 18\end{array}$	405449
	a Aquilæ	E.	99 $5 \quad 29$	$97 \quad 3857$	961230	944611
17	Pollux	W.	1041856	1055835	1073756	109171
	Saturn	W.	894339	912321	$93 \quad 246$	944154
	Regulus	W.	672458	$\begin{array}{lll}69 & 450\end{array}$	704425	72 23
	Antares	E.	323123	305131	291157	273240
	a Aquilæ	E.	873722	861219	844734	83238
18	Saturn	W.	102539	1043031	106 7 84	1074421
	Regulus	W.	803548	821321	$83 \quad 5036$	$\begin{array}{r}85 \\ \hline 18\end{array}$
	Spica	W.	26 37 62	281437	295135	312818
	a Aquilæ	E.	$76 \quad 2624$	$\begin{array}{llll}75 & 4 & 17\end{array}$	734238	722128
	Fomalhaut	E.	1004021	$\begin{array}{llll}99 & 9 & 46\end{array}$	$97 \quad 3924$	$\begin{array}{lll} 96 & 9 & 15 \end{array}$
19	Saturn		1154346	1171847	1185330	1202757
	Regulus	W.	$\begin{array}{llll}93 & 27 & 54\end{array}$	$\begin{array}{llll}95 & 3 & 6\end{array}$	118638 96	981240
	Spica	W.	392743	$41 \quad 246$	423733	44123
	a Aquilæ	E.	654342	642555	$63 \quad 848$	615221
	Fomalhaut	E.	884214	871337	854517	841715
	Venus	E.	1073855	1061231	1044624	1032034
20		W.	106147	1073449	109736	110409
	Spica	W.	$\begin{array}{lll}52 & 0 & 37\end{array}$	533334	$55 \quad 616$	56 56
	a Aquilæ	E.	$\begin{array}{llll}55 & 41 & 25\end{array}$	542944	$\begin{array}{llll}53 & 19 & 0\end{array}$	52 9 14
	Fomalhaut	E.		$75 \quad 35 \quad 23$	$74 \begin{array}{llll}74 & 91\end{array}$	724358
	Venus	E.	$\begin{array}{llll}96 & 15 & 31\end{array}$	945118	932721	$92 \quad 3 \quad 38$
	a Pegasi	E.	984543	971656	954823	$94 \quad 20 \quad 2$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month.	$\begin{gathered} \text { Star's Na } \begin{array}{c} \text { and } \\ \text { Positio } \end{array} . \end{gathered}$		Midnight.	XV.	XVIITr.	XXI ${ }^{\text {b }}$
21	Spica	W.	641785	$6{ }^{\circ} 48^{\circ} 4{ }^{\prime \prime}$	671939	$6850{ }^{\circ}$
	Fomalhaut	E.	654125	641758	625454	613213
	Venus	E.	$85 \quad 836$	834614	82246	8129
	a Pegasi	E.	$87 \quad 125$	853419	$84 \quad 726$	824045
	Sun	E.	1245657	1233326	122107	1204658
22	Spica	W.	762135	775122	79210	805031
	Antares	W.	$3028 \quad 0$	315750	332732	34577
	Fomalhaut	E.	544455	532447	$\begin{array}{llll}52 & 5 & 8\end{array}$	504559
	Venus	E.	74154	$\begin{array}{llll}72 & 54 & 8\end{array}$	713320	701240
	${ }_{a}$ Pegasi	E.	753018	$\begin{array}{ll}74 & 4\end{array} 7$	723929	711421
	Sun	E.	1135343	1123130		
23	Spica	W.	881635	894533	911428	924320
	Antares	W.	$42 \quad 2327$	435229	$45 \quad 2127$	$4650 \quad 22$
	Fomalhaut	E.	441845	$\begin{array}{llll}43 & 316\end{array}$	414832	403438
	Venus	E.	6331	621057	$60 \quad 5058$	59312
	a Pegasi	E.	641130	624729	612339	$60 \quad 0 \quad 0$
	Sten	E.	102597	1013741	1001618	985458
24	Spica	W.	$100 \quad 713$	101360	103 ' 447	1043336
	Antares	W.	541432	554322	571213	$5841 \quad 6$
	Fomalhaut	E.	$\begin{array}{llll}34 & 40 & 1\end{array}$	333245	32270	312254
	Venus	E.	525158	513212	$\begin{array}{llll}5012 & 27\end{array}$	485240
	${ }_{a}$ Pegasi	E.	53448	514224	502014	485820
	Sun	E.	$\begin{array}{llll}92 & 8 & 43\end{array}$	904728	892613	88455
25	Spica	W.	1115828	1132740	1145657	1162621
	Antares	W.	$\begin{array}{llll}66 & 6 & 17\end{array}$	673533	69455	703423
	Venus	E.	$\begin{array}{llll}42 & 13 & 19\end{array}$	405318	393313	38134
	${ }^{\text {a Pegasi }}$	E.	421322	405329	39343	$\begin{array}{llll}38 & 15 & 8\end{array}$
	Sun	E.	811742	7956	783416	
26	Antares	W.	$\begin{array}{llll}78 & 3 & 43\end{array}$	79343	81433	823514
	Venus	E.	31310	301019	284932	272840
	${ }^{a}$ Pegasi	E.	$\begin{array}{llll}31 & 50 & 47\end{array}$	303638	292343	281212
	Sun	E.	702111	685829	673538	$6612 \quad 36$
27					$\begin{array}{llll}93 & 15 & 50\end{array}$	944817
	a Aquilæ	W. '	$46 \quad 20$	$47 \quad 5 \quad 51$	$4811 \quad 2$	$\begin{array}{ll}49 & 17 \\ 30\end{array}$
	Venus	E.	$\begin{array}{llll}20 & 43 & 16\end{array}$	19228	$\begin{array}{llll}18 & 1 & 4\end{array}$	16408
	Sun	E.	591434	575020	$56 \quad 2552$	$\begin{array}{llll}55 & 111\end{array}$
28	Antares	W.	1023427	104831	1054253	1071732
	a Aquilæ	W.	$55 \quad 645$	$\begin{array}{lll}56 & 19 & 37\end{array}$	573324	$5848 \quad 3$
	Sun	E.	$\begin{array}{llll}47 & 54 & 4\end{array}$	-46 2753	$45 \quad 126$	433444
29	a Aquilæ	W.	$\begin{array}{lll}65 & 13 & 7\end{array}$	663216	$67 \quad 52 \quad 3$	691229
	Fomalhaut	W.	384746	$\begin{array}{lll}40 & 6 \quad 37\end{array}$	412646	42489
	Sun	E.	361718	$3449 \quad 2$	$33 \quad 20 \quad 33$	$\begin{array}{llll}31 & 51 & 49\end{array}$
30			$\begin{array}{llll}76 & 3 & 3\end{array}$	772642	785049	801521
	Fomalhaut	W.	495045	511759	52461	541448
	Sun	E.	242513	$2255 \quad 28$	212542	195558

GREENWICH MEAN TTME.						
LUNAR DISTANCES.						
Day of Month.			Noon.	1112.	VIr.	IX ${ }^{\text {¹. }}$
4	Sun Pollux Saturn Regulus	W. E. E. E.	$\begin{array}{llll} 21 & 15 & \prime \prime \\ 46 & 53 & 86 \\ 46 & 53 & 26 \\ 61 & 57 & 37 \\ 83 & 42 & 20 \end{array}$	$\begin{array}{rrrr} 22 & 51 & 39 \\ 45 & 7 & 29 \\ 60 & 11 & 37 \\ 81 & 55 & 57 \end{array}$	$\begin{array}{rrrr} 24 & 28 & 39 \\ 43 & 21 & 26 \\ 58 & 25 & 27 \\ 80 & 9 & 25 \end{array}$	26° 6 41 35 17 56 39 10 78 22 45
5	Sun Pollux Saturn Regulus	W. E. E. E.	$\begin{array}{lll} 34 & 17 & 24 \\ 32 & 43 & 28 \\ 47 & 45 & 59 \\ 69 & 27 & 41 \end{array}$	$\begin{array}{rrr} 35 & 56 & 18 \\ 30 & 57 & 1 \\ 45 & 59 & 4 \\ 67 & 40 & 23 \end{array}$	$\begin{array}{lll} 37 & 35 & 22 \\ 29 & 10 & 36 \\ 44 & 12 & 6 \\ 65 & 53 & 1 \end{array}$	$\begin{array}{lrr} 39 & 14 & 34 \\ 27 & 24 & 13 \\ 42 & 25 & 3 \\ 64 & 5 & 35 \end{array}$
6	Sun Mars Jupiter Saturn Regulus Spica	W. W. W. E. E. E.	$\begin{array}{rrr} 47 & 32 & 2 \\ 25 & 11 & 25 \\ 11 & 7 & 30 \\ 33 & 29 & 18 \\ 55 & 7 & 49 \\ 109 & 10 & 8 \end{array}$	$\begin{array}{rrr} 49 & 11 & 43 \\ 26 & 52 & 24 \\ 12 & 44 & 55 \\ 31 & 42 & 6 \\ 53 & 20 & 12 \\ 107 & 22 & 35 \end{array}$	$\begin{array}{rrr} 50 & 51 & 26 \\ 28 & 33 & 33 \\ 14 & 24 & 22 \\ 29 & 54 & 53 \\ 51 & 32 & 34 \\ 105 & 35 & 3 \end{array}$	$\begin{array}{rrr} 52 & 31 & 10 \\ 30 & 14 & 51 \\ 16 & 5 & 11 \\ 28 & 7 & 42 \\ 49 & 44 & 58 \\ 103 & 47 & 30 \end{array}$
7	SUn Mars Jupiter Regulus Spica	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	60 49 52 38 42 24 24 39 46 40 47 15 94 50 7	$\begin{array}{lrr} 62 & 29 & 33 \\ 40 & 24 & 0 \\ 26 & 23 & 44 \\ 38 & 59 & 50 \\ 93 & 2 & 45 \end{array}$	64 9 11 42 5 35 28 7 53 37 12 28 91 15 26	$\begin{array}{llr} 65 & 48 & 47 \\ 43 & 47 & 10 \\ 29 & 52 & 9 \\ 35 & 25 & 10 \\ 89 & 28 & 11 \end{array}$
8	Sun Mars Jupiter Pollux Regulus Spica	W. W. W. W. E. E.	$\begin{array}{rrr} 74 & 5 & 50 \\ 52 & 14 & 30 \\ 38 & 34 & 17 \\ 11 & 7 & 6 \\ 26 & 29 & 44 \\ 80 & 33 & 1 \end{array}$	75 45 1 53 55 47 40 18 43 12 48 15 24 42 55 78 46 14	77 24 6 55 37 0 42 3 7 14 30 39 22 56 12 76 59 32	79 3 7 57 18 9 43 47 29 16 13 52 21 9 34 75 12 57
9	Sun Mars Jupiter Pollux Spica Antares	W. W. W. W. E. E.	$\begin{array}{rrr} 871636 \\ 654230 \\ 5228 & 18 \\ 2455 & 34 \\ 66 & 21 & 36 \\ 112 & 13 & 31 \end{array}$	$\begin{array}{rrr} 88 & 54 & 59 \\ 67 & 23 & 4 \\ 54 & 12 & 13 \\ 2640 & 20 \\ 6435 & 40 \\ 110 & 27 & 31 \end{array}$	$\begin{array}{rrrr} 90 & 33 & 14 \\ 69 & 3 & 31 \\ 55 & 56 & 3 \\ 28 & 25 & 7 \\ 62 & 49 & 52 \\ 108 & 41 & 37 \end{array}$	$\begin{array}{rrr} 92 & 11 & 22 \\ 70 & 43 & 52 \\ 57 & 39 & 46 \\ 30 & 9 & 54 \\ 61 & 4 & 11 \\ 106 & 55 & 50 \end{array}$
10	Sun Mars Jupiter Pollux Saturn Spica ${ }^{\circ}$ Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 100 & 20 & 5 \\ 79 & 3 & 47 \\ 66 & 16 & 42 \\ 38 & 53 & 10 \\ 23 & 14 & 6 \\ 52 & 17 & 45 \\ 98 & 8 & 53 \end{array}$	$\begin{array}{rrr} 10157 & 25 \\ 80 & 43 & 24 \\ 67 & 59 & 44 \\ 40 & 37 & 36 \\ 24 & 58 & 36 \\ 50 & 32 & 52 \\ 96 & 23 & 53 \end{array}$	$\begin{array}{rrr} 103 & 34 & 37 \\ 82 & 22 & 52 \\ 69 & 42 & 38 \\ 42 & 21 & 55 \\ 26 & 42 & 59 \\ 48 & 48 & 8 \\ 94 & 39 & 2 \end{array}$	$\begin{array}{rrr} 105 & 11 & 41 \\ 84 & 2 & 12 \\ 71 & 25 & 25 \\ 44 & 6 & 9 \\ 28 & 27 & 13 \\ 47 & 3 & 33 \\ 92 & 54 & 18 \end{array}$
11	Sun Mars Jupiter Pollux Saturn Regulus Spica Antares	W. W. W. W. W. W. E. E.	$\begin{array}{rrr} 113 & 14 & 44 \\ 92 & 16 & 49 \\ 79 & 57 & 15 \\ 52 & 45 & 33 \\ 37 & 6 & 20 \\ 15 & 44 & 23 \\ 38 & 22 & 52 \\ 84 & 12 & 50 \end{array}$	$\begin{array}{rrr} 114 & 50 & 53 \\ 93 & 55 & 18 \\ 81 & 39 & 11 \\ 54 & 29 & 3 \\ 38 & 49 & 43 \\ 17 & 28 & 9 \\ 36 & 39 & 13 \\ 82 & 28 & 59 \end{array}$	$\begin{array}{rrr} 116 & 26 & 52 \\ 95 & 33 & 38 \\ 83 & 20 & 59 \\ 56 & 12 & 25 \\ 40 & 32 & 57 \\ 19 & 11 & 48 \\ 34 & 55 & 43 \\ 80 & 45 & 17 \end{array}$	$\begin{array}{rrr} 118 & 2 & 41 \\ 97 & 11 & 50 \\ 85 & 2 & 38 \\ 57 & 55 & 38 \\ 42 & 16 & 2 \\ 20 & 55 & 17 \\ 33 & 12 & 24 \\ 79 & 1 & 43 \end{array}$

GREENWIOH MEAN TTME.						
Lunar distances.						
Day of Month Month	$\begin{array}{r} \text { Star's N } \mathrm{N} \\ \text { and } \\ \text { Positit } \end{array}$		Midnight.	XV'.	XVIII.	EXIr.
4	Sun Pollux Saturn Regulus	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	27 48 47 39 49 2 54 52 45 76 35 58	$\begin{array}{rrr} 29 & 21 & 49 \\ 38 & 2 & 43 \\ 53 & 6 & 12 \\ 74 & 49 & 3 \end{array}$	$$	$\begin{array}{llll} 32 & 38 & 1 \prime \prime \\ 34 & 29 & 55 \\ 49 & 32 & 49 \\ 71 & 14 & 54 \end{array}$
5	Sun Pollux Saturn Regulus	W. E. E. E.	$\begin{array}{lll} 40 & 53 & 54 \\ 25 & 37 & 56 \\ 40 & 37 & 58 \\ 62 & 18 & 6 \end{array}$	$\begin{array}{lll} 42 & 33 & 19 \\ 23 & 51 & 46 \\ 38 & 50 & 50 \\ 60 & 30 & 34 \end{array}$	$\begin{array}{rrr} 44 & 12 & 49 \\ 22 & 5 & 47 \\ 37 & 3 & 41 \\ 58 & 43 & 1 \end{array}$	$\begin{array}{lll} 45 & 52 & 24 \\ 20 & 20 & 1 \\ 35 & 16 & 30 \\ 56 & 55 & 25 \end{array}$
6	Sun Mars Jupiter Saturn Regulus Spica	W. W. W. E. E. E.	$\begin{array}{rrr} 54 & 10 & 55 \\ 31 & 56 & 14 \\ 17 & 47 & 0 \\ 26 & 20 & 32 \\ 47 & 57 & 22 \\ 101 & 59 & 58 \end{array}$	$\begin{array}{rrr} 55 & 50 & 41 \\ 33 & 37 & 43 \\ 19 & 29 & 31 \\ 24 & 33 & 24 \\ 46 & 9 & 47 \\ 100 & 12 & 27 \end{array}$	$\begin{array}{lll} 57 & 30 & 26 \\ 35 & 19 & 14 \\ 21 & 12 & 34 \\ 22 & 46 & 18 \\ 44 & 22 & 14 \\ 98 & 24 & 58 \end{array}$	59 10 10 37 0 49 22 56 1 20 59 14 42 34 44 96 37 31
7	Sun Mars Jupiter Regulus Spica	W. W. W. E. E.	67 28 19 45 28 44 31 36 30 33 37 55 87 41 0	69 7 48 47 10 15 33 20 55 31 50 45 85 53 53	$\begin{array}{rrr} 70 & 47 & 13 \\ 48 & 51 & 43 \\ 35 & 5 & 22 \\ 30 & 3 & 40 \\ 84 & 6 & 51 \end{array}$	$\begin{array}{rrr} 72 & 26 & 34 \\ 50 & 33 & 8 \\ 36 & 49 & 49 \\ 28 & 16 & 39 \\ 82 & 19 & 53 \end{array}$
8	Sun Mars Jupiter Pollux Regulus Spica	W. W. W. W. E. E.	$\begin{array}{lll} 80 & 42 & 1 \\ 58 & 59 & 12 \\ 45 & 31 & 47 \\ 17 & 57 & 40 \\ 19 & 23 & 4 \\ 73 & 26 & 27 \end{array}$	82 20 50 60 40 10 47 16 2 19 41 50 17 36 40 71 40 4	83 59 32 62 21 3 49 0 12 21 26 15 15 50 24 69 53 48	85 38 8 64 1 49 50 44 18 23 10 51 14 4 15 68 7 38
9	SUN Mars Jupiter Pollux Spica Antares	W. W. W. W. E. E.	$\begin{array}{rrr} 93 & 49 & 22 \\ 72 & 24 & 6 \\ 59 & 23 & 23 \\ 31 & 54 & 40 \\ 59 & 18 & 38 \\ 105 & 10 & 11 \end{array}$	$\begin{array}{rrr} 95 & 27 & 14 \\ 74 & 4 & 12 \\ 61 & 6 & 53 \\ 33 & 39 & 23 \\ 57 & 33 & 12 \\ 103 & 24 & 40 \end{array}$	$\begin{array}{rrr} 97 & 4 & 59 \\ 75 & 44 & 12 \\ 62 & 50 & 16 \\ 35 & 24 & 3 \\ 55 & 47 & 55 \\ 101 & 39 & 17 \end{array}$	98 42 36 77 24 3 64 33 33 37 8 39 54 2 46 99 54 1
10	Sun Mars Jupiter Pollux Saturn Spica Antares	$\begin{aligned} & W . \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 106 & 48 & 35 \\ 85 & 41 & 25 \\ 73 & 8 & 3 \\ 45 & 50 & 16 \\ 30 & 11 & 19 \\ 45 & 19 & 6 \\ 91 & 9 & 44 \end{array}$	$\begin{array}{rrr} 108 & 25 & 21 \\ 87 & 20 & 28 \\ 74 & 50 & 34 \\ 47 & 34 & 16 \\ 31 & 55 & 17 \\ 43 & 34 & 49 \\ 89 & 25 & 17 \end{array}$	$\begin{array}{rrr} 110 & 1 & 58 \\ 88 & 59 & 24 \\ 76 & 32 & 56 \\ 49 & 18 & 9 \\ 33 & 39 & 7 \\ 41 & 50 & 41 \\ 87 & 40 & 59 \end{array}$	$\begin{array}{rrr} 111 & 38 & 25 \\ 90 & 38 & 11 \\ 78 & 15 & 10 \\ 51 & 1 & 55 \\ 35 & 22 & 48 \\ 40 & 6 & 42 \\ 85 & 56 & 50 \end{array}$
11	Sun Mars Jupiter Pollux Saturn Regulus Spica Antares	W. W. W. W. W. W. E. E.	11938 21 98 49 52 86 44 8 59 38 43 43 58 58 22 38 38 31 29 15 77 18 19	$\begin{array}{rrr} 121 & 13 & 50 \\ 100 & 27 & 44 \\ 88 & 25 & 28 \\ 61 & 21 & 40 \\ 45 & 41 & 45 \\ 24 & 21 & 51 \\ 29 & 46 & 17 \\ 75 & 35 & 5 \end{array}$	$\begin{array}{rrr} 122 & 49 & 9 \\ 102 & 5 & 28 \\ 90 & 6 & 39 \\ 63 & 4 & 28 \\ 47 & 24 & 23 \\ 26 & 4 & 54 \\ 28 & 3 & 30 \\ 73 & 51 & 59 \end{array}$	$\begin{array}{rrr} 124 & 24 & 17 \\ 103 & 43 & 2 \\ 91 & 47 & 41 \\ 64 & 47 & 7 \\ 49 & 6 & 50 \\ 27 & 47 & 48 \\ 26 & 20 & 55 \\ 72 & 9 & 3 \end{array}$

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { then } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI' ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
12	Sun	W.	$125^{\circ} 59{ }^{\prime \prime}$	$127^{\circ} 34$ I'	$129^{\circ} 8837$	$130^{\circ} 43^{\prime \prime} 1$
	Mars	W.	1052026	1065740	1083444	1101138
	Jupiter	W.	932833	$\begin{array}{llll}95 & 9 & 15\end{array}$	964948	983010
	Pollux	W.	662937	681157	69548	713610
	Saturn	W.	50498	$\begin{array}{llll}52 & 31 & 17\end{array}$	541315	$\begin{array}{llll}55 & 55 & 4\end{array}$
	Regulus	W.	293032	31137	325532	343748
	Spica	E.	243832	225622	211426	193244
	Antares	E.	702617	684341	$67 \quad 114$	651857
13	Jupiter	W.	1064926	1082845	$\begin{array}{ll}110 & 753\end{array}$	1114650
	Pollux	W.	$80 \quad 349$	814450	832540	85620
	Saturn	W.	642134	$66 \quad 220$	674256	692321
	Regulus	W.	$43 \quad 635$	444749	$46 \quad 2853$	$48 \quad 946$
	Antares	E.	56506	558851	$\begin{array}{llll}53 & 27 & 47\end{array}$	514653
	a Aquilæ	E.	1081628	1065138	1052641	104139
14	Pollux	W.	$\begin{array}{llll}93 & 26 & 53\end{array}$	$\begin{array}{llll}95 & 6 & 25\end{array}$	$\begin{array}{llll}96 & 45 & 46\end{array}$	98 84 85
	Saturn	W.	774237	792154	$81 \quad 059$	823952
	Regulus	W.	563123	58119	595042	61304
	Antares	E.	432514	414528	$40 \quad 5 \quad 54$	$38 \quad 2632$
	a Aquilæ	E.	96566	$9531 \quad 5$	$94 \quad 610$	924121
15	Pollux	W.	1063735	1081530	1095312	11130.40
	Saturn	W.	905116	922856	$\begin{array}{ll}94 & 623\end{array}$	954337
	Regulus	W.	694353	$7122 \begin{aligned} & 71\end{aligned}$	725959	743743
	Spica	W.	154854	172613	19 3	204036
	Antares	E.	$\begin{array}{llll}30 & 12 & 42\end{array}$	28.3433	265636	251853
	a Aquilæ	E.	85 39 40	841557	$\begin{array}{llll}82 & 52 & 29\end{array}$	$\begin{array}{llll}81 & 2917\end{array}$
	Fomalhaut	E.	1104327	1091310	1074255	1061244
16	Saturn	W.	1034635	1052232	1065815	1083345
	Regulus	W.	82439	841935	85 55	87 31 48 8 31
	Spica	W.	28 84	302014	315612	$\begin{array}{llll}33 & 31 & 59\end{array}$
	\boldsymbol{a} Aquilæ	E.	74388	731711	715618	7036
	Fomalhaut	E.	984317	971347	954426	941515
17	Regulus	W.	$95 \quad 2831$	$\begin{array}{llll}97 & 3 & 12\end{array}$	$\begin{array}{llll}98 & 37 & 40\end{array}$	1001155
	Spica	W.	412748	$43 \quad 221$	443641	$46 \quad 1049$
	a Aquilæ	E.	$\begin{array}{llll}64 & 216\end{array}$	624511	612845	601259
	Fomalhaut	E.	865213	852415	$\begin{array}{llll}83 & 56 & 31\end{array}$	$\begin{array}{llll}82 & 29 & 1\end{array}$
	a Pegasi	E.	108479	$10717 \quad 5$	105479	1041721
18	Regulus	W.	1075959	1093257	11154	1123818
	Spica	W.	535820	553113	$\begin{array}{llll}57 & 3 & 54 \\ 51\end{array}$	583623
	a Aquilæ	E.	$54 \quad 523$	525424	514423	503523
	Fomalhaut	E.	751525	734932	72 23 17	705840
	${ }_{a}$ Pegasi	E.	965040	$95 \quad 2149$	$9353 \quad 9$	922439
19	Spica	W.	$\begin{array}{llll}66 & 15 & 56\end{array}$	674717	$\begin{array}{llll}69 & 18 & 28\end{array}$	7049 28
	Antares	W.	$2022{ }^{6}$	215332	232446	245551
	Fomalhaut	E.	635714	62341	611110	594843
	a Pegasi	$\mathrm{E} .$	85 4 57 15 25 36	$\begin{array}{r}83 \\ \hline 11435\end{array}$	$\begin{array}{r}821024 \\ \hline 1124156\end{array}$	$\begin{array}{r}80 \\ 43 \\ \hline 11125\end{array}$
	Venus	E.	$115 \quad 2536$	114341	1124156	1112020

GREENWICH MEAN TLME.

LUNAR DISTANCES.

Day of the Month.	Star's Na and Position		Midnight.	$\mathbf{X V}{ }^{\text {b }}$.	XVIII.	$\mathbf{X X I}{ }^{\mathbf{h}}$.
12	Sun	W.	$132^{\circ} 17^{\prime} 13$	$133^{\circ} 511^{\prime \prime} 13$	$1350{ }^{\circ} 25^{\prime \prime}$	1368888
	Mars	W.	1114822	1132456	$\begin{array}{lll}115 & 1 & 19\end{array}$	1163731
	Jupiter	W.	1001022	1015024	1033015	105956
	Pollux	W.	$\begin{array}{llll}73 & 18 & 1\end{array}$	745943	$\begin{array}{llll}76 & 41 & 15\end{array}$	$\begin{array}{llll}78 & 22 & 37\end{array}$
	Saturn	W.	573642	$\begin{array}{llll}59 & 18 & 11\end{array}$	$60 \quad 5929$	624037
	Regulus	W.	$\begin{array}{llll}36 & 19 & 54\end{array}$	$38 \quad 150$	394335	412510
	Spica	E.	175120	161013	142929	124910
	Antares	E.	633651	615454	$\begin{array}{llll}60 & 13 & 8\end{array}$	$\begin{array}{llll}58 & 31 & 32\end{array}$
13	Jupiter	W.	$\begin{array}{lll}113 & 25 & 35\end{array}$	1154	1164231	1182041
	Pollux	W.	864649	$88 \quad 27 \quad 7$	$90 \quad 714$	91479
	Saturn	W.	$71 \quad 335$	$\begin{array}{llll}72 & 43 & 37\end{array}$	$74 \quad 2329$	$76 \quad 30$
	Regulus	W.	495028	$\begin{array}{llll}51 & 30 & 58\end{array}$	$\begin{array}{llll}53 & 11 & 18\end{array}$	$\begin{array}{llll}54 & 51 & 26\end{array}$
	Antares	E.	50611	482540	464520	$45 \quad 511$
	a Aquilæ	E.	1023633	1011126	994618	982111
14	Pollux	W.	$\begin{array}{llll}100 & 3 & 51\end{array}$	1014236	103218	1045928
	Saturn	W.	841833	$85 \quad 57 \quad 3$	$87 \quad 3520$	891324
	Regulus	W.	$\begin{array}{llll}63 & 9 & 14\end{array}$	644813	$\begin{array}{llll}66 & 26 & 59\end{array}$	$68 \quad 532$
	Antares	E.	364721	$35 \quad 823$	332937	31513
	a Aquilæ	E.	911640	89528	$\begin{array}{llll}88 & 27 & 47\end{array}$	$87 \quad 3 \begin{array}{lll} & 37\end{array}$
15	Pollux	W.	$113 \quad 756$	1144459	1162148	1175824
	Saturn	W.	$97 \quad 2039$	$\begin{array}{llll}98 & 57 & 28\end{array}$	100343	1021026
	Regulus	W.	$\begin{array}{llll}76 & 15 & 13\end{array}$	775232	$\begin{array}{llll}79 & 29 & 37\end{array}$	81629
	Spica	W.	$\begin{array}{llll}22 & 17 & 37\end{array}$	$\begin{array}{llll}23 & 54 & 29\end{array}$	$\begin{array}{llll}25 & 31 & 11\end{array}$	$\begin{array}{llll}27 & 7 & 48\end{array}$
	Antares	E.	234122	$\begin{array}{lll}22 & 4 & 4\end{array}$	202659	$\begin{array}{llll}18 & 50 & 7\end{array}$
	a Aquilæ	E.	$80 \quad 623$	784348	772133	$75 \quad 5939$
	Fomalhaut	E.	1044238	$\begin{array}{llll}103 & 1237\end{array}$	1014243	1001256
16	Saturn	W.	$\begin{array}{lll}110 & 9 & 2\end{array}$	111445	1131855	1145333
	Regulus	W.	$89 \quad 735$	$9043 \quad 9$	921830	$\begin{array}{llll}93 & 53 & 37\end{array}$
	Spica	W.	$35 \quad 733$	364255	$\begin{array}{llll}38 & 18 & 5\end{array}$	39533
	a Aquilæ	E.	691615	$\begin{array}{llll}67 & 56 & 57\end{array}$	$\begin{array}{llll}66 & 38 & 10\end{array}$	651956
	Fomalhaut	E.	924615	$91 \quad 1726$	$89 \quad 4849$	882025
17	Regulus	W.	1014558	1031947	1045324	1062648
	Spica	W.	474444	$\begin{array}{llll}49 & 18 & 26\end{array}$	505156	522514
	a Aquilæ	E.	$\begin{array}{llll}58 & 57 & 55\end{array}$	574335	$\begin{array}{llll}56 & 30 & 1\end{array}$	$\begin{array}{llll}55 & 17 & 16\end{array}$
	Fomalhaut	E.	$81 \quad 1 \begin{array}{lll}81\end{array}$	$\begin{array}{llll}79 & 34 & 46\end{array}$	$78 \quad 8 \quad 3$	764135
	a Pegasi	E.	1024742	1011812	994852	$98 \quad 1941$
18	Regulus	W.	1141040	1154251	1171450	1184637
	Spica	W.	$60 \quad 841$	614046	631241	644424
	a Aquilæ	E.	49 27 18	482038	$\begin{array}{llll}47 & 15 & 1\end{array}$	461040
	Fomalhaut	E.	693343	. 6895	664447	$65 \quad 2050$
	a Pegasi	E.	905621	892813	$88 \quad 0 \quad 16$	863231
19	Spica	W.	$\begin{array}{llll}72 & 20 & 19\end{array}$	735059	$75 \quad 2130$	765152
	Antares	W.	$26 \quad 2645$	275730	29285	305831
	Fomalhaut	E.	582641	57	554354	$54 \quad 2312$
	a Pegasi	E.	$79 \quad 1637$	7750	$76 \quad 23 \quad 37$	745725
	Venus	E.	1095854	1083738	1071631	1055533

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Nam and Position.		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
20	Spica	W.	$78^{\circ} 222^{\prime \prime}$	$79^{\circ} 522^{10} 10$	$81^{\circ} 22^{\prime \prime}$	$82^{\circ} 511^{\prime} 56^{\prime \prime}$
	Antares	W.	322848	335856	$\begin{array}{llll}35 & 28 & 57\end{array}$	365850
	Fomalhaut	E.	$\begin{array}{lll}53 & 2 & 59\end{array}$	514316	50246	$49 \quad 5 \quad 29$
	a Pegasi	E.	$\begin{array}{llll}73 & 31 & 24\end{array}$	$72 \quad 5 \quad 36$	$70 \quad 40 \quad 0$	691436
	Venus	E.	1043443	103142	1015328	100332
	Sun	E.	$138 \quad 2544$	$137 \quad 332$	1354126	1341925
21	Spica	W.	$\begin{array}{llll}90 & 19 & 17\end{array}$	914828	$\begin{array}{llll}93 & 17 & 34\end{array}$	944635
	Antares	W.	442630	455545	472454	48540
	Fomalhant	E.	424211	412747	$40 \quad 1416$	$\begin{array}{llll}39 & 1 & 44\end{array}$
	a Pegasi	E.	621040	604632	592236	575884
	Venus	E.	935235	$\begin{array}{llll}92 & 32 & 48\end{array}$	91135	$\begin{array}{llll}89 & 53 & 27\end{array}$
	Sun	E.	1273041	$\begin{array}{ll}126 & 910\end{array}$	1244743	1232620
22	Spica	W.	1021051	1033936	$\begin{array}{llll}105 & 8 & 19\end{array}$	$10637 \quad 3$
	Antares	W.	$\begin{array}{lll}5618 & 35\end{array}$	574724	$\begin{array}{llll}59 & 16 & 12\end{array}$	604459
	a Pegasi	E.	$\begin{array}{llll}51 & 4 & 5\end{array}$	494156	$48 \quad 20 \quad 4$	$\begin{array}{llll}46 & 58 & 32\end{array}$
	Venus	E.	$\begin{array}{llll}83 & 16 & 9\end{array}$	815648	$80 \quad 37 \quad 29$	$\begin{array}{llll}79 & 18 & 11\end{array}$
	Sun	E.	1163959	1151848	1135736	1123625
23	Antares	W.	$68 \quad 9 \quad 9$	69385	$\begin{array}{llll}71 & 7 & 5\end{array}$	$\begin{array}{llll}72 & 36 & 9\end{array}$
	a Pegasi	E.	$\begin{array}{llll}40 & 16 & 30\end{array}$	385728	37390	$\begin{array}{llll}36 & 2110\end{array}$
	Venus	E.	724135	$\begin{array}{llll}71 & 22 & 11\end{array}$	$70 \quad 245$	684315
	Sun	E.	1055010	1042848	103721	1014551
24	Antares	W.	$\begin{array}{lll}80 & 2 & 48\end{array}$	813228	$\begin{array}{llll}83 & 2 & 16\end{array}$	843213
	Venus	E.	62.439	604438	$\begin{array}{llll}59 & 24 & 31\end{array}$	$\begin{array}{lll}58 & 4 & 17\end{array}$
	Sun	E.	945656	$93 \quad 3448$	$92 \quad 1232$	90508
25	Antares	W.		$\begin{array}{llll}93 & 35 & 31\end{array}$	$\begin{array}{llll}95 & 6 & 45\end{array}$	
	a Aquilæ	W.	$47 \quad 10 \quad 8$	$\begin{array}{llll}48 & 14 & 58\end{array}$	$\begin{array}{llll}49 & 21 & 1\end{array}$	$\begin{array}{lll} 50 & 28 & 12 \end{array}$
	Venus	E.	512059	$\begin{array}{llll}49 & 59 & 51\end{array}$	$\begin{array}{llll}48 & 38 & 33\end{array}$	$\begin{array}{llll}47 & 17 & 4\end{array}$
	Sun	E.	$83 \quad 55 \quad 34$	$82 \quad 32 \quad 5$	$81 \quad 823$	794428
26	Antares	W.	1041911	$\begin{array}{llll}105 & 52 & 11\end{array}$	1072528	
	a Aquilæ	W.	561930	573231	584623	$\begin{array}{llll}60 & 1 & 2\end{array}$
	Fomalhaut	W.	303926	314426	325140	$\begin{array}{lll}34 & 0 & 57\end{array}$
	Venus	E.	$40 \quad 2651$	$\begin{array}{lll}39 & 4 & 14\end{array}$	374125	$\begin{array}{llll}36 & 18 & 24\end{array}$
	Sun	E.	724118	$\begin{array}{llll}71 & 15 & 52\end{array}$	$69 \quad 50 \quad 10$	$68 \quad 2411$
27	a Aquilæ	W.	$\begin{array}{llll}66 & 25 & 21\end{array}$	674415		
	Fomalhaut	W.	401259	413143	$\begin{array}{llll}42 & 51 & 40\end{array}$	441246
	Venus	E.	292044	$27 \quad 5646$	$\begin{array}{llll}26 & 32 & 44\end{array}$	$\begin{array}{lll}25 & 8 & 39\end{array}$
	Sun	E.	$61 \quad 943$	$\begin{array}{llll}59 & 41 & 52\end{array}$	$\begin{array}{llll}58 & 13 & 41\end{array}$	$\begin{array}{llll}56 & 45 & 10\end{array}$
28	a Aquilæ	W.	$\begin{array}{lll}77 & 13 & 11\end{array}$	$\begin{array}{llll}78 & 36 & 36\end{array}$	$\begin{array}{lll}80 & 0 & 31 \\ 54 & 7 & 57\end{array}$	
	Fomalhant	W.	511328	$\begin{array}{llll}52 & 40 & 18\end{array}$	$\begin{array}{llll}54 & 7 & 57\end{array}$	$\begin{array}{llll}55 & 36 & 22\end{array}$
	a Pegasi	W.	$29 \quad 3249$	$\begin{array}{llll}30 & 52 & 55\end{array}$	$\begin{array}{llll}32 & 14 & 51\end{array}$	$\begin{array}{llll}33 & 38 & 29\end{array}$
	Sun	E.	$\begin{array}{llll}49 & 17 & 23\end{array}$	$47 \quad 46 \quad 46$	461548	$44 \quad 4430$
29		W.				
	Fomalhaut	W.	$\begin{array}{llr}63 & 9 & 5\end{array}$	644134	$\begin{array}{llll}66 & 14 & 39\end{array}$	$\begin{array}{llll}67 & 48 & 19\end{array}$
	a Pegasi	W.	$\begin{array}{llll}40 & 57 & 20\end{array}$	$\begin{array}{llll}42 & 28 & 33\end{array}$	$\begin{array}{rrrr}44 & 0 & 44\end{array}$	$45 \quad 33 \quad 51$
	Sun		$37 \quad 243$	352921	$\begin{array}{llll}33 & 5541\end{array}$	322143

GREENWICH MEAN TIME.

LUNAR DISTANCES.

$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Star's Na and Position		Midnight.	XVb.	XVIII ${ }^{\text {a }}$	XXI ${ }^{\text {b }}$
20	Spica	W.	$84^{\circ} 21317$	$85^{\circ} 511^{\prime \prime} 12$	$87^{\circ} 200^{\prime \prime}$	$88^{\circ} 500^{\prime \prime}$
	Antares	W.	382835	395813	412745	425710
	Fomalhaut	E.	474728	46 30	$\begin{array}{llll}45 & 13 & 23\end{array}$	435724
	a Pegasi	E.	674924	662424	645937	$6335 \quad 2$
	Venus	E.	991244	975232	963227	951228
	Sun	E.	1325730	1313541	1301356	1285217
21	Spica	W.	$\begin{array}{llll}96 & 15 & 32\end{array}$	974426	$\begin{array}{llll}99 & 13 & 17\end{array}$	100425
	Antares	W.	50231	515158	$53 \quad 2053$	544945
	Fomalhaut	E.	$\begin{array}{llll}37 & 50 & 13\end{array}$	$\begin{array}{llll}36 & 39 & 50\end{array}$	$\begin{array}{lllll}35 & 30 & 41\end{array}$	342253
	a Pegasi	E.	$\begin{array}{llll}56 & 35 & 27\end{array}$	$\begin{array}{llll}55 & 12 & 13\end{array}$	534915	522632
	Venus	E.	883353	871422	$85 \quad 5455$	843531
	Sun	E.	122 459	1204341	1192226	$\begin{array}{ll}118 & 112\end{array}$
22	Spica	W.	108546	1093429	$\begin{array}{llll}111 & 314\end{array}$	$\begin{array}{llll}112 & 32 & 1\end{array}$
	Antares	W.	621346	634235	$\begin{array}{llll}65 & 11 & 24\end{array}$	664015
	$a \mathrm{Pegasi}$	E.	$\begin{array}{llll}45 & 37 & 20\end{array}$	$\begin{array}{llll}44 & 16 & 30\end{array}$	$\begin{array}{llll}42 & 56 & 4\end{array}$	41363
	Venus	E.	775854	763936	$\begin{array}{lllll}75 & 20 & 17\end{array}$	$74 \quad 057$
	Sun	E.	1111513	109541	1083246	1071129
23	Antares	W.	$\begin{array}{llll}74 & 5 & 17\end{array}$	$\begin{array}{llll}75 & 34 & 30\end{array}$	$77 \quad 349$	783315
	a Pegasi	E.	$35 \quad 4 \quad 2$	334740	323211	$\begin{array}{llll}31 & 17 & 41\end{array}$
	Venus	E.	672341	$66 \quad 4 \quad 3$	644421	632433
	Sun	E.	1002416	$99 \quad 235$	974049	961856
24	Antares	W.	$86 \quad 2 \quad 20$	87 32	$\begin{array}{llll}89 & 3 & 2\end{array}$	903340
	Venus	E.	564355	$55 \quad 23 \quad 24$	$54 \quad 245$	524157
	Sun	E.	892734	$88 \quad 450$	864156	851851
25	Antares	W.	$98 \quad 955$	994151	101142	1024629
	a Aquilæ	W.	513629	524548	53566	$55 \quad 721$
	Venus	E.	$45 \quad 5525$	$44 \quad 3334$	431131	414917
	Sun	E.	$78 \quad 2020$	$\begin{array}{llll}76 & 55 & 57\end{array}$	75.3119	$74 \quad 626$
26	Antares	W.	1103254	$\begin{array}{lll}112 & 7 & 5\end{array}$	1134135	$\begin{array}{lll}115 & 1625\end{array}$
	a Aquilæ	W.	611627	$\begin{array}{llll}62 & 32 & 37\end{array}$	634931	$65 \quad 76$
	Fomalhaut	W.	$\begin{array}{llll}35 & 12 & 7\end{array}$	$\begin{array}{llll}36 & 25 & 2\end{array}$	$37 \quad 3933$	$\begin{array}{llll}38 & 55 & 34\end{array}$
	Venus	E.	$\begin{array}{llll}34 & 55 & 12\end{array}$	$\begin{array}{llll}33 & 31 & 49\end{array}$	$\begin{array}{lll}32 & 8 & 17\end{array}$	304434
	Sun	E.	665755	653120	$\begin{array}{lll}64 & 427\end{array}$	$62 \quad 3714$
-27	a Aquilæ	W.	714441	$\begin{array}{llll}73 & 5 & 59\end{array}$	$\begin{array}{llll}74 & 27 & 51\end{array}$	$75 \quad 5015$
	Fomalhaut	W.	$\begin{array}{llll}45 & 34 & 57\end{array}$	$46 \quad 5810$	482221	494728
	Venus	E.	234434	$22 \quad 2033$	20 56 12	1933
	Sun	E.	$\begin{array}{llll}55 & 16 & 18\end{array}$	$5347 \quad 6$	$5217 \quad 32$	504738
28	a Aquilæ	W.		$\begin{array}{llll}84 & 15 & 1\end{array}$	$85 \quad 4042$	87647
	Fomalhaut	W.	$57 \quad 5 \quad 32$	$\begin{array}{llll}58 & 35 & 25\end{array}$	$60 \quad 5 \quad 59$	613713
	${ }_{\text {a Pegasi }}$	W.	$\begin{array}{llll}35 & 3 & 39\end{array}$	$36 \quad 3013$	$\begin{array}{llll}37 & 58 & 5\end{array}$	$\begin{array}{llll}39 & 27 & 9\end{array}$
	Sun	E.	431250	414048	$\begin{array}{llll}40 & 8 & 27\end{array}$	383545
29	${ }^{*}$ Aquilæ	W.	942228	$\begin{array}{llll}95 & 50 & 30\end{array}$	$\begin{array}{llll}97 & 18 & 47\end{array}$	984716
	Fomalhaut	W.	692232	$70 \quad 5717$	$\begin{array}{llll}72 & 32 & 32\end{array}$	$\begin{array}{llll}74 & 818\end{array}$
	a Pegasi	W.	$47 \quad 748$	$48 \quad 4234$	$\begin{array}{llll}50 & 18 & 7\end{array}$	$\begin{array}{llll}51 & 54 & 23\end{array}$
	Sun	E.	304728	291257	$27 \quad 3812$	$26 \quad 315$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Name and Position		Noon.	IIIb.	VI ${ }^{\text {b }}$.	IX ${ }^{\text {b }}$
3	Sun	W.	$30^{\circ} \quad 27 \quad 31$	$32^{\circ} 98919$	33518	$35^{\circ} 333^{\prime \prime}$
	Regulus	E.	$45 \quad 1832$	$43 \quad 2746$	41373	394623
	Spica	E.	992130	$97 \quad 3048$	95408	934932
4	Son	W.	$\begin{array}{llll}44 & 5 & 48\end{array}$	$\begin{array}{llll}45 & 48 & 1\end{array}$	$47 \begin{array}{lll}47 & 30 & 7\end{array}$	$\begin{array}{llll}49 & 12 & 8\end{array}$
	Regulus	E.	$\begin{array}{llll}30 & 34 & 18\end{array}$	$28 \quad 4414$	$\begin{array}{llll}26 & 54 & 18\end{array}$	$25 \quad 431$
	Spica	E.	843741	824738	$80 \quad 5744$	$79 \quad 7 \quad 59$
5	Sun	W.	5740	59218	$61 \quad 2 \quad 2$	$62 \quad 4244$
	Pollux	W.	212139	$\begin{array}{llll}23 & 8 & 32\end{array}$	245529	264225
	Spica	E.	$\begin{array}{lll}70 & 1 & 46\end{array}$	$68 \quad 136$	$\begin{array}{llll}66 & 24 & 38\end{array}$	$64 \quad 36 \quad 24$
	Antares	E.	1155330	114444	1121610	1102750
6	Sun	W.	$71 \quad 30$	$\begin{array}{lllll}72 & 42 & 22\end{array}$	$\begin{array}{ll}74 & 2129\end{array}$	$76 \quad 0 \quad 22$
	Pollux	W.	353540	372152	$39 \quad 752$	405340
	Saturn	W.	174932	193544	212142	$\begin{array}{llll}23 & 7 & 25\end{array}$
	Spica	E.	$55 \quad 3842$	535153	$52 \quad 5 \quad 21$	$\begin{array}{llll}50 & 19 & 3\end{array}$
	Antares	E.	1012933	994237	975556	$96 \quad 9 \quad 30$
7	Sun	W.	84110	854822	872527	$\begin{array}{lll}89 & 2 & 18\end{array}$
	Pollux	W.	493923	512350	$\begin{array}{llll}53 & 8 & 2\end{array}$	545159
	Saturn	W.	31528	$\begin{array}{llll}33 & 3618\end{array}$	35.2011	$37 \quad 3 \quad 49$
	Regulus	W.	$\begin{array}{llll}12 & 37 & 24\end{array}$	$1422 \quad 2$	$\begin{array}{lll}16 & 6 & 27\end{array}$	175038
	Spica	E.	413136	394655	$\begin{array}{llll}38 & 2 & 32\end{array}$	$\begin{array}{llll}36 & 18 & 25\end{array}$
	Antares	E.	$87 \quad 2113$	853620	835144	$82 \quad 723$
8	Sun	W.	$97 \quad 232$	$\begin{array}{llll}98 & 37 & 48\end{array}$	1001249	1014734
	Pollux	W.	$\begin{array}{llll}63 & 28 & 1\end{array}$	651029	665241	$\begin{array}{llll}68 & 34 & 38\end{array}$
	Saturn	W.	$\begin{array}{llll}45 & 37 & 59\end{array}$	$47 \quad 20 \quad 2$	$49 \quad 149$	504321
	Regulus	W.	$\begin{array}{llll}26 & 27 & 55\end{array}$	$\begin{array}{llll}28 & 10 & 37\end{array}$	295314	$\begin{array}{llll}31 & 35 & 16\end{array}$
	Spica	E.	274211	$25 \quad 5951$	241748	22365
	Antares	E.	$73 \quad 2938$	714653	$70 \quad 4 \quad 23$	$\begin{array}{llll}68 & 22 & 8\end{array}$
	a Aquilæ	E.	$\begin{array}{lll}122 & 1\end{array}$	1203920	119178	1175433
9	Sun	W.	1093724	1111037	1124335	$\begin{array}{lll}114 & 1618\end{array}$
	Pollux	W.	$77 \quad 041$	$\begin{array}{lllll}78 & 41 & 10\end{array}$	802124	82123
	Saturn	W.	$\begin{array}{llll}59 & 7 & 8\end{array}$	$6047 \quad 9$	622655	$64 \quad 6 \quad 26$
	Regulus	W.	$40 \quad 229$	414312	$43 \quad 2339$	$45 \quad 3 \quad 52$
	Antares	E.	$59 \quad 5444$	5814	$\begin{array}{llll}56 & 33 & 31\end{array}$	$54 \quad 5317$
	a Aquilæ	E.	1105721	1093320	108912	1064459
10	Sun	W.	1215614	$123 \quad 2730$	1245832	1262920
	Pollux	W.	$\begin{array}{llll}90 & 17 & 49\end{array}$	915625	$\begin{array}{llll}93 & 34 & 48\end{array}$	$\begin{array}{llll}95 & 12 & 57\end{array}$
	Saturn	W.	$72 \quad 2027$	735833	$\begin{array}{llll}75 & 36 & 26\end{array}$	$7714 \begin{array}{lll}77 & 6\end{array}$
	Regulus	W.	532125	$55 \quad 0 \quad 15$	$\begin{array}{llll}56 & 38 & 51\end{array}$	$\begin{array}{llll}58 & 17 & 14\end{array}$
	Antares	E.	$\begin{array}{llll}46 & 35 & 37\end{array}$	$\begin{array}{llll}44 & 56 & 47\end{array}$	$\begin{array}{llll}43 & 18 & 10\end{array}$	$\begin{array}{llll}41 & 39 & 47\end{array}$
	a Aquilæ	E.	$\begin{array}{lllll}99 & 43 & 36\end{array}$	$\begin{array}{llll}98 & 19 & 25\end{array}$	96 55 188	$\begin{array}{llll}95 & 31 & 17\end{array}$
	Fomalhant	E.	1253041	$124 \quad 234$	1223416	121549
11	Pollux	W.	1032025	$\begin{array}{llll}104 & 57 & 17\end{array}$	$\begin{array}{llll}106 & 33 & 55\end{array}$	1081022
	Saturn	W.	$\begin{array}{llll}85 & 19 & 8\end{array}$	$\begin{array}{llll}86 & 55 & 30\end{array}$	883140	$\begin{array}{llll}90 & 7 & 38\end{array}$
	Regulus	W.	$\begin{array}{llll}66 & 25 & 52\end{array}$	$\begin{array}{llll}68 & 2 & 57\end{array}$	$\begin{array}{llll}69 & 39 & 51\end{array}$	$\begin{array}{llll}71 & 16 & 32\end{array}$
	Spica	W.	$\begin{array}{llll}12 & 34 & 29\end{array}$	$\begin{array}{llr}14 & 10 & 6 \\ 31 & 53 & 50\end{array}$	$\begin{array}{rrrr}15 & 45 & 48 \\ 30 & 17 & 5\end{array}$	$\begin{array}{llll}17 & 21 & 31 \\ 28\end{array}$
	Antares	E.	33315	315359	3017	284024

GREENWIOH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$			Midnight.	$\mathbf{X V}^{\text {b }}$.	XVIII.	EXIb.
3	Sun Regulus Spica	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{llll} 37 & 16 & 2 \prime 3 \\ 37 & 55 & 47 \\ 91 & 58 & 59 \end{array}$	$\begin{array}{lrl} 38 & 58 & 48 \\ 36 & 5 & 16 \\ 90 & 8 & 30 \end{array}$	$\begin{array}{lll} 40 & 41 & 11 \\ 34 & 14 & 11 \\ 88 & 18 & 7 \end{array}$	$\begin{array}{lll} 42 & 2 x^{\prime \prime \prime} \\ 42 & 24 & 1 \\ 32 & 24 & 30 \\ 86 & 27 & 51 \end{array}$
4	Sun Regulus Spica	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 50 & 54 & 0 \\ 23 & 14 & 55 \\ 77 & 18 & 23 \end{array}$	5235 45 21 25 29 75 28 57	$\begin{array}{lll} 54 & 17 & 21 \\ 19 & 36 & 15 \\ 73 & 39 & 42 \end{array}$	$\begin{array}{llll} 55 & 58 & 47 \\ 17 & 47 & 14 \\ 71 & 50 & 38 \end{array}$
5	Sun Pollux Spica Antares	W. W. E. E.	$\begin{array}{r} 642313 \\ 282918 \\ 624823 \\ 108 \quad 3943 \end{array}$	$\begin{array}{rrr} 66 & 3 & 30 \\ 30 & 16 & 6 \\ 61 & 0 & 36 \\ 106 & 51 & 49 \end{array}$	$\begin{array}{rrr} 67 & 43 & 34 \\ 32 & 2 & 46 \\ 59 & 13 & 3 \\ 105 & 4 & 9 \end{array}$	$\begin{array}{r} 692324 \\ 334918 \\ 572545 \\ 1031644 \end{array}$
6	Sun Pollux Saturn Spica Antares	W. W. W. E. E.	77 39 1 42 39 16 24 52 53 48 33 1 94 23 20	$\begin{array}{lll} 79 & 17 & 23 \\ 44 & 24 & 38 \\ 26 & 38 & 5 \\ 46 & 47 & 15 \\ 92 & 37 & 25 \end{array}$	$\begin{array}{rrr} 80 & 55 & 31 \\ 46 & 9 & 47 \\ 28 & 23 & 2 \\ 45 & 1 & 46 \\ 90 & 51 & 45 \end{array}$	82 33 24 47 54 43 30 7 43 43 16 32 89 6 21
7	Sun Pollux Saturn Regulus Spica Antares	$\begin{aligned} & \mathrm{W} . \\ & \mathrm{W} . \\ & \mathrm{W} . \\ & \mathrm{W} . \\ & \mathrm{E} . \\ & \mathrm{E} . \end{aligned}$	$\begin{array}{llll} 90 & 38 & 52 \\ 56 & 35 & 42 \\ 38 & 47 & 11 \\ 19 & 34 & 35 \\ 34 & 34 & 36 \\ 80 & 23 & 19 \end{array}$	$\begin{array}{rrr} 92 & 15 & 10 \\ 58 & 19 & 9 \\ 40 & 30 & 17 \\ 21 & 18 & 18 \\ 32 & 51 & 3 \\ 78 & 39 & 30 \end{array}$	93 51 13 60 2 22 42 13 7 23 1 45 31 7 48 76 55 57	$\begin{array}{lll} 95 & 27 & 0 \\ 61 & 45 & 19 \\ 43 & 55 & 41 \\ 24 & 44 & 58 \\ 29 & 24 & 51 \\ 75 & 12 & 40 \end{array}$
8	Sun Pollux Saturn Regulus Spica Antares a Aquilæ	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 103 & 22 & 3 \\ 70 & 16 & 21 \\ 52 & 24 & 37 \\ 33 & 17 & 13 \\ 20 & 54 & 42 \\ 66 & 40 & 9 \\ 116 & 31 & 37 \end{array}$	$\begin{array}{rrr} 104 & 56 & 17 \\ 71 & 57 & 48 \\ 54 & 5 & 37 \\ 34 & 58 & 54 \\ 19 & 13 & 41 \\ 64 & 58 & 25 \\ 115 & 8 & 24 \end{array}$	$\begin{array}{rrr} 106 & 30 & 14 \\ 73 & 39 & 0 \\ 55 & 46 & 23 \\ 36 & 40 & 21 \\ 17 & 33 & 3 \\ 63 & 16 & 56 \\ 113 & 44 & 55 \end{array}$	$\begin{array}{rrr} 108 & 3 & 57 \\ 75 & 19 & 58 \\ 57 & 26 & 53 \\ 38 & 21 & 32 \\ 15 & 52 & 50 \\ 6135543 \\ 112 & 21 & 13 \end{array}$
9	Sun Pollux Saturn Regulus Antares a Aquilæ	W. W. W. W. E. E.	$\begin{array}{r} 11548 \\ 43 \\ 83 \\ 41 \\ 65 \\ 45 \\ 42 \\ 46 \end{array} 4351$	$\begin{array}{rrr} 117 & 21 & 0 \\ 85 & 20 & 40 \\ 67 & 24 & 45 \\ 48 & 23 & 36 \\ 5133 & 31 \\ 103 & 56 & 26 \end{array}$	$\begin{array}{rrr} 118 & 52 & 59 \\ 86 & 59 & 57 \\ 69 & 3 & 33 \\ 50 & 3 & 6 \\ 49 & 53 & 59 \\ 102 & 32 & 8 \end{array}$	$\begin{array}{rrr} 120 & 24 & 44 \\ 88 & 39 & 0 \\ 70 & 42 & 7 \\ 51 & 42 & 23 \\ 48 & 14 & 41 \\ 101 & 7 & 51 \end{array}$
10	Sun Pollux Saturn Regulus Antares a Aquilæ Fomalhaut	W. W. W. W. E. E.	$\begin{array}{rrr} 127 & 59 & 54 \\ 96 & 50 & 52 \\ 78 & 51 & 32 \\ 59 & 55 & 23 \\ 40 & 1 & 37 \\ 94 & 7 & 23 \\ 119 & 37 & 15 \end{array}$	$\begin{array}{r} 1293014 \\ 9828 \\ 8028 \\ 80 \\ 61 \\ 63 \\ 36 \\ 38 \\ 38 \\ 23 \\ 40 \\ 92 \\ 43 \\ 118 \\ 18 \end{array}$	$\begin{array}{rrr} 131 & 0 & 19 \\ 100 & 6 & 5 \\ 82 & 5 & 46 \\ 63 & 11 & 3 \\ 36 & 45 & 56 \\ 91 & 19 & 59 \\ 116 & 39 & 52 \end{array}$	$\begin{array}{rrr} 132 & 30 & 12 \\ 101 & 43 & 21 \\ 83 & 42 & 33 \\ 64 & 48 & 34 \\ 35 & 8 & 24 \\ 89 & 56 & 32 \\ 115 & 11 & 5 \end{array}$
11	Pollux Saturn Regulus Spica Antares	W. W. W. W. E.	$\begin{array}{rrr} 109 & 46 & 36 \\ 91 & 43 & 23 \\ 72 & 53 & 1 \\ 18 & 57 & 12 \\ 27 & 3 & 54 \end{array}$	$\begin{array}{rrr} 111 & 22 & 37 \\ 93 & 18 & 57 \\ 74 & 29 & 19 \\ 20 & 32 & 49 \\ 25 & 27 & 36 \end{array}$	$\begin{array}{rrr} 112 & 58 & 27 \\ 94 & 54 & 18 \\ 76 & 5 & 24 \\ 22 & 8 & 20 \\ 23 & 51 & 31 \end{array}$	$\begin{array}{rrr} 114 & 34 & 5 \\ 96 & 29 & 29 \\ 77 & 41 & 18 \\ 23 & 43 & 43 \\ 22 & 15 & 36 \end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Name and Position.		Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
11	a Aquilæ	E.	$88^{\circ} 33^{\prime} 11^{\prime \prime}$	$87{ }^{\circ} 10{ }^{\prime} 10$	$85 \times 47 \begin{array}{lll} \\ 8 & 17\end{array}$	$84^{\circ} 24^{\prime \prime} 38$
	Fomalhaut	E.	1134217	1121328	1104439	1091552
12	Pollux	W.	116930	1174444	1191946	1205436
	Saturn	W.	98.427	993914	1011349	1024813
	Regulus	W.	$\begin{array}{llll}79 & 17 & 0\end{array}$	805231	822751	$84 \quad 259$
	Spica	W.	25 18 189	$26 \quad 54 \quad 6$	$28 \quad 29 \quad 5$	$30 \quad 354$
	a Aquilæ	E.	$77 \quad 3521$	$\begin{array}{llll}76 & 14 & 24\end{array}$	7453047	$73 \quad 3332$
	Fomalhaut	E.	1015246	1002423	$98 \quad 567$	$97 \quad 2758$
	a Pegasi	E.	$124 \quad 629$	1223655	121720	1193744
13	Saturn	W.	$\begin{array}{llll}110 & 37 & 30\end{array}$	1121049	1134358	1151656
	Regulus	W.	915557	$\begin{array}{llll}93 & 30 & 1\end{array}$	$\begin{array}{lll}95 & 3 & 54\end{array}$	$\begin{array}{llll}96 & 37 & 37\end{array}$
	Spica	W.	375540	$\begin{array}{llll}39 & 29 & 33\end{array}$	$\begin{array}{llll}41 & 3 & 15\end{array}$	423649
	a Aquilæ	E.	$\begin{array}{llll}66 & 58 & 23\end{array}$	$\begin{array}{llll}65 & 40 & 43\end{array}$	$\begin{array}{llll}64 & 23 & 35\end{array}$	$\begin{array}{lll}63 & 6 & 59\end{array}$
	Fomalhaut	E.	$\begin{array}{lll}90 & 9 & 13\end{array}$	884156	871448	$\begin{array}{llll}85 & 47 & 51\end{array}$
	a Pegasi	E.	$11210 \quad 4$	1104041	1091122	107428
14	Regulus	W.	1042340	$\begin{array}{lll}105 & 5623\end{array}$	1072856	109120
	Spica	W.	$\begin{array}{llll}50 & 22 & 11\end{array}$	$\begin{array}{llll}51 & 54 & 48\end{array}$	532715	$\begin{array}{llll}54 & 59 & 32\end{array}$
	a Aquilæ	E.	$\begin{array}{llll}56 & 53 & 12\end{array}$	$\begin{array}{llll}55 & 40 & 32\end{array}$	542840	$\begin{array}{llll}53 & 17 & 37\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}78 & 36 & 4\end{array}$	$\begin{array}{llll}77 & 10 & 21\end{array}$	754452	$\begin{array}{llll}74 & 19 & 37\end{array}$
	a Pegasi	E.	1001722	$\begin{array}{llll}98 & 48 & 44\end{array}$	$97 \quad 20 \quad 13$	$\begin{array}{llll}95 & 51 & 49\end{array}$
15	Regulus	W.	11641	1181232	1194353	121155
	Spica	W.	$\begin{array}{llll}62 & 38 & 47\end{array}$	$\begin{array}{llll}64 & 10 & 12\end{array}$	$\begin{array}{llllllllllllll}65 & 41 & 28\end{array}$	$\begin{array}{llll}67 & 12 & 36\end{array}$
	Antares	W.	164447	$\begin{array}{llll}18 & 16 & 17\end{array}$	194737	211850
	a Aquilæ	E.	$47 \quad 36 \quad 49$	$\begin{array}{llll}46 & 31 & 57\end{array}$	$45 \quad 2822$	44268
	Fomalhaut	E.	$\begin{array}{llll}67 & 17 & 20\end{array}$	$65 \quad 5344$	$\begin{array}{llll}64 & 30 & 27\end{array}$	$63 \quad 7 \quad 30$
	a Pegasi	E.	$88 \quad 3150$	$87 \quad 4 \quad 15$	$\begin{array}{llll}85 & 36 & 49\end{array}$	$84 \quad 932$
16	Spica	W.	744616	$\begin{array}{llll}76 & 16 & 37\end{array}$	$\begin{array}{llll}77 & 46 & 51\end{array}$	$\begin{array}{llll}79 & 1658\end{array}$
	Antares	W.	$28 \quad 5254$	$\begin{array}{llll}30 & 23 & 19\end{array}$	$\begin{array}{llll}31 & 53 & 38\end{array}$	$\begin{array}{llll}33 & 23 & 49\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}56 & 18 & 10\end{array}$	$\begin{array}{llll}54 & 57 & 31\end{array}$	$\begin{array}{llll}53 & 37 & 20\end{array}$	$\begin{array}{llll}52 & 17 & 38\end{array}$
	a Pegasi	E.	$\begin{array}{llll}76 & 55 & 28\end{array}$	$\begin{array}{llll}75 & 29 & 9\end{array}$	$\begin{array}{lll}74 & 3 & 0 \\ 16 & 7 & 17\end{array}$	$\begin{array}{llll}72 & 37 & 1\end{array}$
	a Arietis	E.	$119 \quad 78$	$\begin{array}{llll}117 & 37 & 9\end{array}$	$116 \quad 717$	1143732
17	Spica	W.		$\begin{array}{llll}88 & 15 & 23\end{array}$	$\begin{array}{llll}89 & 44 & 46 \\ 4\end{array}$	$\begin{array}{rrr}91 & 14 & 4 \\ 45 & 21 & 31\end{array}$
	Antares	W.	$\begin{array}{llll}40 & 53 & 7\end{array}$	422240	$\begin{array}{llll}43 & 52 & 8\end{array}$	452131
	Fomalhaut	E.	$\begin{array}{llll}45 & 47 & 25\end{array}$	$\begin{array}{llll}44 & 31 & 18 \\ 6\end{array}$	$\begin{array}{llll}43 & 15 & 57 \\ 682 & 40 & 18\end{array}$	$\begin{array}{llll}42 & 1 & 24 \\ 61 & 15 & 51\end{array}$
	a Pegasi	E.	$\begin{array}{lll}65 & 29 & 49\end{array}$	$\begin{array}{lrr}64 & 4 & 57\end{array}$	624018	611551 1024256
	a Arictis	E.	1071013	105412	1041156	1024256
18	Spica	W.	$\begin{array}{llll}98 & 39 & 27\end{array}$	100820	101379	
	Antares	W.	$\begin{array}{llll}52 & 47 & 16\end{array}$	541613	$\begin{array}{lll}55 & 45 & 7\end{array}$	$\begin{array}{llll}57 & 13 & 59\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}36 & 3 & 19\end{array}$	$\begin{array}{llll}34 & 55 & 16\end{array}$	334840	324338
	a Pegasi	E.	$\begin{array}{llll}54 & 16 & 59\end{array}$	$\begin{array}{llll}52 & 53 & 57\end{array}$	$\begin{array}{llll}51 & 31 & 12\end{array}$	$\begin{array}{llll}50 & 8 & 44\end{array}$
	a Arietis	E.	$95 \quad 18 \quad 56$	$\begin{array}{llll}93 & 50 & 19\end{array}$	922146	$\begin{array}{llll}90 & 53 & 14\end{array}$
	Venus	E.	119423	1174510	1162559	115650
19	Spica	W.				
	Antares	W.	$\begin{array}{llll}64 & 37 & 49\end{array}$	$\begin{array}{llll}66 & 6 & 31 \\ 42 & 1 & 12\end{array}$	$\begin{array}{llll}67 & 35 & 14\end{array}$	$\begin{array}{lll} 69 & 3 & 57 \end{array}$
	$a \mathrm{Pegasi}$	E.	$\begin{array}{llr}43 & 21 & 28 \\ 83 & 31 & 7\end{array}$	$\begin{array}{llll}42 & 1 & 12 \\ 82 & 2 & 45\end{array}$	$\begin{array}{llll}40 & 41 & 24 \\ 80 & 34 & 24\end{array}$	$\begin{array}{rrr} 39 & 22 & -7 \\ 79 & 6 & 2 \end{array}$
	a Arietis	E.	$83 \quad 317$	$82 \quad 245$	$80 \quad 3424$	$79 \quad 6 \quad 2$

GREENWICH MEAN TIME.						
lunar distances.						
Day of the Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathbf{x F}^{\text {b }}$.	XVIII.	XXIr.
11	a Aquilæ Fomalhaut	$\underset{\mathrm{E} .}{\mathrm{E}}$	$\begin{array}{rrr} 83 & 2_{11}^{\prime \prime} \\ 107 & 47 & 7 \end{array}$	81 40 106 18 25	$\begin{array}{rrr}80 & 18 & 1 \prime \prime \\ 104 & 49 & 48\end{array}$	$\begin{array}{rrr} 78 & 56 & 1 / \\ 103 & 21 & 14 \end{array}$
12	Pollux	W.	1222914	$124 \quad 341$	1253756	127120
	Saturn	W.	1042226	1055629	1073020	10940
	Regulus	W.	$85 \quad 3756$	871243	884718	902143
	Spica	W.	313834	$3313 \quad 5$	344726	362138
	a Aquilx	E.	721340	705411	69358	681631
	Fomalhant	E.	955956	$9432 \quad 2$	$93 \quad 417$	913641
	a Pegasi	E.	$\begin{array}{llll}118 & 8 & 8\end{array}$	1163833	$\begin{array}{llll}115 & 9 & 1\end{array}$	1133931
13	Saturn	W.	1164944	1182222	1195450	121278
	Regulus	W.	98119	994432	1011745	1025047
	Spica	W.	441012	45432.6	471631	484926
	a Aquilæ	E.	615058	603532	592044	$\begin{array}{llll}58 & 6 & 37\end{array}$
	Fomalhaut	E.	84216	825432	812810	$80 \quad 20$
	${ }_{a}$ Pegasi	E.	1061259	1044356	1031458	101467
14	Regulus	W.	1103335	$\begin{array}{llll}112 & 5 & 40\end{array}$	$\begin{array}{llll}113 & 37 & 37\end{array}$	115924
	Spica	W.	563141	$\begin{array}{llll}58 & 3 & 41\end{array}$	593532	$61 \quad 714$
	a Aquilæ	E.	$\begin{array}{llll}52 & 7 & 28 \\ 72 & 54\end{array}$	505815	4950	484252
	Fomalhaut	E.	$\begin{array}{llll}72 & 54 & 37\end{array}$	712953	$70 \quad 525$	684114
	${ }_{\text {a Pegasi }}$	E.	942334	925526	912726	895934
15	Regulus	W.	122469	$\begin{array}{llll}124 & 17 & 5\end{array}$	1254753	1271833
	Spica	W.	684336	701428	714512	731548
	Antares	W.	224955	242051	255140	272221
	a Aquilæ	E.	$43 \quad 2519$	4246 6	412823	$4032 \quad 27$
	Fomalhaut	E.	614453	602237	$\begin{array}{llll}59 & 0 & 44\end{array}$	573915
	${ }^{\text {a Pegasi }}$	E.	824225	811526	794837	782158
16	Spica	W.	804658	821651	834638	$\begin{array}{llll}85 & 1619\end{array}$
	Antares	W.	345353	362351	375342	392327
	Fomalhaut	E.	505826	493947	482142	$\begin{array}{ll}47 & 414\end{array}$
	a Pegasi	E.	711112	694535	68208	665453
	a Arietis	E.	$\begin{array}{ll}113 & 752\end{array}$	1113819	$\begin{array}{lll}110 & 851\end{array}$	1083929
17	Spica	W.	924318	941226	954131	971031
	Antares	W.	465049	$4820 \quad 2$	494910	511815
	Fomalhaut	E.	404744	39350	382318	371242
	a Pegasi	E.	595137	582736	$57 \quad 349$	554016
	a Arietis	E.	1011359	$9945 \cdot 8$	981620	964736
18	Spica	W.	1043441	106 10	107323	109043
	Antares	W.	584248	601136	614021	$\begin{array}{lll}63 & 9 & 5\end{array}$
	Fomalhaut	E.	314021	303859	293943	284246
	a Pegasi	E.	484635	472445	$\begin{array}{llll}46 & 3 & 16\end{array}$	444210
	a Arietis	E.	892446	875619	862754	845930
	Venus	E.	1134742	1122835	111930	1095025
19	Spica	W.	1162351	1175230	1192111	1204953
	Antares	W.	703241	$72 \quad 126$	733012	74591
	a Pegasi	E.	$\begin{array}{llll}38 & 3 & 25\end{array}$	364520	352756	341118
	a Arietis	E.	773739	$\begin{array}{ll}76 & 9\end{array} 15$	744051	731224

GREENWICH MEAN TLME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	$\mathrm{III}^{\text {b }}$.	VI'.	IX ${ }^{\text {b }}$
19	Venus	E.	$108^{\circ} 3120^{\prime \prime}$	$107^{\circ} 12^{\prime} 15$	$105^{\circ} 53{ }^{\prime \prime} 10$	10434
	Sun	E.	1351126	1335020	1322912	$\begin{array}{llll}131 & 8 & 3\end{array}$
20	Antares	W.	762752	775646	792544	805446
	a Pegasi	E.	325532	314044	$3027{ }^{\circ} 0$	291428
	a Arietis	E.	714355	$7015 \quad 24$	684649	671811
	Venus	E.	97587	963848	951925	935957
	Sun	E.	1242144	$\begin{array}{ll}123 & 0\end{array}$	1213849	1201715
21	Antares	W.	882111	895048	912031	925023
	a Aquilæ	W.	442543	$45 \quad 2651$	$46 \quad 2916$	473255
	${ }_{\text {a A A }}$ Arietis	E.	595353	582445	565529	$55 \quad 26 \quad 7$
	Venus	E.	872121	86119	84419	832051
	Sun	E.	$113 \quad 2759$	$\begin{array}{lll}112 & 5 & 47\end{array}$	1104328	109210
22	Antares	W.	100224	1015257	$\begin{array}{llll}103 & 24 & 1\end{array}$	1045518
	a Aquilæ	W.	$53 \quad 721$	$5417 \quad 7$	552744	563910
	Fomalhaut	W.	281519	291224	30129	311421
	a Arietis	E.	475714	$4627 \quad 0$	445637	$43 \quad 26$
	Venus	E.	76371	751544	735415	723234
	Sun	E.	1022615	101245	99393	98158
23	Antares	W.	112.35 11	$114 \quad 756$	1154057	1171415
	a Aquilæ	W.	624730	$64 \quad 313$	651933	663630
	Fomalhaut	W.	365525	$38 \quad 838$	392315	40399
	a Arietis	E.	$35 \quad 5030$	341850	324659	$\begin{array}{llll}31 & 14 & 57\end{array}$
	Venus	E.	654046	641741	625420	613043
	Sun	E.	91124	894641	88212	$8655 \quad 5$
24	a Aquilæ	W.	$73 \quad 947$	$74 \begin{array}{lll}70 & 2\end{array}$	755048	
	Fomalhaut	W.	471532	483747	$50 \quad 0 \quad 54$	512451
	a Pegasi	W.	254643	26594	281349	293041
	a Arietis	E.	233234	215949	$2027 \quad 5$	185429
	Venus	E.	542819	$53 \quad 255$	513713	501111
	Sun	E.	794048	781258	764448	751616
25	a Aquilæ	W.				
	Fomalhaut	W.	583611	$\begin{array}{lll}60 & 4 & 35\end{array}$	613339	$\begin{array}{llll}63 & 3 & 21\end{array}$
	${ }_{\text {a Pegasi }}$	W.	362039	374650	391410	$\begin{array}{llll}40 & 42 & 36\end{array}$
	Venus	E.	42565	41283	395941	383059
	Sun	E.	6748 7	$\begin{array}{llll}66 & 17 & 20\end{array}$	$6446 \quad 9$	631434
26	a Aquilæ	W.	$95 \quad 2711$	965356	$98 \quad 2057$	994812
	Fomalhant	W.	70413	721419	73488	752229
	\boldsymbol{a} Pegasi	W.	48190	495249	512724	$\begin{array}{lll}53 & 2 & 42\end{array}$
	Venus	E.	$31 \quad 244$	293213	28128	263030
	Sun	E.	$\begin{array}{llll}55 & 30 & 31\end{array}$	535627	522158	50474
27		W.	$107 \quad 723$	1083534	$\begin{array}{lll}110 & 3 & 48\end{array}$	$11132 \quad 2$
	Fomalhaut	W.	832145	84591	863643	881450
	${ }_{a}$ Pegasi	W.	61925	624838	642825	$66 \quad 846$
	Sun		424616	41852	39314	375253

GREENWICH MEAN TMME.						
LUNAR DISTANCES.						
Day of the Month.	Star's Name and Position.		Midnight.	$\boldsymbol{X V}{ }^{\text {a }}$ 。	XVIIT.	XXI'.
19	Venus	E.	$103^{\circ} 144^{\prime \prime} 7$	$101^{\circ} 5548$	$100^{\circ} 3637$	$99^{\circ} 17{ }^{\prime \prime} 23^{\prime \prime}$
	Sun	E.	1294652	1282540	127424	125436
20	Antares	W.	$82 \quad 2352$	$\begin{array}{llll}83 & 53 & 3\end{array}$	$\begin{array}{llll}85 & 22 & 19\end{array}$	865142
	a Pegasi	E.	$28 \quad 320$	265346	254559	244015
	a Arietis	E.	654929	642043	625152	612255
	Venus	E.	924025	912048	$90 \quad 15$	884116
	Sun	E.	1185536	1173351	116120	114503
21	Antares	W.	$\begin{array}{llll}94 & 20 & 24\end{array}$	$\begin{array}{llll}95 & 50 & 34\end{array}$	$\begin{array}{ll}97 & 2053\end{array}$	$\begin{array}{llll}98 & 51 & 23\end{array}$
	a Aquilæ	W.	483743	494337	505033	515829
	α Arietis	E.	535637	$\begin{array}{lll}52 & 27 & 0\end{array}$	50574	$49 \quad 2719$
	Venus	E.	$82 \quad 0 \quad 24$	803948	$\begin{array}{llll}79 & 19 & 3\end{array}$	$77 \quad 587$
	Sun	E.	1075823	1063537	1051240	1034933
22	Antares	W.	1062648	1075832	1093030	111243
	a Aquilæ	W.	575123	$\begin{array}{ll}59 & 421\end{array}$	$\begin{array}{llll}60 & 18 & 3\end{array}$	613226
	Fomalhaut	W.	$\begin{array}{llll}32 & 18 & 46\end{array}$	$\begin{array}{llll}33 & 25 & 14\end{array}$	$\begin{array}{lllll}34 & 33 & 36\end{array}$	354342
	a Arietis	E.	415518	402423	$\begin{array}{llll}38 & 5317\end{array}$	372159
	Venus	E.	711040	694833	$68 \quad 2612$	$67 \quad 336$
	Sun	E.	$\begin{array}{llll}96 & 51 & 0\end{array}$	$95 \quad 2638$	94 22	923711
23	Antares	W.	1184750	12021.44	1215556	1233027
	a Aquilæ	W.	6754	69129	$\begin{array}{llll}70 & 30 & 49\end{array}$	71502
	Fomalhaut	W.	415616	$\begin{array}{llll}43 & 14 & 32\end{array}$	443352	$45 \quad 5413$
	a Arietis	E.	294245	281023	263753	$25 \quad 516$
	Venus	E.	$60 \quad 649$	584238	$\begin{array}{llll}57 & 18 & 10\end{array}$	555323
	Sun	E.	$85 \quad 2851$	$\begin{array}{llll}84 & 219\end{array}$	823528	81818
24	a Aquilæ	W.	783347	795558	$\begin{array}{llll}81 & 18 & 37\end{array}$	824142
	Fomalhaut	W.	524937	54159	$\begin{array}{llll}55 & 41 & 27\end{array}$	$\begin{array}{llll}57 & 8 & 27\end{array}$
	a Pegasi	W.	304928	32100	$\begin{array}{lll}33 & 32 & 8\end{array}$	345543
	a Arietis	E.	$17 \quad 225$	15504	141843	124821
	Venus	E.	$\begin{array}{llll}48 & 44 & 50\end{array}$	$47 \quad 18$	45	442346
	Sun	E.	$73 \quad 4723$	72188	704830	691830
25	a Aquilæ	W.	894320	$91 \quad 847$	$\begin{array}{llll}92 & 34 & 36\end{array}$	$94 \quad 044$
	Fomalhaut	W.	643342	$66 \quad 439$	$\begin{array}{llll}67 & 36 & 12\end{array}$	$69 \quad 821$
	a Pegasi	W.	$\begin{array}{llll}42 & 12 & 3\end{array}$	$43 \quad 42 \quad 27$	$\begin{array}{llll}45 & 13 & 47\end{array}$	464558
	Venus	E.	$\begin{array}{lll}37 & 1 & 57\end{array}$	$\begin{array}{llll}35 & 32 & 36\end{array}$	$34 \quad 256$	323258
	Sun	E.	614236	$60 \quad 1012$	583723	57410
26	a Aquilæ	W.	1011542	1024323	1041115	1053916
	Fomalhaut	W.	$76 \quad 5721$	783243	$80 \quad 835$	814456
	a Pegasi	W.	543844	$\begin{array}{llll}56 & 15 & 26\end{array}$	575248	593048
	Venus	E.	245923	$23 \quad 2810$	215654	202542
	Sun	E.	491145	$47 \quad 36 \quad 0$	$45 \quad 5950$	442315
27	a Aquilæ	W.	$113 \quad 0 \quad 13$	$\begin{array}{llll}114 & 2818\end{array}$	$\begin{array}{llll}115 & 56 & 14\end{array}$	1172358
	Fomalhaut	W.	895321	913215	$\begin{array}{llll}93 & 11 & 32\end{array}$	94 51 1
	a Pegasi	W.	674940	69316	$\begin{array}{llll}71 & 13 & 1\end{array}$	725526
	Sun	E.	361419	343523	32565	311627

GREENWICE MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Star's Nam Position Position.		Noon.	$1 I^{\text {b }}$.	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
2	Sun	W.	$26^{\circ} 39^{\prime} 45^{\prime \prime}$	$28^{\circ} 24^{\prime \prime} 27$	$30^{\circ} \quad 9 \quad 6$	$31^{\circ} 533^{\prime \prime}$
	Spica	E.	$\begin{array}{ll}7517 & 17\end{array}$	$7325 \quad 2$	713232	694012
	Antares	E.	121930	1191644	$\begin{array}{ll}117 & 24 \quad 7\end{array}$	1153141
3	Sun	W.	403419	$42 \quad 1752$	$44 \quad 110$	45.4414
	Spica	E.	602140	583041	563959	544933
	Antares	E.	1061231	1042124	1023033	1003958
4	Sun	W.	$\begin{array}{llll}54 & 15 & 19\end{array}$	$55 \quad 5637$	573736	591815
	Saturn	W.	24495	263656	282426	301135
	Spica	E.	$4542 \quad 3$	435333	$42 \quad 5 \quad 24$	401736
	Antares	E.	913136	894253	875431	86.629
5	Stu	W.	$67 \quad 3619$	691452	7053	723053
	Saturn	W.	$\begin{array}{llll}39 & 2 & 2\end{array}$	4047	423140	$4415 \quad 56$
	Regulus	W.	224645	243231	$\begin{array}{llll}26 & 17 & 56\end{array}$	$\begin{array}{lll}28 & 3 & 0\end{array}$
	Spica	E.	312416	293846	275341	$\begin{array}{llll}26 & 9 & 2\end{array}$
	Antares	E.	771139	752547	734016	71557
6	Sun	W.	803435	821014	834532	852028
	Saturn	W.	525144	543348	561530	575650
	Regulus	W.	364253	382547	$40 \quad 820$	415031
	Spica	E.	173231	155047	$14 \quad 940$	$\begin{array}{ll}12 & 2918\end{array}$
	Antares	E.	631454	613158	594923	$58 \quad 79$
	a Aquilæ	E.	$\begin{array}{llll}113 & 50 & 4\end{array}$	1122450	1105931	109349
7	Sun	W.	$\begin{array}{llll}93 & 9 & 56\end{array}$	944249	$\begin{array}{llll}96 & 15 & 21\end{array}$	974734
	Saturn	W.	661816	675731	693626	7115
	Regulus	W.	501612	515619	$\begin{array}{llll}53 & 36 & 6\end{array}$	$55 \quad 1533$
	Antares	E.	494119	48111	462122	444153
	a Aquilæ	E.	1022729	101223	993724	981233
8	Sun	W.		1065417	1082421	109548
	Saturn	W.	792315	805959	823626	841235
	Regulus	W.	63287	$65 \quad 544$	$6643 \quad 2$	$\begin{array}{llll}68 & 20 & 4\end{array}$
	Antares	E.	362914	345137	$\begin{array}{llll}33 & 14 & 17\end{array}$	313715
	a Aquilæ	E.	91117	894729	88246	$87 \quad 0 \quad 59$
	Fomalhaut	E.	1162024	1145137	1132253	1115412
9	Sun	W.	1171859	1184711	120158	1214250
	Saturn	W.	$92 \quad 917$	934351	951811	965216
	Regulus	W.	762110	$\begin{array}{llll}77 & 56 & 37\end{array}$	793149	$81 \quad 647$
	Spica	W.	$22 \quad 2451$	235943	25 34 24	$\begin{array}{llll}27 & 8 & 56\end{array}$
	Antares	E.	$23 \quad 36 \quad 7$	$\begin{array}{lll}22 & 0 & 40\end{array}$	$\begin{array}{llll}20 & 25 & 28\end{array}$	185031
	a Aquilæ	E.	$80 \quad 949$		$\begin{array}{llll}77 & 27 & 37\end{array}$	$\begin{array}{lll} 76 & 7 & 4 \end{array}$
	Fomalhaut	E.	1043210	10347	1013611	$\begin{array}{ll}100 & 824\end{array}$
10	Sun	W.	1285757	1302420	1315030	1331629
	Saturn	W.	1043917	106124	1074438	109170
	Regulas	W.	885813	903153	$\begin{array}{llll}92 & 5 & 20\end{array}$	$\begin{array}{lllll}93 & 38 & 36\end{array}$
	Spica	W.	345845	$\begin{array}{llll}36 & 3210\end{array}$	$\begin{array}{llll}38 & 5 & 54 \\ 66 & 54\end{array}$	$\begin{array}{lllll}39 & 38 & 27\end{array}$
	a Aquilæ	E.	693018	681215	$\begin{array}{llll}66 & 54 & 41 \\ 80 & 58\end{array}$	$\begin{array}{llll}65 & 37 & 37\end{array}$
	Fomalhaut	E.	925149	$\begin{array}{llll}91 & 24 & 59\end{array}$	895821	$\begin{array}{r}88 \\ \hline 110 \\ 34 \\ \hline\end{array}$
	a Pegasi	E.	$115 \quad 121$	1133227	112388	1103454

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{gathered} \text { Day of } \\ \text { Hone } \\ \text { Month. } \end{gathered}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { ansition } \end{gathered}$		Midnight.	XV'.	XVIII.	XXIL.
2	Sun Spica Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 33 & 38 & 7 \\ 67 & 48 & 3 \\ 113 & 39 & 25 \end{array}$	$\begin{array}{rrr} 35 & 2 \dot{\prime} & 26 \\ 65 & 56 & 7 \\ 111 & 47 & 21 \end{array}$	$\begin{array}{rrr} 37 & 6 & 35 \\ 64 & 4 & 24 \\ 109 & 55 & 31 \end{array}$	$\begin{array}{r} 38 \\ 50 \\ 62 \\ 62 \\ 123 \\ 108 \\ 105 \\ \hline 154 \end{array}$
3	Sun Spica Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 47 & 27 & 1 \\ 52 & 59 & 25 \\ 98 & 49 & 41 \end{array}$	$\begin{array}{rrr} 49 & 9 & 32 \\ 51 & 9 & 36 \\ 96 & 59 & 41 \end{array}$	$\begin{array}{lll} 50 & 51 & 46 \\ 49 & 20 & 5 \\ 95 & 10 & 0 \end{array}$	$\begin{array}{lll} 52 & 33 & 42 \\ 47 & 30 & 54 \\ 93 & 20 & 38 \end{array}$
4	Sun Saturn Spica Antares	W. W. E. E.	$\begin{array}{lll} 60 & 58 & 33 \\ 31 & 58 & 23 \\ 38 & 30 & 10 \\ 84 & 18 & 48 \end{array}$	$\begin{array}{llll} 62 & 38 & 31 \\ 33 & 44 & 50 \\ 36 & 43 & 7 \\ 82 & 31 & 29 \end{array}$	$\begin{array}{rrr} 64 & 18 & 8 \\ 35 & 30 & 56 \\ 34 & 56 & 26 \\ 80 & 44 & 31 \end{array}$	$\begin{array}{llll} 65 & 57 & 24 \\ 37 & 16 & 40 \\ 33 & 10 & 9 \\ 78 & 57 & 54 \end{array}$
5	Sun Saturn Regulus Spica Antares	W. W. W. E. E.	74 8 21 45 59 50 29 47 42 24 24 48 70 10 20	75 45 27 47 43 21 31 32 2 22 41 1 68 25 56	77 22 11 49 26 31 33 16 1 20 57 41 66 41 53	$\begin{array}{rrr} 78 & 58 & 34 \\ 51 & 9 & 19 \\ 34 & 59 & 38 \\ 19 & 14 & 50 \\ 64 & 58 & 18 \end{array}$
6	Sun Saturn Regulus Spica Antares a Aquilæ	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \mathrm{E} . \\ & \mathrm{E} . \\ & \mathrm{E} . \end{aligned}$	$\begin{array}{rrr} 86 & 55 & 3 \\ 59 & 37 & 49 \\ 43 & 32 & 20 \\ 10 & 49 & 51 \\ 56 & 25 & 17 \\ 108 & 8 & 45 \end{array}$	$\begin{array}{r} 882918 \\ 61 \quad 1827 \\ 4513 \\ 9 \\ 9 \\ \hline 1137 \\ 5443 \\ \hline 10647 \\ 1043 \end{array}$	$\begin{array}{rrr} 90 & 3 & 11 \\ 62 & 58 & 44 \\ 46 & 54 & 57 \\ & - & \\ 53 & 2 & 37 \\ 105 & 18 & 0 \end{array}$	$\begin{array}{r} 913644 \\ 643840 \\ 483545 \\ - \\ \hline 512148 \\ 1035242 \end{array}$
7	SUN Saturn Regulus Antares a Aquilæ	W. W. W. E. E.	$\begin{array}{llll} 99 & 19 & 28 \\ 72 & 53 & 18 \\ 56 & 54 & 41 \\ 43 & 2 & 44 \\ 96 & 47 & 53 \end{array}$	100 51 2 74 31 15 58 33 31 41 23 53 95 23 23	102 22 18 76 8 54 60 12 1 39 45 22 93 59 4	$\begin{array}{rrr} 103 & 53 & 16 \\ 77 & 46 & 14 \\ 61 & 50 & 13 \\ 38 & 7 & 9 \\ 92 & 34 & 59 \end{array}$
8	Sun Saturn Regulus Antares a Aquilæ Fomalhaut	W. W. W. E. E. E.	$\begin{array}{rrr} 111 & 23 & 39 \\ 85 & 48 & 28 \\ 69 & 56 & 49 \\ 30 & 0 & 29 \\ 85 & 38 & 9 \\ 110 & 25 & 36 \end{array}$	$\begin{array}{rrr} 112 & 52 & 53 \\ 87 & 24 & 4 \\ 71 & 33 & 18 \\ 28 & 23 & 59 \\ 84 & 15 & 36 \\ 108 & 57 & 5 \end{array}$	$\begin{array}{rrr} 114 & 21 & 51 \\ 88 & 59 & 24 \\ 73 & 9 & 31 \\ 26 & 47 & 46 \\ 82 & 53 & 21 \\ 107 & 28 & 40 \end{array}$	$\begin{array}{rrr} 115 & 50 & 33 \\ 90 & 34 & 28 \\ 7445 & 28 \\ 25 & 11 & 49 \\ 81 & 31 & 25 \\ 106 & 0 & 21 \end{array}$
9	SUn Saturn Regalus Spica Antares a Aquilæ Fomalhaut	W. W. W. W. E. E. E.	$\begin{array}{rrr} 123 & 10 & 18 \\ 98 & 26 & 7 \\ 82 & 41 & 30 \\ 28 & 43 & 16 \\ 17 & 15 & 47 \\ 74 & 46 & 54 \\ 98 & 40 & 46 \end{array}$	$\begin{array}{rrr} 124 & 37 & 33 \\ 99 & 59 & 44 \\ 84 & 16 & 1 \\ 30 & 17 & 25 \\ 15 & 41 & 18 \\ 73 & 27 & 7 \\ 97 & 13 & 18 \end{array}$	$\begin{array}{rrr} 126 & 4 & 34 \\ 101 & 33 & 8 \\ 85 & 50 & 18 \\ 31 & 51 & 23 \\ 14 & 7 & 2 \\ 72 & 7 & 45 \\ 95 & 45 & 58 \end{array}$	$\begin{array}{rrr} 127 & 31 & 22 \\ 103 & 6 & 19 \\ 87 & 24 & 22 \\ 33 & 25 & 10 \\ 12 & 33 & 0 \\ 70 & 48 & 48 \\ 94 & 18 & 48 \end{array}$
10	Sun Saturn Regulus Spica a Aquilæ Fomalhaut a Pegasi	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 134 & 42 & 15 \\ 110 & 49 & 12 \\ 95 & 11 & 40 \\ 41 & 11 & 19 \\ 64 & 21 & 4 \\ 87 & 5 & 36 \\ 109 & 6 & 15 \end{array}$	$\begin{array}{rrr} 136 & 7 & 51 \\ 112 & 21 & 12 \\ 96 & 44 & 33 \\ 42 & 44 & 2 \\ 63 & 5 & 4 \\ 85 & 39 & 31 \\ 107 & 37 & 42 \end{array}$	$\begin{array}{rrr} 187 & 33 & 15 \\ 113 & 53 & 1 \\ 98 & 17 & 16 \\ 44 & 16 & 34 \\ 61 & 49 & 39 \\ 84 & 13 & 37 \\ 106 & 9 & 15 \end{array}$	$\begin{array}{r} 1385828 \\ 115 \\ 94 \\ 99 \\ 49 \\ 40 \\ 45 \\ 48 \\ 57 \\ 6034 \\ 82 \\ 82 \\ 47 \\ 1045 \\ 104 \\ 40 \end{array} 54$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III'.	VI'.	IX ${ }^{\text {b }}$
11	Regulus	W.	$101^{\circ} 22^{\prime \prime} 10$	$102{ }^{\circ} 542^{\prime \prime}$	$1042{ }^{\circ} 24^{\prime \prime}$	$105^{\circ} 58^{\prime} 18^{\prime \prime}$
	Spica	W.	472110	$48 \quad 5313$	50258	515654
	a Aquilæ	E.	592037	$58 \quad 7 \quad 4$	$\begin{array}{llll}56 & 54 & 13\end{array}$	55425
	Fomalhaut	E.	812225	$\begin{array}{llll}79 & 57 & 7\end{array}$	$78 \quad 32 \quad 2$	$77 \quad 711$
	${ }^{\boldsymbol{a}}$ Pegasi	E.	1031239	1014431	1001629	984833
12	Spica	W.	593338	$61 \quad 435$	$\begin{array}{llll}62 & 35 & 25\end{array}$	$\begin{array}{llll}64 & 6 & 8\end{array}$
	Antares	W.	133920	151022	164116	18124
	a Aquilæ	E.	495353	48475	474122	$\begin{array}{llll}46 & 36 & 48\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}70 & 6 & 18\end{array}$	684252	671943	655650
	a Pegasi	E.	$\begin{array}{llll}91 & 30 & 36\end{array}$	$\begin{array}{llll}90 & 3 & 22\end{array}$	883615	$87 \quad 915$
13	Spica	W.	7138	$\begin{array}{llll}73 & 8 & 8\end{array}$	74387	$\begin{array}{lll}76 & 8 & 0\end{array}$
	Antares	W.	254425	271434	284438	301437
	Fomalhaut	E.	$\begin{array}{lll}59 & 7 & 0\end{array}$	$5746 \quad 3$	$5625 \quad 29$	$55 \quad 519$
	a Pegasi	E.	$7956 \quad 6$	$78 \quad 2951$	$77 \quad 345$	$75 \quad 3746$
	a Arietis	E.	1221458	1204515	1191537	117464
14	Spica	W.	$\begin{array}{llll}83 & 36 & 13\end{array}$	85 5 37 9 12	$\begin{array}{lllll}86 & 34 & 58\end{array}$	$\begin{array}{llll}88 & 4 & 14 \\ 4\end{array}$
	Antares	W.	374314	391243	40429	421130
	Fomalhaut	E.	483126	471415	$45 \quad 5743$	444150
	a Pegasi	E.	$\begin{array}{lll}68 & 30 & 1\end{array}$	67 4 55	$\begin{array}{llll}65 & 39 & 58\end{array}$	$\begin{array}{llll}64 & 15 & 12\end{array}$
	a Arietis	E.	1101924	1085016	1072112	1055212
15	Spica	W.	$95 \quad 2945$	$\begin{array}{llll}96 & 58 & 41\end{array}$	$\begin{array}{lll}98 & 27 & 35\end{array}$	$\begin{array}{llll}99 & 56 & 27\end{array}$
	Antares	W.	$49 \quad 3726$	$51 \quad 628$	$5235 \quad 27$	$54 \quad 424$
	Fomalhaut	E.	383434	$37 \quad 24 \quad 3$	$\begin{array}{lll}3614 & 13\end{array}$	$\begin{array}{lll}35 & 641\end{array}$
	a Pegasi	E.	$\begin{array}{llll}57 & 14 & 4\end{array}$	$55 \quad 5027$	$\begin{array}{lll}54 & 27 & 3\end{array}$	$53 \quad 354$
	a Arietis	E.	$98 \quad 2759$	965916	$\begin{array}{llll}95 & 30 & 37\end{array}$	$\begin{array}{lll}94 & 1 & 59\end{array}$
16	Spica	W.	1072018			
	Antares	W.	612841		$\begin{array}{llll}64 & 2615\end{array}$	$\begin{array}{llll}65 & 55 & 1\end{array}$
	a Pegasi	E.	$\begin{array}{llll}46 \quad 12 & 20\end{array}$	44510	$43 \quad 304$	$42 \quad 933$
	a Arietis	E.	$\begin{array}{llll}86 & 39 & 19\end{array}$	$85 \quad 1051$	834224	821357
	Aldebaran	E.	1181739	1165045	1152348	1135649
17	Antares	W.	731853	744742	$\begin{array}{llll}76 & 16 & 32\end{array}$	774524
	a Pegasi	E.	353457	$3418 \quad 2$	$\begin{array}{llll}33 & 1 & 58\end{array}$	314650
	a Arietis	E.	745145	$\begin{array}{llll}73 & 2317\end{array}$	715448	702618
	Aldebaran	E.	1064122	1051410	1034654	1021936
18	Antares	W.	851019	863927	$88 \quad 840$	$\begin{array}{llll}89 & 37 & 57\end{array}$
	a Aquilæ	W.	421422	$\begin{array}{llll}43 & 12 & 19\end{array}$	441143	$45 \quad 12 \quad 27$
	a Arietis	E.	$\begin{array}{llll}63 & 3 & 18\end{array}$	613434	$60 \quad 547$	583656
	Aldebaran	E.	$\begin{array}{llll}95 & 2 & 18\end{array}$	$\begin{array}{lllll}93 & 34 & 39\end{array}$	$92 \quad 656$	90398
19	Antares	W.	$\begin{array}{llll}97 & 5 & 40\end{array}$	$98 \quad 3532$	$\begin{array}{lll}100 & 5 & 30\end{array}$	1013536
	a Aquilæ	W.	$\begin{array}{llll}50 & 33 & 46\end{array}$	51416	$\begin{array}{llll}52 & 49 & 19\end{array}$	535822
	Fomalhaut	W.	262840	271839	281145	$29 \quad 743$
	a Arietis	E.	511137	494219	$48 \quad 1254$	464324
	Aldebaran	E.	831855	815035	80229	$78 \quad 5336$
	Sun	E.	131265	$\begin{array}{llll}130 & 3 & 29\end{array}$	1284045	1271754
20	a Aquilæ	W.	$59 \quad 5458$	$61 \quad 818$	622214	633645

GREENWICH MEAN TLME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { thee } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nad } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIIT.	XXI ${ }^{\text {b }}$
11	Regulus	W.	10780	$109^{\circ} 1{ }^{\prime} 38$	$110^{\circ} 33^{\prime \prime}$	$112^{\circ} 4^{\prime}{ }^{\prime \prime}$
	Spica	W.	532831	$55 \quad 0 \quad 0$	563120	$\begin{array}{rlll}58 & 2 & 33\end{array}$
	a Aquilm	E.	543044	532011	521030	51 1 13
	Fomalhaut	E.	754232	$\begin{array}{ll}74 & 18\end{array}$	725356	712959
	a Pegasi	E.	972044	$\begin{array}{llll}95 & 53 & 2\end{array}$	942526	925758
12	Spica	W.	653643	$67 \quad 713$	683736	$\begin{array}{llll}70 & 7 & 52\end{array}$
	Antares	W.	194245	211319	224347	24149
,	a Aquilæ	E.	453327	443124	$43 \quad 3044$	423133
	Fomalhaut	E.	643415	631157	614958	602819
	a Pegasi	E.	854222	841537	824859	812229
13	Spica	W.	773749	$\begin{array}{ll}79 & 7 \\ 32\end{array}$	803710	$82 \quad 644$
	Antares	W.	314430	331418	34441	361340
	Fomalhaut	E.	534535	522618	$51 \quad 729$	494911
	a Pegasi	E.	741156	724614	712041	695516
	a Arietis	E.	1161635	1144711	1131751	1114836
14	Spica	W.	893327	$\begin{array}{lll}91 & 2 & 37\end{array}$	923143	$\begin{array}{ll}94 & 045\end{array}$
	Antares	W.	434048	45103	463913	$48 \quad 821$
	Fomalhaut	E.	432641	421218	405847	394610
	a Pegasi	E.	625036	612610	$\begin{array}{lll}60 & 156\end{array}$	583754
	a Arietis	E.	1042315	1025421	1012531	995643
15	Spica	W.	1012516	102544	1042250	1055134
	Antares	W.	553319	$57 \quad 212$	$\begin{array}{llll}58 & 31 & 3\end{array}$	595952
	Fomalhaut	E.	$\begin{array}{llll}34 & 0 & 5\end{array}$	32553	315144	305019
	a Pegasi	E.	$5141 \quad 0$	501822	48562	47341
	a Arietis	E.	923324	91450	893618	$88 \quad 748$
16		W.	$\begin{array}{lll}113 & 15 & 0\end{array}$	1144340	1161220	117410
	Antares	W.	672347	685233	702119	71506
	a Pegasi	E.	404930	392958	381059	365238
	a Arietis	E.	804531	79175	774839	762012
	Aldebaran	E.	1122948	$111 \quad 245$	1093540	108832
17	Antares	W.	791417	804313	821212	834114
	a Pegasi	E.	303247	291957	$28 \quad 828$	265832
	a Arietis	E.	685746	672913	$\begin{array}{lll}66 & 0 & 37\end{array}$	643159
	Aldebaran	E.	1005216	992451	$97 \quad 5724$	962953
18				923645 47	$\begin{array}{llll}94 & 6 & 18 \\ 48 & \end{array}$	953556
	a Aquilæ	W.	461428	471740	48220	492723
	a Arietis	E.	$57 \begin{array}{lll}57 & 8 & 1\end{array}$	$55 \quad 39 \quad 2$	$\begin{array}{llll}54 & 9 & 59\end{array}$	524050
	Aldebaran	E.	891116	874319	861516	84478
19	Antares	W.	103550	1043613	$106 \quad 644$	1073725
	a Aquilæ	W.	$\begin{array}{llll}55 & 8 & 14\end{array}$	561852	573013	584216
	Fomalhaut	W.	$\begin{array}{llll}30 & 6 & 18\end{array}$	31717	321027	$\begin{array}{llll}33 & 15 & 37\end{array}$
	a Arietis	E.	451348	43445	421416	404420
	Aldebaran	E.	772457	$75 \quad 5610$	742716	725814
	Sun	E.	$125 \quad 5454$	1243146	$\begin{array}{ll}123 & 828\end{array}$	121451
20	a Aquilx	W.	645150	$66 \quad 728$	672336	684015

GREENWICH MEAN TTME.						
LUNAR DISTANCES.						
$\begin{gathered} \text { Day of } \\ \text { the } \\ \text { Month. } \end{gathered}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	1II ${ }^{\text {b }}$.	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
20	Fomalhaut a Arietis Aldebaran Sun	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 34 & 22 & 37 \\ 39 & 14 & 17 \\ 71 & 29 & 4 \\ 120 & 21 & 24 \end{array}$	$\begin{array}{rrr} 35 & 31 & 1 \prime \prime \\ 37 & 44 & 7 \\ 69 & 59 & 45 \\ 118 & 57 & 36 \end{array}$	$\begin{array}{rrr} 36 & 41 & 33 \\ 36 & 13 & 50 \\ 68 & 30 & 18 \\ 117 & 33 & 38 \end{array}$	$\begin{array}{rrr} 37 & 58 & 113 \\ 34 & 43 & 26 \\ 67 & 0 & 43 \\ 116 & 9 & 28 \end{array}$
21	a Aquilæ Fomalhaut Aldebaran Jupiter Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 69 & 57 & 22 \\ 44 & 9 & 46 \\ 59 & 30 & 25 \\ 90 & 23 & 0 \\ 109 & 5 & 30 \end{array}$	$\begin{array}{rrr} 71 & 14 & 58 \\ 45 & 28 & 10 \\ 57 & 59 & 52 \\ 88 & 52 & 8 \\ 107 & 40 & 2 \end{array}$	$\begin{array}{rrr} 72 & 33 & 2 \\ 4647 & 28 \\ 56 & 29 & 9 \\ 87 & 21 & 3 \\ 106 & 14 & 18 \end{array}$	$\begin{array}{rrr} 73 & 51 & 32 \\ 48 & 7 & 37 \\ 54 & 58 & 16 \\ 85 & 49 & 42 \\ 104 & 48 & 20 \end{array}$
22	a Aquilæ Fomalhaut a Pegasi Aldebaran Jupiter SUN	W. W. W. E. E. E.	80 30 18 54 59 44 32 43 48 47 21 24 78 8 51 97 34 20	$\begin{array}{rrr} 81 & 51 & 14 \\ 56 & 24 & 13 \\ 34 & 4 & 51 \\ 45 & 49 & 34 \\ 76 & 35 & 49 \\ 96 & 6 & 39 \end{array}$	83 12 32 57 49 21 35 27 10 44 17 36 75 2 28 94 38 40	$\begin{array}{rrr} 84 & 34 & 11 \\ 59 & 15 & 5 \\ 36 & 50 & 40 \\ 42 & 45 & 30 \\ 73 & 28 & 48 \\ 93 & 10 & 21 \end{array}$
23	a Aquilæ Fomalhaut a Pegasi Aldebaran Jupiter Sun	W. W. W. E. E. E.	$\begin{array}{rrr} 91 & 27 & 29 \\ 66 & 32 & 28 \\ 44 & 3 & 20 \\ 35 & 3 & 52 \\ 65 & 35 & 26 \\ 85 & 43 & 42 \end{array}$	92 51 4 68 1 35 45 32 30 33 31 32 63 59 43 84 13 18	$\begin{array}{rrr} 94 & 14 & 56 \\ 69 & 31 & 14 \\ 47 & 2 & 27 \\ 31 & 59 & 18 \\ 62 & 23 & 37 \\ 82 & 42 & 31 \end{array}$	$\begin{array}{lrr} 95 & 39 & 4 \\ 71 & 1 & 24 \\ 48 & 33 & 9 \\ 30 & 27 & 14 \\ 60 & 47 & 9 \\ 81 & 11 & 22 \end{array}$
24	a Aquilæ Fomalhaut a Pegasi a Arietis Aldebaran Jupiter Sun	W. W. W. W. E. E. E.	$\begin{array}{rrr} 102 & 43 & 17 \\ 78 & 39 & 41 \\ 56 & 17 & 2 \\ 12 & 40 & 22 \\ 22 & 53 & 30 \\ 52 & 39 & 1 \\ 73 & 29 & 40 \end{array}$	$\begin{array}{rrr} 104 & 8 & 43 \\ 80 & 12 & 47 \\ 57 & 51 & 44 \\ 14 & 14 & 9 \\ 21 & 25 & 19 \\ 51 & 0 & 12 \\ 71 & 56 & 7 \end{array}$	$\begin{array}{rrr} 105 & 34 & 17 \\ 81 & 46 & 21 \\ 59 & 27 & 3 \\ 15 & 49 & 44 \\ 19 & 58 & 39 \\ 49 & 20 & 59 \\ 70 & 22 & 8 \end{array}$	$\begin{array}{rrr} 106 & 59 & 58 \\ 83 & 20 & 21 \\ 61 & 2 & 57 \\ 17 & 26 & 45 \\ 18 & 33 & 59 \\ 47 & 41 & 21 \\ 68 & 47 & 44 \end{array}$
25	a Aquilæ Fomalhaut a Pegasi a Arietis Jupiter Sun	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 114 & 9 & 6 \\ 91 & 16 & 54 \\ 69 & 11 & 0 \\ 25 & 46 & 46 \\ 39 & 17 & 4 \\ 60 & 49 & 16 \end{array}$	$\begin{array}{rrr} 115 & 34 & 49 \\ 92 & 53 & 26 \\ 70 & 50 & 14 \\ 27 & 29 & 5 \\ 37 & 35 & 0 \\ 59 & 12 & 16 \end{array}$	$\begin{array}{rrr} 117 & 0 & 24 \\ 94 & 30 & 21 \\ 72 & 30 & 0 \\ 29 & 12 & 1 \\ 35 & 52 & 31 \\ 57 & 34 & 50 \end{array}$	$\begin{array}{rrr} 118 & 25 & 48 \\ 96 & 7 & 39 \\ 74 & 10 & 15 \\ 30 & 55 & 33 \\ 34 & 9 & 39 \\ 55 & 56 & 58 \end{array}$
26	Fomalhaut a Pegasi a Arietis Jupiter Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 104 & 19 & 3 \\ 82 & 38 & 48 \\ 39 & 41 & 31 \\ 25 & 29 & 52 \\ 47 & 41 & 9 \end{array}$	$\begin{array}{rrr} 105 & 58 & 12 \\ 84 & 21 & 53 \\ 41 & 28 & 14 \\ 23 & 44 & 57 \\ 46 & 0 & 43 \end{array}$	107 37 34 86 5 23 43 15 25 21 59 47 44 19 52	$\begin{array}{rrr} 109 & 17 & 9 \\ 87 & 49 & 17 \\ 45 & 3 & 4 \\ 20 & 14 & 25 \\ 42 & 38 & 37 \end{array}$
27	a Pegasi a Arietis Aldebaran Sun	W. W. W. E.	36 34 54 7 48 24 5 23 34 6 33	$\begin{array}{lll} 98 & 20 & 29 \\ 55 & 57 & 56 \\ 25 & 45 & 12 \\ 32 & 23 & 3 \end{array}$	$\begin{array}{rrr} 100 & 6 & 48 \\ 57 & 48 & 27 \\ 27 & 26 & 40 \\ 30 & 39 & 13 \end{array}$	$\begin{array}{rrr} 101 & 53 & 23 \\ 59 & 39 & 19 \\ 29 & 9 & 30 \\ 28 & 55 & 4 \end{array}$
31	Sun Spica Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{llll} 22 & 38 & 3 \\ 51 & 33 & 50 \\ 97 & 23 & 48 \end{array}$	$\begin{array}{llr} 24 & 23 & 38 \\ 49 & 41 & 8 \\ 95 & 30 & 55 \end{array}$	$\begin{array}{rrr} 26 & 8 & 59 \\ 47 & 48 & 42 \\ 93 & 38 & 17 \end{array}$	$\begin{array}{lll} 27 & 54 & 5 \\ 45 & 56 & 32 \\ 91 & 45 & 54 \end{array}$

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	$\mathrm{XVb}^{\text {b }}$	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {. }}$
20	Fomalhaut a Arietis Aldebaran SUN	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 39 & 6 & 114 \\ 33 & 12 & 55 \\ 65 & 30 & 58 \\ 114 & 45 & 6 \end{array}$	$\begin{array}{rrr} 40^{\circ} & 20 & 2 \prime \prime \prime \\ 31 & 42 & 17 \\ 64 & 1 & 4 \\ 113 & 20 & 32 \end{array}$	$\begin{array}{rrrr} 41 & 35 & 11 \\ 30 & 11 & 34 \\ 62 & 31 & 1 \\ 111 & 55 & 45 \end{array}$	$\begin{array}{rrrr} 42 & 52 & 1 \prime \prime \\ 28 & 40 & 44 \\ 61 & 0 & 48 \\ 110 & 30 & 44 \end{array}$
21	a Aquilæ Fomalhaut Aldebaran Jupiter Sun	W. W. E. E. E.	$\begin{array}{rrr} 75 & 10 & 28 \\ 49 & 28 & 34 \\ 53 & 27 & 13 \\ 84 & 18 & 5 \\ 103 & 22 & 6 \end{array}$	$\begin{array}{rrr} 76 & 29 & 50 \\ 50 & 50 & 17 \\ 51 & 56 & 1 \\ 82 & 46 & 12 \\ 101 & 55 & 35 \end{array}$	$\begin{array}{r} 774936 \\ 521245 \\ 502438 \\ 8114 \\ 10028 \\ 104 \end{array}$	79 9 45 53 35 54 48 53 6 79 41 36 99 1 43
22	a Aquilæ Fomalhaut a Pegasi Aldebaran Jupiter Sun	W. W. W. E. E. E.	$\begin{array}{lll} 85 & 56 & 11 \\ 60 & 41 & 26 \\ 38 & 15 & 16 \\ 41 & 13 & 18 \\ 71 & 54 & 48 \\ 91 & 41 & 43 \end{array}$	$\begin{array}{rrr} 87 & 18 & 32 \\ 62 & 8 & 21 \\ 39 & 40 & 54 \\ 39 & 41 & 0 \\ 70 & 20 & 29 \\ 90 & 12 & 44 \end{array}$	88 41 12 63 35 50 41 7 29 38 8 39 68 45 49 88 43 24	90 4 11 65 3 52 42 34 59 36 36 15 67 10 48 87 13 44
23	a Aquilæ Fomalhaut a Pegasi Aldebaran Jupiter Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	97 3 28 72 32 5 50 4 35 28 55 27 59 10 18 79 39 49	98 28 6 74 3 15 51 36 42 27 24 1 57 33 4 78 7 53	99 52 58 75 34 55 53 9 30 25 53 6 55 55 27 76 35 33	$\begin{array}{rrr} 101 & 18 & 2 \\ 77 & 7 & 4 \\ 54 & 42 & 57 \\ 24 & 22 & 51 \\ 54 & 17 & 26 \\ 75 & 2 & 49 \end{array}$
24	a Aquilæ Fomalhaut a Pegasi a Arietis Aldebaran Jupiter Sun	W. W. W. W. E. E. E.	$\begin{array}{rrr} 108 & 25 & 44 \\ 84 & 54 & 49 \\ 62 & 39 & 27 \\ 19 & 4 & 57 \\ 17 & 11 & 56 \\ 46 & 1 & 19 \\ 67 & 12 & 54 \end{array}$	$\begin{array}{rrr} 109 & 51 & 34 \\ 86 & 29 & 42 \\ 64 & 16 & 30 \\ 20 & 44 & 10 \\ 15 & 53 & 17 \\ 44 & 20 & 52 \\ 65 & 37 & 38 \end{array}$	$\begin{array}{rrr} 111 & 17 & 26 \\ 88 & 5 & 1 \\ 65 & 54 & 8 \\ 22 & 24 & 16 \\ 14 & 39 & 7 \\ 42 & 40 & 0 \\ 64 & 1 & 57 \end{array}$	$\begin{array}{rrr} 112 & 43 & 17 \\ 89 & 40 & 45 \\ 67 & 32 & 18 \\ 24 & 5 & 9 \\ 13 & 30 & 49 \\ 40 & 58 & 44 \\ 62 & 25 & 49 \end{array}$
25	a Aquilæ Fomalhaut a Fegasi a Arietis Jupiter SUN	W. W. W. W. E. E.	$\begin{array}{rrr} 119 & 50 & 57 \\ 97 & 45 & 17 \\ 75 & 51 & 1 \\ 32 & 39 & 40 \\ 32 & 26 & 25 \\ 54 & 18 & 40 \end{array}$	$\begin{array}{r} 1211547 \\ 9923 \\ 77 \\ 74 \\ 32 \\ 34 \\ 34 \\ 34 \\ 30 \\ 42 \\ 52 \\ 52 \end{array} 3958$	$\begin{array}{rrr} 122 & 40 & 15 \\ 101 & 1 & 34 \\ 79 & 13 & 59 \\ 36 & 9 & 33 \\ 28 & 58 & 49 \\ 51 & 0 & 46 \end{array}$	$\begin{array}{rrr} 124 & 4 & 15 \\ 102 & 40 & 10 \\ 80 & 56 & 10 \\ 37 & 55 & 17 \\ 27 & 14 & 30 \\ 49 & 21 & 10 \end{array}$
26	Fomalhaut a Pegasi a Arietis Jupiter Sun	W. W. W. E. E.	$\begin{array}{rll} 110 & 56 & 54 \\ 89 & 33 & 35 \\ 46 & 51 & 10 \\ 18 & 28 & 55 \\ 40 & 56 & 58 \end{array}$	$\begin{array}{rr} 112 & 36 \\ 98 & 48 \\ 91 & 18 \\ 48 & 17 \\ 16 & 43 \\ 39 & 23 \\ 39 & 14 \\ \hline \end{array}$	$\begin{array}{rrr} 114 & 16 & 49 \\ 93 & 3 & 20 \\ 50 & 28 & 40 \\ 14 & 57 & 58 \\ 37 & 32 & 30 \end{array}$	$\begin{array}{rrr} 115 & 56 & 56 \\ 94 & 48 & 44 \\ 52 & 18 & 2 \\ 13 & 12 & 52 \\ 35 & 49 & 42 \end{array}$
27	a Pegasi a Arietis Aldebaran Sun	W. W. W. E.	$\begin{array}{rrr} 103 & 40 & 12 \\ 61 & 30 & 31 \\ 30 & 53 & 33 \\ 27 & 10 & 36 \end{array}$	$\begin{array}{rrr} 105 & 27 & 13 \\ 63 & 22 & 2 \\ 32 & 38 & 39 \\ 25 & 25 & 51 \end{array}$	$\begin{array}{rrr} 107 & 14 & 26 \\ 65 & 13 & 51 \\ 34 & 24 & 40 \\ 23 & 40 & 50 \end{array}$	109 1 48 67 5 58 36 11 31 21 55 34
31	Sun Spica Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 29 & 38 & 55 \\ 44 & 4 & 41 \\ 89 & 53 & 49 \end{array}$	$\begin{array}{rrr} 31 & 23 & 28 \\ 42 & 13 & 8 \\ 88 & 2 & 2 \end{array}$	$\begin{array}{rrr} 33 & 72 \\ 40 & 21 & 55 \\ 86 & 10 & 33 \end{array}$	$\begin{array}{lll} 34 & 51 & 38 \\ 38 & 31 & 2 \\ 84 & 19 & 24 \end{array}$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III'.	VI'.	IX ${ }^{\text {. }}$
1	Sun Spica Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{llll} 36 & 35 & 114 \\ 36 & 40 & 32 \\ 82 & 28 & 35 \end{array}$	$\begin{array}{llr} 38 & 18 & 2 \prime \prime \\ 34 & 50 & 24 \\ 80 & 38 & 7 \end{array}$	$\begin{array}{lrr} 40^{\circ} & 1 & 233^{\prime \prime} \\ 33 & 0 & 39 \\ 78 & 48 & 0 \end{array}$	$\begin{array}{lll} 41 & 41^{\prime \prime} \\ 31 & 11 & 19 \\ 76 & 58 & 16 \end{array}$
2	Sun Antares a Aquilæ	W. E. E.	$\begin{array}{rrr} 50 & 10 & 48 \\ 67 & 55 & 26 \\ 117 & 43 & 27 \end{array}$	$\begin{array}{rrr} 51 & 50 & 57 \\ 66 & 8 & 6 \\ 116 & 15 & 54 \end{array}$	$\begin{array}{rrr} 53 & 30 & 42 \\ 64 & 21 & 10 \\ 114 & 48 & 8 \end{array}$	$\begin{array}{rrr} 55 & 10 & 2 \\ 62 & 34 & 39 \\ 113 & 20 & 14 \end{array}$
3	Sun Antares a Aquilæ	W. E. E.	$\begin{array}{rrr} 63 & 20 & 18 \\ 53 & 48 & 32 \\ 106 & 0 & 10 \end{array}$	$\begin{array}{rrrrr}64 & 57 & 4 \\ 52 & 4 & 36 \\ 104 & 32 & 19\end{array}$	$\begin{array}{rrrr}66 & 33 & 24 \\ 50 & 21 & 5 \\ 103 & 4 & 37\end{array}$	$\begin{array}{rrrr}68 & 9 & 19 \\ 48 & 38 & 1 \\ 101 & 37 & 3\end{array}$
4	Sun Antares a Aquilæ Fomalhant	W. E. E. E.	$\begin{array}{rrr} 76 & 2 & 33 \\ 40 & 8 & 57 \\ 94 & 22 & 32 \\ 119 & 36 & 45 \end{array}$	$\begin{array}{rrr} 77 & 35 & 58 \\ 38 & 28 & 23 \\ 92 & 56 & 25 \\ 118 & 5 & 54 \end{array}$	$\begin{array}{rrr} 79 & 8 & 58 \\ 36 & 48 & 13 \\ 91 & 30 & 36 \\ 116 & 35 & 9 \end{array}$	$\begin{array}{rrrr}80 & 41 & 35 \\ 35 & 8 & 27 \\ 90 & 5 & 7 \\ 115 & 4 & 30\end{array}$
5	Sun Spica Antares a Aquilæ Fomalhaut	W. W. E. E. E.	$\begin{array}{rrr} 88 & 18 & 52 \\ 19 & 8 & 0 \\ 26 & 55 & 24 \\ 83 & 2 & 59 \\ 107 & 33 & 26 \end{array}$	$\begin{array}{rrr} 89 & 49 & 13 \\ 20 & 44 & 38 \\ 25 & 17 & 55 \\ 81 & 39 & 43 \\ 106 & 3 & 45 \end{array}$	$\begin{array}{rrr} 91 & 19 & 12 \\ 22 & 21 & 3 \\ 23 & 40 & 46 \\ 80 & 16 & 51 \\ 104 & 34 & 17 \end{array}$	$\begin{array}{rrr} 92 & 48 & 51 \\ 23 & 57 & 12 \\ 22 & 3 & 59 \\ 78 & 54 & 24 \\ 103 & 5 & 1 \end{array}$
6	Sun Spica a Aquilæ Fomalhaut a Pegasi	W. W. E. E. E.	$\begin{array}{rrr} 100 & 12 & 9 \\ 31 & 54 & 1 \\ 72 & 8 & 59 \\ 95 & 42 & 7 \\ 117 & 59 & 19 \end{array}$	$\begin{array}{rrr} 101 & 39 & 53 \\ 33 & 28 & 34 \\ 70 & 49 & 21 \\ 94 & 14 & 15 \\ 116 & 29 & 28 \end{array}$	$\begin{array}{rrr} 103 & 7 & 19 \\ 35 & 2 & 51 \\ 69 & 30 & 14 \\ 92 & 46 & 37 \\ 114 & 59 & 45 \end{array}$	$\begin{array}{rrr} 10434 & 28 \\ 36 & 36 & 53 \\ 68 & 11 & 39 \\ 91 & 19 & 14 \\ 113 & 30 & 12 \end{array}$
7	Sun Spica a Aquilæ Fomalhaut a Pegasi	W. W. E. E. E.	$\begin{array}{rrr} 111 & 46 & 14 \\ 44 & 23 & 18 \\ 61 & 47 & 20 \\ 84 & 6 & 5 \\ 106 & 4 & 46 \end{array}$	$\begin{array}{rrr} 113 & 11 & 50 \\ 45 & 55 & 53 \\ 60 & 32 & 20 \\ 82 & 40 & 13 \\ 104 & 36 & 10 \end{array}$	$\begin{array}{rrr} 114 & 37 & 13 \\ 47 & 28 & 15 \\ 59 & 18 & 1 \\ 81 & 14 & 36 \\ 103 & 7 & 43 \end{array}$	$\begin{array}{rrr} 116 & 2 & 23 \\ 49 & 0 & 24 \\ 58 & 4 & 24 \\ 79 & 49 & 15 \\ 101 & 39 & 27 \end{array}$
8	Sun Spica a Aquilæ Fomalhaut a Pegasi	W. W. E. E. E.	$\begin{array}{rrr} 123 & 5 & 10 \\ 56 & 38 & 14 \\ 52 & 8 & 7 \\ 72 & 46 & 27 \\ 94 & 20 & 24 \end{array}$	124 29 10 58 9 16 50 59 29 71 22 43 92 53 3	$\begin{array}{rrr} 125 & 53 & 0 \\ 59 & 40 & 8 \\ 49 & 51 & 51 \\ 69 & 59 & 15 \\ 91 & 25 & 51 \end{array}$	$\begin{array}{rr} 127 & 16 \\ 61 & 40 \\ 48 & 51 \\ 48 & 45 \\ 68 & 15 \\ 89 & 58 \end{array}$
9	Spica Antares Fomalhaut a Pegasi a Arietis	W. W. E. E. E.	$\begin{array}{rrr} 68 & 42 & 20 \\ 22 & 48 & 24 \\ 61 & 44 & 45 \\ 82 & 45 & 44 \\ 125 & 10 & 43 \end{array}$	$\begin{array}{rrr} 70 & 12 & 15 \\ 24 & 18 & 25 \\ 60 & 23 & 27 \\ 81 & 19 & 32 \\ 123 & 41 & 10 \end{array}$	$\begin{array}{rrr} 71 & 42 & 3 \\ 25 & 48 & 18 \\ 59 & 2 & 31 \\ 79 & 53 & 29 \\ 122 & 11 & 42 \end{array}$	$\begin{array}{rrr} 73 & 11 & 45 \\ 27 & 18 & 6 \\ 57 & 41 & 57 \\ 78 & 27 & 33 \\ 120 & 42 & 20 \end{array}$
10	Spica Antares Fomalhaut a Pegasi a Arietis	W. W. E. E. E.	$\begin{array}{rrr} 80 & 38 & 56 \\ 34 & 45 & 42 \\ 51 & 5 & 13 \\ 71 & 19 & 59 \\ 113 & 16 & 42 \end{array}$	$\begin{array}{rrr} 82 & 8 & 8 \\ 36 & 14 & 59 \\ 49 & 47 & 16 \\ 69 & 54 & 54 \\ 111 & 47 & 46 \end{array}$	$\begin{array}{rrr} 83 & 37 & 16 \\ 37 & 44 & 12 \\ 48 & 29 & 51 \\ 68 & 29 & 56 \\ 110 & 18 & 55 \end{array}$	$\begin{array}{rrr} 85 & 6 & 20 \\ 39 & 13 & 22 \\ 47 & 13 & 0 \\ 67 & 5 & 7 \\ 108 & 50 & 6 \end{array}$
11	Spica Antares	W. W.	$\begin{array}{lll} 92 & 31 & 0 \\ 46 & 38 & 27 \end{array}$	$\begin{array}{rrr} 93 & 59 & 49 \\ 48 & 7 & 22 \end{array}$	$\begin{array}{lll} 95 & 28 & 37 \\ 49 & 36 & 14 \end{array}$	$\begin{array}{rrr} 96 & 57 & 23 \\ 51 & 5 & 6 \end{array}$

GREENWICH MEAN TLME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV.	XVIII ${ }^{\text {b }}$	Xxir.
1	Sun	W.	$4{ }^{4} 22^{\prime}{ }^{\prime \prime}$	$4{ }^{\circ} 7811$		
	Spica	E.	292224	273355	254554	235822
	Antares	E.	$75 \quad 855$	73 19 5	$\begin{array}{ll}71 & 3122\end{array}$	694312
2	Sun	W.	564856	582725	$\begin{array}{lll}60 & 5 & 28\end{array}$	61436
	Antares	E.	604834	$59 \quad 255$	571741	$55 \quad 3254$
	a Aquilæ	E.	1115214	1102412	108568	107287
3	Sun	W.	694448	711952	725430	742844
	Antares	E.	465522	45138	433119	414956
	a Aquilæ	E.	$\begin{array}{ll}100 & 9\end{array}$	984232	$\begin{array}{llll}97 & 15 & 37\end{array}$	954856
4	Sun	W.	821348	834538	85175	864810
	Antares	E.	$33 \quad 29 \quad 5$	$3150 \quad 5$	301129	283316
	a Aquilæ	E.	883958	871510	$85 \quad 5044$	842640
	Fomalhant	E.	1133358	112335	1103321	$\begin{array}{ll}109 & 318\end{array}$
5	Sun	W.	941810	95478	971547	98448
	Spica	W.	$2533 \quad 6$	$27 \quad 844$	28446	301912
	Antares	E.	202732	185126	$17 \quad 1539$	154012
	a Aquilæ	E.	773224	761051	744945	$73 \quad 29 \quad 7$
	Fomalhaut	E.	1013559	$\begin{array}{lll}100 & 710\end{array}$	983835	971014
6	Sun	W.	$\begin{array}{ll}106 & 120\end{array}$	1072757	1085417	1102023
	Spica	W.	381039	394410	411727	425030
	a Aquilæ	E.	665337	65368	641915	$63 \quad 259$
	Fomalhaut	E.	$8952 \quad 6$	882513	865835	853213
	a Pegasi	E.	112048	1103133	10928	1073332
7	Sun	W.	1172720	118525	$\begin{array}{llll}120 & 16 & 37\end{array}$	1214059
	Spica	W.	503221	$\begin{array}{llll}52 & 4 & 6\end{array}$	533539	$\begin{array}{llll}55 & 7 & 2\end{array}$
	a Aquilæ	E.	565131	553925	54287	531740
	Fomalhant	E.	$78 \quad 24 \quad 9$	765920	753446	741029
	a Pegasi	E.	1001119	984321	971533	954754
8	Sun	W.	1284012	$130 \quad 3 \quad 35$	1312649	1324955
	Spica	W.	624125	641150	65428	671217
	a Aquilæ	E.	473945	463525	453219	443031
	Fomalhant	E.	671312	655037	642820	$63 \quad 623$
	a Pegasi	E.	883154	$87 \quad 5 \quad 9$	853832	$8412 \quad 4$
9	Spica	W.	744121	761053	774018	79 9 93
	Antares	W.	284747	301724	314654	331620
	Fomalhant	E.	562145	55158	534236	522340
	a Pegasi	E.	$77 \quad 146$	$\begin{array}{lll}75 & 36 & 7\end{array}$	741036	724514
	a Arietis	E.	11913 3	1174351	1161444	1144541
10	Spica	W.	863522	$88 \quad 420$	893316	$\begin{array}{lll}91 & 2 & 9\end{array}$
	Antares	W.	404228	421132	434033	$45 \quad 931$
	Fomalhaut	E.	455645	444110	$43 \quad 2617$	421210
	a Pegasi	E.	654027	$6415 \quad 56$	625134	612722
	a Arietis	E.	1072120	1055237	1042356	1025518
11	Spica	W.	$98 \quad 268$	995452	1012335	1025218
	Antares	W.	523356	$54 \quad 245$	553134	$57 \quad 0 \quad 23$

GREENWICH MEAN TTME.

LUNAR DISTANCES.

Day of the Month	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III.	VI'.	IX ${ }^{\text {² }}$
11	Fomalhaut	E.	$40^{\circ} 588{ }^{\prime \prime}$	$39^{\circ} 46^{\prime} 29$	$3835{ }^{\prime \prime}$	$37^{\circ} 24^{\prime \prime}{ }^{\prime \prime}$
	a Pegasi	E.	$60 \quad 320$	583928	571547	555218
	a Arietis	E.	1012641	99586	982933	9710
12	Spica	W.	10421	1054944	1071827	1084711
	Antares	W.	582911	5958	612648	625538
	Fomalhaut	E.	315252	305128	29528	$2855 \quad 5$
	$a \mathrm{Pegasi}$	E.	485811	47368	461424	44530
	a Arietis	E.	893829	$88 \quad 959$	864129	851259
	Aldebaran	E.	1211320	1194632	1181941	1165246
13	Antares	W.	$7020 \quad 0$	714857	731756	744657
	a Pegasi	E.	381217	365344	353549	341840
	a Arietis	E.	775013	762136	745258	$\begin{array}{llll}73 & 24 & 17\end{array}$
	Aldebaran	E.	1093716	$\begin{array}{lll}108 & 9 & 59\end{array}$	1064239	1051515
14	Antares		821243	$8342 \quad 2$	851124	864050
	- a Aquilæ	W.	402251	411747	421421	431229
	a Arietis	E.	$\begin{array}{llll}66 & 0 & 18\end{array}$	643123	$\begin{array}{ll}63 & 224\end{array}$	613322
	Aldebaran	E.				
15	Antares	W.	$94 \quad 96$	953859	$97 \quad 858$	98393
	a Aquilæ	W.	48238	492843	503517	514248
	a Arietis	E.	$\begin{array}{llll}54 & 7 & 20\end{array}$	523756	$\begin{array}{llll}51 & 8 & 29\end{array}$	493856
	Aldebaran	E.	86130	844438	831610	814738
	Jupiter	E.	1225034	1212222	11954	1182540
16	Antares	W.	1061057	1074140	1091231	1104329
	a Aquilæ	W.	573234	584439	595722	611041
	Fomalhaut	W.	321427	331942	342646	$3535 \cdot 28$
	a Arietis	E.	$42 \quad 109$	404011	$3910 \quad 7$	373959
	Aldebaran	E.	$\begin{array}{llll}74 & 23 & 40\end{array}$	725436	712527	695611
	Jupiter	E.	$\begin{array}{lll}111 & 2 & 3\end{array}$	1093259	$108 \quad 346$	1063427
	Pollux	E.	116501	1151935	113491	1121820
17	a Aquilæ	W.	$\begin{array}{llll}67 & 25 & 16\end{array}$	684137	695823	
	Fomalhaut	W.	413922	425532	441237	453036
	a Arietis	E.	$30 \quad 821$	283753	$27 \quad 723$	253654
	Aldebaran	E.	$62 \quad 2827$	$\begin{array}{llll}60 & 58 & 37\end{array}$	$\begin{array}{llll}59 & 28 & 40\end{array}$	575837
	Jupiter	E.	$\begin{array}{llll}99 & 5 & 39\end{array}$	973526	$\begin{array}{llll}96 & 5 & 3\end{array}$	94 4430
	Pollux	E.	1044240	103115	1013920	$\begin{array}{ll}100 & 7 \\ 1\end{array}$
	Sun	E.	1375339	136290	135411	1333912
18	a Aquilæ	W.	$\begin{array}{llll}77 & 47 & 7 \\ 52 & 11\end{array}$	$\begin{array}{llll}79 & 6 & 27\end{array}$	$\begin{array}{llll}80 & 26 & 6\end{array}$	$\begin{array}{llll}81 & 46 & 3 \\ 56 & 20\end{array}$
	Fomalhaut	W.	521156	$53 \quad 3412$	$\begin{array}{llll}54 & 57 & 4\end{array}$	562030
	a Pegasi	W.	$\begin{array}{llll}30 & 3 & 27\end{array}$	312046	$\begin{array}{llll}32 & 39 & 30\end{array}$	335932
	Aldebaran	E.	$\begin{array}{lll}50 & 2659\end{array}$	485624	472545	$45 \quad 55 \quad 2$
	Jupiter	E.	86590	$85 \quad 2719$	835525	822318
	Pollux	E.	$\begin{array}{lllll}92 & 25 & 1\end{array}$	905158	891842	874512
	Sun	E.	1263133	$125 \quad 526$	12339	1221235
19	a Aquilæ	W.	$\begin{array}{llll}88 & 29 & 55 \\ 63 & 25 & 28\end{array}$	$\begin{array}{llll}89 & 51 & 27 \\ 64 & 51\end{array}$	91 13 12 66 18 48	$\begin{array}{llll}92 & 35 & 10\end{array}$
	Fomalhaut	W.	$63 \quad 25 \quad 28$	645155	$\begin{array}{llll}66 & 18 & 48 \\ 43 & 48\end{array}$	67468
	a Pegasi	W.	405542	422136	434816	451538

GREENWICH MEAN TIME.						
LUNAR DIStances.						
Day of Month Month	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III'.	VIL.	IX ${ }^{\text {b }}$
19	Aldebaran	E.	$3880{ }^{\circ} 54$	3650	$3519{ }^{\prime}{ }^{\prime \prime}$	$33^{\circ} 48^{\prime \prime} 50$
	Jupiter	E.	743918	$73 \quad 546$	713158	695754
	Pollux	E.	795422	781928	764419	$75 \quad 854$
	Sun	E.	1145628	1132831	112018	1103149
20	a Aquilæ	W.	992745	1005044	1021350	$\begin{array}{llll}103 & 37 & 2\end{array}$
	Fomalhaut	W.	$75 \quad 94$	763852	$78 \quad 9 \quad 2$	793935
	a Pegasi	W.	$5242 \quad 5$	54138	554443	571649
	Aldebaran	E.	$26 \quad 1957$	245140	232414	215754
	Jupiter	E.	$\begin{array}{lll}62 & 3 & 25\end{array}$	$60 \quad 2739$	585133	57159
	Pollux	E.	$\begin{array}{lll}67 & 7 & 40\end{array}$	65 30. 33	63538	621525
	Sun	E.	$\begin{array}{ll}103 & 512\end{array}$	1013459	100428	983337
21	a Aquilæ		$\begin{array}{llll}110 & 33 & 52 \\ 80\end{array}$	1115713 88	$\begin{array}{rrrr}113 & 20 & 31\end{array}$	
	Fomalhaut	W.	871751	$88 \quad 50 \quad 34$	902337	$\begin{array}{llll}91 & 57 & 0\end{array}$
	a Pegasi	W.	65 4 4 50	663952	$6815 \quad 22$	$\begin{array}{llll}69 & 51 & 19\end{array}$
	a Arietis	W.	213345	23 1119	244934	262825
	Jupiter	E.	$\begin{array}{llll}49 & 819\end{array}$	472956	$45 \quad 5113$	$44 \quad 12 \quad 9$
	Pollux	E.	54 2 0 00 54	522219	504219	$\begin{array}{llll}49 & 1 & 58\end{array}$
	Sun	E.	905427	892136	874823	861448
22	Fomalhaut	W.	994837	1012348	1025916	1043458
	a Pegasi	W.	775742	793616	811515	825438
	a Arietis	W.	345046	363243	38158	39580
	Jupiter	E.	355132	341021	322850	304658
	Pollux	E.	40357	385244	37101	352658
	Sun	E.	782122	764533	$75 \quad 920$	733245
23	Fomalhaut	W.	1123638	1141327	1155022	1172720
	a Pegasi	W.	$\begin{array}{llll}91 & 17 & 31\end{array}$	925913	$\begin{array}{llll}94 & 41 \\ 52 & 16\end{array}$	96 23 8
	a Arietis	W.	483859	502428	521022	535640
	Aldebaran	W.	191848	204838	22215	235545
	Jupiter	E.	22.1250	202911	184520	17121
	Pollux	E.	264713	$\begin{array}{lll}25 & 231\end{array}$	$\begin{array}{ll}23 & 17 \\ 37\end{array}$	213236
	Sun	E.	65240	63455	$\begin{array}{ll}62 & 547\end{array}$	60267
24		W.				
	a Arietis	W.	$\begin{array}{llll}62 & 54 & 8\end{array}$	644246	663145	$6821 \quad 6$
	Aldebaran	W.	321230	335520	35392	372332
	Sun	E.	$\begin{array}{lll}52 & 2 & 9\end{array}$	502017	48384	
25	a Pegasi	W.	1185914	1204437	12230	$\begin{array}{llll}124 & 15 & 21\end{array}$
	a Arietis	W.	773239	792352	811520	$83 \quad 7 \quad 3$
	Aldebaran	W.	461554	$48 \quad 4 \quad 0$	495233	514131
	Sun	E.	$\begin{array}{llll}38 & 18 & 7\end{array}$	363346	344911	$\begin{array}{ll}33 & 421\end{array}$
30	Sun	W.	$\begin{array}{llll}31 & 51 & 6\end{array}$	$\begin{array}{llll}33 & 32 & 6\end{array}$	351242	365254
	Antares	E.	592650	573831	$55 \quad 50 \quad 36$	$\begin{array}{llll}54 & 3 & 5\end{array}$
	a Aquilæ	E.	1104354	1091319	1074243	106129
31					$\begin{array}{lll}48 & 22 & 29\end{array}$	$\begin{array}{llll}49 & 59 & 16\end{array}$
	Antares	E.	$45 \quad 1154$	$43 \quad 2657$	414228	395824
	\boldsymbol{a} Aquilx			971129	95428	$\begin{array}{lll}94 & 13 & 4\end{array}$

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV.	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
19	Aldebaran	E.	$32^{\circ} 18{ }^{\prime} 25^{\prime \prime}$	$30^{\circ} 48^{1 \prime \prime}$	$29^{\circ} 18^{\prime} 22^{\prime \prime}$	$27^{\circ} 48{ }^{\prime \prime}$
	Jupiter	E.	682335	664858	65145	$63 \quad 3854$
	Pollux	E.	733313	$\begin{array}{llll}7157 & 15\end{array}$	70211	684429
	Sun	E.	$\begin{array}{llll}109 & 3\end{array}$	107342	106443	104356
20	a Aquilæ	W.	$105 \quad 0 \quad 19$	1062340	107473	1091028
	Fomalhaut	W.	811031	824149	841329	854529
	a Pegasi	W.	584926	$\begin{array}{ll}60 & 22\end{array} 33$	615610	633016
	Aldebaran	E.	203256	$19 \quad 944$	174847	163046
	Jupiter	E.	$\begin{array}{llll}55 & 38 & 27\end{array}$	$\begin{array}{llll}54 & 1 & 24\end{array}$	$\begin{array}{lll}52 & 24 & 2\end{array}$	504621
	Pollux	E.	603722	$\begin{array}{llll}58 & 59 & 1\end{array}$	572020	554120
	Sun	E.	$\begin{array}{ll}97 & 2\end{array} 27$	$95 \quad 3058$	93598	922658
21	a Aquilæ	W.	$116 \quad 645$	1172938	1185217	1201439
	Fomalhaut	W.	$93 \quad 3043$	95444	$\begin{array}{llll}96 & 39 & 4\end{array}$	981342
	a Pegasi	W.	712743	$\begin{array}{llll}73 & 4 & 34\end{array}$	744151	761934
	a Arietis	W.	$28 \quad 750$	294749	$\begin{array}{llll}31 & 2818\end{array}$	$\begin{array}{lll}33 & 9 & 17\end{array}$
	Jupiter	E.	423244	405258	391250	373222
	Pollux	E.	472117	454015	485853	421710
	Sun	E.	844051	$83 \quad 633$	813152	795648
22	Fomalhaut	W.	1061054	107474	1092325	1105957
	a Pegasi	W.	843426	861437	875512	893611
	a Arietis	W.	414119	$43 \quad 25 \quad 5$	$45 \quad 9 \quad 17$	465355
	Jupiter	E.	$\begin{array}{ll}29 & 4 \\ 46\end{array}$	272214	$25 \quad 3923$	235615
	Pollux	E.	334336	315955	301557	283143
	Sun	E.	715547	701825	684040	$67 \quad 231$
23	Fomalhaut	W.	119421	1204121	$122 \quad 1819$	1235510
	a Pegasi	W.	$98 \quad 6 \quad 25$	994928	1013250	1031629
	a Arietis	W.	554323	573030	59180	61553
	Aldebaran	W.	253216	271024	284955	303040
	Jupiter	E.	$\begin{array}{ll}15 & 17 \\ 19\end{array}$	$\begin{array}{ll}13 & 33 \\ 18\end{array}$	114944	$10 \quad 645$
	Pollux	E.	194732	$18 \quad 231$	161742	143317
	Sun	E.	58464	$\begin{array}{llll}57 & 5 & 38\end{array}$	552450	534340
24	a Pegasi	W.	1115830	1134330	$115 \quad 2838$	1171354
	a Arietis	W.	701046	$\begin{array}{lll}72 & 0 & 47\end{array}$	73516	754144
	Aldebaran	W.	$39 \quad 846$	405440	424112	$44 \quad 2817$
	Sun	E.	$45 \quad 12 \quad 39$	432928	414558	$40 \quad 211$
25	a Pegasi	W.	$\begin{array}{lll}126 & 0 & 38\end{array}$	1274546	1293043	1311525
	a Arietis	W.	84590	865110	884332	90366
	Aldebaran	W.	533052	552035	571036	$59 \quad 055$
	Sun	E.	311917	29342	274835	$26 \quad 257$
30	Son	W.	383242	40124	4151	432932
	Antares	E.	52160	502920	$4843 \quad 5$	465716
	a Aquilæ	E.	1044139	1031116	101411	1001057
31	Sun	W.	513536	$\begin{array}{llll}53 & 11 & 29\end{array}$	544656	
	Antares	E.	381447	363137	344854	$\begin{array}{lll}33 & 637\end{array}$
	a Aquilæ	E.	924420	911556	894753	$88 \quad 2014$

GREENWICI MEAN TIME.						
lunar distances.						
Day of Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
1	Sun	W.	$57^{\circ} 56{ }^{\prime \prime \prime}$	59×30 39̈	$61^{\circ} 4^{\prime} 2{ }^{\prime \prime}$	$62^{\circ} 37137$
	Spica	W.	144142	162140	18127	19410
	Antares	E.	312446	294322	$\begin{array}{ll}28 & 2\end{array} 24$	262152
	a Aquilæ	E.	865258	$85 \quad 267$	835943	823346
	Fomalhaut	E.	111414	$\begin{array}{ll}110 & 814\end{array}$	1083537	107315
2	Sun	W.	701738	714824	731847	744846
	Spica	W.	275413	293151	$31 \quad 97$	32462
	a Aquilæ	E.	753119	$74 \quad 824$	72463	712416
	Fomalhaut	E.	992528	975447	962424	945421
3	Sun	W.	$8213 \quad 9$	834058	$85 \quad 827$	863536
	Spica	W.	404528	422021	435455	452911
	a Aquilæ	E.	644436	$63 \quad 2639$	$62 \quad 924$	605253
	Fomalhaut	E.	872855	$86 \quad 050$	84334	$83 \quad 5 \quad 39$
	a Pegasi	E.	1093235	108155	1063129	105118
4	Sun	W.	934648	951211	$\begin{array}{llll}96 & 37 & 18\end{array}$	
	Spica	W.	53161	5448.34	562051	575253
	a Aquilæ	E.	544213	533042	52 520 78	$\begin{array}{llll}51 & 10 & 35\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}75 & 53 & 37\end{array}$	742814	73 3 12	713831
	a Pegasi	E.	973357	$96 \quad 511$	943639	93820
5	Sun	W.	$\begin{array}{lll}105 & 3 & 2\end{array}$	$\begin{array}{llll}106 & 26 & 35\end{array}$	1074956	109136
	Spica	W.	652942	$67 \quad 027$	68311	$\begin{array}{llll}70 & 124\end{array}$
	Antares	W.	193541	$21 \quad 631$	223710	$24 \quad 739$
	Fomalhaut	E.	644026	631755	615547	60343
	a Pegasi	E.	$8550 \quad 2$	842259	$8256 \quad 9$	812930
6	Sun	W.	$116 \quad 635$	1172851	11851	$\begin{array}{ll}120 & 13\end{array}$
	Spica	W.	77312	$\begin{array}{ll}79 & 0 \\ & 33\end{array}$	802958	815916
	Antares	W.	313743	$\begin{array}{lll}33 & 719\end{array}$	343649	$\begin{array}{lll}36 & 612\end{array}$
	Fomalhaut	E.	535139	523232	511356	495551
	a Pegasi	E.	74194	725331	71289	$\begin{array}{lll}70 & 2 & 57\end{array}$
	a Arietis	E.	116240	1145447	1132540	1115639
7					1294459	131626
	Spica	W.	892429	905319	92226	935050
	Antares	W.	433150	$45 \quad 0 \quad 45$	462937	475827
	Fomalhaut	E.	433432	$42 \quad 2023$	$41 \begin{array}{lll}41 & 7\end{array}$	395438
	a Pegasi	E.	625932	613522	601124	584736
	a Arietis	E.	1043246	103411	1013538	$\begin{array}{llll}100 & 7\end{array}$
8						
	Antares	W.	55 5211	565054	581937	594820
	a Pegasi	E.	515138	$\begin{array}{llll}50 & 29 & 7\end{array}$	$\begin{array}{llll}49 & 6 & 51\end{array}$	474452
	a Arietis	E.	92451	$\begin{array}{llll}91 & 1637\end{array}$	894813	881949
	Aldebaran	E.	1241626	1224951	1212312	1195629
9			$\begin{array}{llll}113 & 3 & 32\end{array}$	1143220	$\begin{array}{rrrr}116 & 1 & 12 \\ 70 & 10 & 13\end{array}$	
	Antares	W.	$\begin{array}{llll}67 & 12 & 20 \\ 40\end{array}$	6841 15	$70 \quad 1013$	$\begin{array}{llll}71 & 19 & 14\end{array}$
	a Pegasi	E.	405956	$\begin{array}{lllll}39 & 40 & 11 \\ 79 & \end{array}$	382056	$\begin{array}{lll}37 & 216\end{array}$
	a Arietis	E.	805725	792850	78 0 13	763132
	Aldebaran	E.	1124143	1111432	1094716	1081954

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Na and Position		Midnight.	XV'.	XVIIIL.	XXI'.
1	Sten	W.	$64^{\circ} 10^{\prime} 27$	$65^{\circ} 422^{\prime \prime}$	$67^{\circ} 14{ }^{\prime \prime}$	$68^{\circ} 462{ }^{\prime \prime}$
	Spica	W.	212017	22 5916	243756	261615
	Antares	E.	244146	$23 \quad 2 \quad 5$	212249	194358
	a Aquilæ	E.	$81 \quad 817$	794316	781846	$76 \quad 5447$
	Fomalhaut	E.	105318	1035918	1022744	1005627
2	Sun	W.	$\begin{array}{llll}76 & 18 & 23\end{array}$	$77 \quad 47 \quad 37$	$\begin{array}{lll}79 & 1629\end{array}$	804459
	Spica	W.	342237	355850	373443	$\begin{array}{ll}39 & 1016\end{array}$
	a Aquilæ	E.	$70 \quad 3 \quad 5$	684230	672233	$\begin{array}{llll}66 & 3 & 14\end{array}$
	Fomalhant	E.	$\begin{array}{llll}93 & 24 & 37\end{array}$	$91 \quad 5512$	$90 \quad 266$	$88 \quad 5721$
3	Sun	W.	$88 \quad 226$	$89 \quad 2858$	$\begin{array}{llll}90 & 55 & 12\end{array}$	92218
	Spica	W.	$\begin{array}{lll}47 & 3 & 7\end{array}$	$48 \quad 3646$	$\begin{array}{llll}50 & 10 & 8\end{array}$	514313
	a Aquilæ	E.	$\begin{array}{llll}59 & 37 & 7\end{array}$	$58 \quad 22 \quad 9$	$57 \quad 759$	555440
	Fomalhaut	E.	813833	801149	784524	771920
	a Pegasi	E.	1033121	102139	1003211	$99 \quad 257$
4	Sun	W.	992648	1005111	1021521	1033918
	Spica	W.	592442	605616	$62 \quad 2737$	$63 \quad 5846$
	a Aquilæ	E.	$50 \quad 2 \quad 4$	$48 \quad 5439$	474824	464323
	Fomalhaut	E.	701411	$68 \quad 5012$	672635	$66 \quad 319$
	a Pegasi	E.	$91 \quad 4015$	$90 \quad 12 \quad 22$	884443	$87 \quad 1716$
5	Sun	W.	110366	1115857	1132138	1144410
	Spica	W.	$\begin{array}{lllll}71 & 31 & 38\end{array}$	731142	74 31 37	$\begin{array}{lll}76 & 1 & 23\end{array}$
	Antares	W.	253758	$\begin{array}{llll}27 & 8 & 7\end{array}$	28387	$30 \quad 759$
	Fomalhaut	E.	$\begin{array}{lll} 59 & 12 \quad 43 \end{array}$	575147	$\begin{array}{llll}56 & 31 & 18\end{array}$	5511115
	a Pegasi	E.	$80 \quad 3 \quad 2$	$78 \quad 3646$	$77 \quad 1041$	754447
6	Sun	W.	121351	1225652	1241838	1254019
	Spica	W.	832828	845735	$\begin{array}{llll}86 & 26 & 37\end{array}$	875535
	Antares	W.	373529	$\begin{array}{llll}39 & 4 & 41\end{array}$	$40 \quad 3349$	$42 \quad 251$
	Fomalhaut	E.	483820	472124	$46 \quad 5 \quad 5$	444927
	a Pegasi	E.	$68 \quad 3755$	$\begin{array}{llll}67 & 13 & 4\end{array}$	654823	642352
	a Arietis	E.	1102743	1085852	107306	106124
7	Sun	W.	$\begin{array}{ll}132 & 2750\end{array}$	1334912	1351032	1363151
	Spica	W.	951932	964813	981652	994530
	Antares	W.	$49 \quad 2714$	5056	$52 \quad 2445$	535328
	Fomalhaut	E.	384311	$\begin{array}{llll}37 & 32 & 47\end{array}$	$36 \quad 23 \quad 33$	$\begin{array}{llll}35 & 15 & 34\end{array}$
	a Pegasi	E.	$57 \quad 24 \quad 0$	$56 \quad 0 \quad 35$	$\begin{array}{llll}54 & 37 & 23\end{array}$	531424
	a Arietis	E.	$98 \quad 3840$	$97 \quad 1014$	954149	941325
8	Spica	W.	107840	1083720	11062	1113446
	Antares	W.	$\begin{array}{lll}6117 & 17\end{array}$	624551	$\begin{array}{llll}64 & 14 & 39\end{array}$	$\begin{array}{r}6543 \\ \hline 18\end{array}$
	a Pegasi	E.	$\begin{array}{llll}46 & 23 & 10\end{array}$	45148	434047	$42 \quad 20 \quad 9$
	α Arietis	E.	$\begin{array}{llll}86 & 51 & 23\end{array}$	$85 \quad 2256$	835428	822558
	Aldebaran	E.	1182941	117248	1153551	114850
9	Spica	W.	118593			
	Antares	W.	$\begin{array}{llll}73 & 8 & 18\end{array}$	$\begin{array}{lllll}74 & 37 & 26\end{array}$	$\begin{array}{llll}76 & 6 & 39\end{array}$	77 35
	a Pegasi	E.	$\begin{array}{llll}35 & 44 & 15\end{array}$	342657	$\begin{array}{lll}33 & 10 & 27\end{array}$	315451
	a Arictis	E.	$\begin{array}{llll}75 & 2 & 48\end{array}$	$\begin{array}{llll}73 & 34 & 1\end{array}$	$\begin{array}{llll}72 & 5 & 10\end{array}$	703615
	Aldebaran	E.	1065228	1052456	$103 \quad 5719$	1022936

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and. } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
10	Antares a Arietis Aldebaran	W. E. E.	$\begin{array}{rrrr} 79 & 5 & 16 \\ 69 & 7 & 16 \\ 101 & 1 & 48 \end{array}$	$\begin{array}{llll} 80 & 34 & 421 \\ 67 & 38 & 12 \\ 99 & 33 & 54 \end{array}$	82 4 113 66 9 4 98 5 55	$\begin{array}{llll} 83 & 3 A_{1}^{\prime \prime} \\ 64 & 50 \\ 96 & 39 & 51 \\ 96 & 37 & 49 \end{array}$
11	Antares a Aquilæ a Arietis Aldebaran	W. W. E. E.	91 3 18 46 11 22 57 12 32 89 15 50	92 33 31 47 15 6 55 42 48 87 47 8	94 3 50 48 19 59 54 12 58 86 18 19	95 34 16 49 25 58 52 43 3 84 49 23
12	Antares a Aquilæ Fomalhaut a Arietis Aldebaran Jupiter Pollux	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 103 & 8 & 13 \\ 55 & 10 & 6 \\ 30 & 7 & 38 \\ 45 & 12 & 2 \\ 77 & 23 & 10 \\ 119 & 0 & 0 \\ 119 & 52 & 35 \end{array}$	$\begin{array}{rrr} 104 & 39 & 23 \\ 56 & 21 & 25 \\ 31 & 9 & 9 \\ 43 & 41 & 33 \\ 75 & 53 & 35 \\ 117 & 30 & 10 \\ 118 & 21 & 44 \end{array}$	$\begin{array}{rrr} 106 & 10 & 41 \\ 57 & 33 & 27 \\ 32 & 12 & 52 \\ 42 & 10 & 58 \\ 74 & 23 & 54 \\ 116 & 0 & 11 \\ 116 & 50 & 44 \end{array}$	$\begin{array}{rrr} 107 & 42 & 7 \\ 58 & 46 & 9 \\ 33 & 18 & 36 \\ 40 & 40 & 18 \\ 72 & 54 & 7 \\ 114 & 30 & 5 \\ 115 & 19 & 36 \end{array}$
13	a Aquilæ Fomalhaut a Arietis Aldebaran Jupiter Pollux	W. W. E. E. E. E.	$\begin{array}{rrr} 64 & 58 & 45 \\ 39 & 11 & 53 \\ 33 & 5 & 48 \\ 65 & 23 & 37 \\ 106 & 57 & 23 \\ 10 & 41 & 44 \end{array}$	$\begin{array}{rrr} 66 & 14 & 52 \\ 40 & 26 & 34 \\ 31 & 34 & 42 \\ 63 & 53 & 12 \\ 105 & 26 & 24 \\ 106 & 9 & 43 \end{array}$	$\begin{array}{rrr} 67 & 31 & 27 \\ 41 & 42 & 21 \\ 30 & 3 & 35 \\ 62 & 22 & 42 \\ 103 & 55 & 16 \\ 104 & 37 & 33 \end{array}$	$\begin{array}{rrr} 68 & 48 & 28 \\ 42 & 59 & 8 \\ 28 & 32 & 26 \\ 60 & 52 & 6 \\ 102 & 23 & 59 \\ 103 & 5 & 14 \end{array}$
14	a Aquilæ Fomalhaut a Pegasi Aldebaran Jupiter Pollux	W. W. W. E. E. E.	$\begin{array}{lll} 75 & 19 & 34 \\ 49 & 36 & 1 \\ 27 & 43 & 32 \\ 53 & 17 & 52 \\ 94 & 45 & 9 \\ 95 & 21 & 15 \end{array}$	$\begin{array}{rrr} 76 & 38 & 50 \\ 50 & 57 & 35 \\ 28 & 58 & 9 \\ 51 & 46 & 48 \\ 93 & 12 & 54 \\ 93 & 47 & 59 \end{array}$	$\begin{array}{lll} 77 & 58 & 25 \\ 52 & 19 & 47 \\ 30 & 14 & 31 \\ 50 & 15 & 41 \\ 91 & 40 & 29 \\ 92 & 14 & 32 \end{array}$	$\begin{array}{rrr} 79 & 18 & 18 \\ 53 & 42 & 35 \\ 31 & 32 & 25 \\ 48 & 44 & 31 \\ 90 & 7 & 54 \\ 90 & 40 & 55 \end{array}$
15	ca Aquilæ Fomalhaut a Pegasi Aldebaran Jupiter Pollux Saturn	W. W. W. E. E. E. E.	$\begin{array}{rrr} 86 & 1 & 36 \\ 60 & 44 & 26 \\ 38 & 20 & 28 \\ 41 & 8 & 27 \\ 82 & 22 & 19 \\ 82 & 50 & 15 \\ 112 & 24 & 23 \end{array}$	$\begin{array}{rrr} 87 & 22 & 56 \\ 62 & 10 & 12 \\ 39 & 45 & 1 \\ 39 & 37 & 18 \\ 80 & 48 & 39 \\ 81 & 15 & 35 \\ 110 & 50 & 20 \end{array}$	$\begin{array}{rrr} 88 & 44 & 27 \\ 63 & 36 & 24 \\ 41 & 10 & 23 \\ 38 & 6 & 13 \\ 79 & 14 & 49 \\ 79 & 40 & 44 \\ 109 & 16 & 7 \end{array}$	$\begin{array}{rrrr} 90 & 6 & 10 \\ 65 & 2 & 59 \\ 42 & 36 & 29 \\ 36 & 35 & 16 \\ 77 & 40 & 46 \\ 78 & 5 & 42 \\ 107 & 41 & 41 \end{array}$
16	a Aquilæ Fomalhant a Pegasi Jupiter Pollux Saturn Sun	W. W. W. E. E. E. E.	$\begin{array}{rrr} 96 & 56 & 52 \\ 72 & 21 & 27 \\ 49 & 56 & 31 \\ 69 & 47 & 38 \\ 70 & 7 & 39 \\ 99 & 46 & 38 \\ 132 & 7 & 8 \end{array}$	$\begin{array}{rrr} 98 & 19 & 20 \\ 73 & 50 & 10 \\ 51 & 26 & 10 \\ 68 & 12 & 24 \\ 68 & 31 & 26 \\ 98 & 11 & 1 \\ 130 & 38 & 7 \end{array}$	$\begin{array}{rrr} 99 & 41 & 53 \\ 75 & 19 & 12 \\ 52 & 56 & 19 \\ 66 & 36 & 57 \\ 66 & 55 & 2 \\ 96 & 35 & 11 \\ 129 & 8 & 53 \end{array}$	$\begin{array}{rrr} 101 & 4 & 29 \\ 76 & 48 & 32 \\ 54 & 26 & 55 \\ 65 & 1 & 17 \\ 65 & 18 & 26 \\ 94 & 59 & 8 \\ 127 & 39 & 26 \end{array}$
17	Fomalhaut a Pegasi a Arietis Jupiter Pollux Saturn Sun	W. W. W. E. E. E. E.	$\begin{array}{rrr} 84 & 19 & 27 \\ 62 & 6 & 20 \\ 18 & 30 & 47 \\ 56 & 59 & 41 \\ 57 & 12 & 12 \\ 86 & 55 & 33 \\ 120 & 8 & 48 \end{array}$	$\begin{array}{rrr} 85 & 50 & 26 \\ 63 & 39 & 24 \\ 20 & 5 & 41 \\ 55 & 22 & 41 \\ 55 & 34 & 17 \\ 85 & 18 & 9 \\ 118 & 37 & 59 \end{array}$	$\begin{array}{rrr} 87 & 21 & 40 \\ 65 & 12 & 50 \\ 2141 & 18 \\ 53 & 45 & 26 \\ 53 & 56 & 10 \\ 83 & 40 & 30 \\ 117 & 6 & 55 \\ \hline \end{array}$	$\begin{array}{rrr} 88 & 53 & 9 \\ 66 & 46 & 37 \\ 23 & 17 & 33 \\ 52 & 7 & 58 \\ 52 & 17 & 50 \\ 82 & 2 & 37 \\ 115 & 35 & 37 \\ \hline \end{array}$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month	Star's Name and Position.		Midnight.	XVb.	XVIII	XXI ${ }^{\text {²}}$
10	Antares	W.	$85^{\circ} 33^{\prime \prime}$	$86^{\circ} 33{ }^{\text {a }} 20$	$88^{\circ} 3^{\prime} 113$	$89^{\circ} 33^{\prime} 13^{\prime \prime}$
	a Arietis	E.	$63 \quad 1034$	614111	601143	584210
	Aldebaran	E.	$\begin{array}{llll}95 & 9 & 37\end{array}$	934120	$92 \quad 1256$	904426
11	Antares	W.	97449	$98 \quad 35 \quad 29$	100616	1013710
	a Aquilæ	W.	$50 \quad 3259$	514057	$52 \quad 4950$	535934
	a Arietis	E.	$5113 \quad 2$	494255	$48 \quad 1243$	$\begin{array}{llll}46 & 42 & 25\end{array}$
	Aldebaran	E.	832022	815113	$80 \quad 2159$	$78 \quad 5237$
12	Antares	W.	1091341	1104523	$\begin{array}{llll}112 & 17 & 14\end{array}$	1134913
	a Aquilæ	W.	595931	611329	62 28	63438
	Fomalhaut	W.	342610	353525	$\begin{array}{llll}36 & 4612\end{array}$	$37 \quad 5824$
	a Arietis	E.	$39 \quad 9 \quad 33$	$37 \quad 3843$	$36 \quad 749$	34 36
	Aldebaran	E.	712414	695414	68247	665355
	Jupiter	E.	1125950	1112926	1095854	1082813
	Pollux	E.	1134819	1121653	1104519	1091336
13	a Aquilæ	W.	$70 \quad 5 \quad 55$	$71 \quad 2346$	$7242 \quad 1$	$\begin{array}{llll}74 & 0 & 37\end{array}$
	Fomalhaut	W.	441653	$45 \quad 35 \quad 29$	$\begin{array}{llll}46 & 54 & 55\end{array}$	$\begin{array}{llll}48 & 15 & 7\end{array}$
	a Arietis	E.	$27 \quad 117$	$2530 \quad 9$	23595	$22 \quad 286$
	Aldebaran	E.	592125	$57 \quad 50 \quad 39$	$\begin{array}{llll}56 & 19 & 47\end{array}$	544852
	Jupiter	E.	1005232	$99 \quad 20 \quad 56$	$97 \quad 4910$	$\begin{array}{llll}96 & 17 & 15\end{array}$
	Pollux	E.	1013245	$100 \quad 0 \quad 7$	$98 \quad 2719$	965421
14	a Aquilæ	W.	$\begin{array}{llll}80 & 38 & 28\end{array}$	815853	831934	844028
	Fomalhaut	W.	$55 \quad 5 \quad 57$	$\begin{array}{llll}56 & 29 & 50\end{array}$	$57 \quad 5414$	$\begin{array}{llll}59 & 19 & 6\end{array}$
	a Pegasi	W.	325144	$\begin{array}{lll}34 & 1219\end{array}$	$\begin{array}{llll}35 & 34 & 1\end{array}$	$\begin{array}{llll}36 & 5646\end{array}$
	Aldebaran	E.	$\begin{array}{llll}47 & 13 & 19\end{array}$	45426	$44 \quad 1052$	423938
	Jupiter	E.	88358	$87 \quad 212$	$85 \quad 295$	835547
	Pollux	E.	$89 \quad 7 \quad 8$	$87 \quad 3311$	$85 \quad 59 \quad 3$	842444
15	a Aquilæ	W.	$\begin{array}{lll}91 & 28 & 2\end{array}$	$\begin{array}{llll}92 & 50 & 4\end{array}$	$\begin{array}{llll}94 & 12 & 13\end{array}$	$95 \quad 3429$
	Fomalhant	W.	$66 \quad 2958$	$67 \quad 5719$	$69 \quad 25 \quad 1$	$70 \quad 534$
	a Pegasi	W.	$\begin{array}{llll}44 & 3 & 17\end{array}$	$\begin{array}{llll}45 & 30 & 43\end{array}$	$46 \quad 5845$	$48 \quad 2722$
	Aldebaran	E.	$\begin{array}{lll}35 & 4 & 27\end{array}$	$\begin{array}{llll}33 & 33 & 49\end{array}$	$32 \quad 326$	303322
	Jupiter	E.	$\begin{array}{llll}76 & 6 & 32\end{array}$	74327	72 57 7 29	712240
	Pollux	E.	$\begin{array}{llll}76 & 30 & 29\end{array}$	$74 \quad 55 \quad 4$	731927	714339
	Saturn	E.	10675	1043216	10257.15	101223
16	a Aquilæ	W.	$10227 \quad 7$	1034946	1051226	
	Fomalhaut	W.	$\begin{array}{llll}78 & 18 & 9\end{array}$	79484	811816	824843
	a Pegasi	W.	$\begin{array}{llll}55 & 57 & 58\end{array}$	572927	$59 \quad 121$	$\begin{array}{llll}60 & 33 & 39\end{array}$
	Jupiter	E.	$\begin{array}{llll}63 & 25 & 25\end{array}$	614919	60130	583627
	Pollux	E.	$63 \quad 4136$	$62 \quad 4 \quad 35$	602720	584952
	Saturn	E.	$93 \quad 2252$	914623	$90 \quad 9 \quad 40$	$88 \quad 3244$
	Sun	E.	$126 \quad 946$	1243952	123945	1213924
17	Fomalhaut	W.	$90 \quad 2452$	915648	$\begin{array}{llll}93 & 28 & 58\end{array}$	95120
	a Pegasi	W.	$68 \quad 2046$	$69 \quad 5515$	71305	$\begin{array}{llll}73 & 5 & 14\end{array}$
	a Arietis	W.	245420	263138	$28 \quad 923$	294734
	Jupiter	E.	$\begin{array}{llll}50 & 30 & 15\end{array}$	$48 \quad 5217$	$47 \begin{array}{lll}47 & 14\end{array}$	$\begin{array}{llll}45 & 35 & 38\end{array}$
	Pollux	E.	$50 \quad 3916$	$49 \quad 0 \quad 28$	472126	454211
	Saturn	E.	$80 \quad 2429$	78466	$77 \quad 728$	$75 \quad 2835$
	Sun	E.	$114 \quad 44$	1123216	$111 \quad 013$	1092755

GREENWICH MEAN TIME.						
lunar distances.						
Day of the Month			Noon.	III ${ }^{\text {b }}$.	VI'.	IX ${ }^{\text {b }}$
18	Fomalhaut	W.	$96^{\circ} 33{ }^{\text {a }} 54$	$98{ }^{\circ} 640$	$99^{\circ} 398$	$101^{\circ} 12^{\prime} 44^{\prime \prime}$
	a Pegasi	W.	744043	761631	$77 \quad 5238$	79294
	a Arietis	W.	31269	$\begin{array}{llll}33 & 5 & 8\end{array}$	344429	362411
	Jupiter	E.	435655	421758	403845	385917
	Pollux	E.	$44 \quad 243$	42230	40434	$\begin{array}{ll}39 & 255\end{array}$
	Saturn	E.	734926	72101	703021	685024
	Sun	E.	1075521	1062231	1044925	103168
19	Fomalhaut	W.	$109 \quad 033$	1103427	$112 \quad 826$	1134229
	a Pegasi	W.	873543	891355	$9052 \quad 23$	92318
	a Arietis	W.	444753	462938	481141	$49 \quad 54 \quad 4$
	Aldebaran	W.	$16 \quad 813$	17288	185149	201834
	Jupiter	E.	30387	28578	271553	253425
	Pollux	E.	303857	285735	27164	253424
	Saturn	E.	602634	584457	$57 \begin{array}{lll}57 & 3 & 4\end{array}$	552053
	Sun	E.	$95 \quad 2510$	9350	921451	903916
20	a Pegasi	W.	1004843	1022857	104 1024	105504
	a Arietis	W.	583046	$6015 \quad 2$	615938	634431
	Aldebaran	W.	$28 \quad 3 \quad 6$	294016	311827	325733
	Satarn	E.	464537	$45 \quad 142$	$4317 \quad 29$	413258
	Sun	E.	82371	805942	79226	774413
21		W.	723328	74208	$\begin{array}{lll}76 & 7 & 5\end{array}$	$77 \quad 5418$
	Aldebaran	W.	41249	4378	445058	46358
	Saturn	E.	324611	3100	291332	272649
	Mars	E.	491435	$47 \quad 32 \quad 28$	$45 \quad 505$	44 7
	Sun	E.	693032	$67 \quad 5057$	66117	$\begin{array}{lll}64 & 31 & 2\end{array}$
22	a Arietis	W.	865422	$8843 \quad 7$	$9032 \quad 5$	$\begin{array}{llll}92 & 21 & 17\end{array}$
	Aldebaran	W.	552216	$57 \quad 848$	585540	604251
	Mars	E.	353042	334643	$32 \quad 232$	30 18 12
	Son	E.	$56 \quad 648$	542515	524330	$\begin{array}{llll}51 & 1 & 33\end{array}$
23	a Arietis	W.	101308	1032024	1051049	107121
	Aldebaran	W.	694243	713122	$73 \quad 2013$	$75 \quad 913$
	Pollux	W.	$2652 \quad 23$	284143	303121	322114
	Jupiter	W.	255633	274543	$2935 \quad 5$	312438
	Sun	E.	$42 \quad 297$	404612	$\begin{array}{llll}39 & 310\end{array}$	37203
28	Sun	W.		274730	292356	$\begin{array}{llll}31 & 0 & 3\end{array}$
	Antares	E.	$37 \quad 6 \quad 3$	$35 \quad 218$	333625	$\begin{array}{llll}31 & 52 & 11\end{array}$
	a Aquilæ	E.	914237	$\begin{array}{llll}90 & 12 & 31\end{array}$	884245	$\begin{array}{lll} 87 & 13 & 21 \end{array}$
	Fomalhaut	E.	1165426	115197	1134353	112847
29	Sun	W.	385528	402926	$42 \quad 3 \quad 2$	$43 \quad 3614$
	a Aquilæ	E.	$\begin{array}{ll}79 & 52 \\ 27\end{array}$	782540	765925	753341
	Fomalhaut	E.	104163	1024212	$\begin{array}{ll}101 & 838\end{array}$	993522
30	Sun	W.	511628	524721	541751	554759
	a Aquilæ	E.	683353	671150	655029	642951
	Fomalhaut	E.	915348	$90 \quad 2232$	885136	87213
	a Pegasi		1135855	1122513	1105148	1091839

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Na and Position		Midnight.	XVh.	XVIII ${ }^{\text {b }}$	XXIL.
18	Fomalhaut	W.	10246 " 1	1041988	$10{ }^{\circ} 5{ }^{\text {¢ }}$	$1078{ }^{\circ} 2^{\prime} 6^{\prime \prime} 4$
	a Pegasi	W.	81548	824251	842011	$85 \quad 5748$
	a Arietis	W.	$\begin{array}{llll}38 & 4 & 15\end{array}$	394439	412524	$43 \quad 6 \quad 29$
	Jupiter	E.	$37 \quad 1934$	$35 \quad 3935$	335921	321852
	Pollux	E.	$37 \quad 2232$	354157	$\begin{array}{lll}34 & 1 & 9\end{array}$	$\begin{array}{llll}32 & 20 & 9\end{array}$
	Saturn	E.	$67 \quad 1011$	$65 \quad 2942$	634856	62753
	Sun	E.	1014226	$\begin{array}{llll}100 & 8 & 32\end{array}$	983421	965954
19	Fomalhaut	W.	1151633	1165038	1182441	1195842
	a Pegasi	W.	9410	954925	$\begin{array}{llll}97 & 28 & 57\end{array}$	99843
	a Arietis	W.	513647	531948	$55 \quad 3 \quad 9$	564648
	Aldebaran	W.	$\begin{array}{llll}21 & 47 & 51\end{array}$	$\begin{array}{llll}23 & 19 & 14\end{array}$	$\begin{array}{llll}24 & 52 & 24\end{array}$	$26 \quad 27 \quad 5$
	Jupiter	E.	$\begin{array}{llll}23 & 5242\end{array}$	221048	202841	184623
	Pollux	E.	23 52 39	221051	20292	184718
	Saturn	E.	$53 \quad 3824$	515538	501235	$48 \quad 2915$
	Sun	E.	$89 \quad 323$	$87 \quad 2714$	$85 \quad 5047$	8414
20	a Pegasi	W.	1073055	1091158	1105310	1123432
	a Arietis	W.	$65 \quad 2943$	671513	$69 \quad 1 \quad 0$	70476
	Aldebaran	W.	343729	361810	$37 \quad 5933$	394133
	Saturn	E.	394811	$38 \quad 36$	$\begin{array}{llll}36 & 17 & 45\end{array}$	34326
	Sun	E.	$76 \quad 6 \quad 2$	$74 \quad 2735$	724850	$71 \quad 949$
21	a Arietis	W.	794148	812934	$\begin{array}{llll}83 & 17 & 35\end{array}$	
	Aldebaran	W.	$48 \quad 1944$	$\begin{array}{lll}50 & 4 & 47\end{array}$	515014	$\begin{array}{llll}53 & 36 & 4\end{array}$
	Saturn	E.	$25 \quad 3950$	$\begin{array}{llll}23 & 52 & 37\end{array}$	$22 \quad 5 \quad 9$	201727
	Mars	E.	422433	404126	$38 \quad 58 \quad 4$	371429
	Sun	E.	625040	$61 \quad 10 \quad 4$	592913	57487
22	a Arietis	W.	941041	$\begin{array}{llll}96 & 0 & 17\end{array}$	97504	$\begin{array}{llll}99 & 40 & 1\end{array}$
	Aldebaran	W.	$\begin{array}{llll}62 & 30 & 19\end{array}$	$6418 \quad 3$	$66 \quad 6 \quad 3$	$67 \quad 5416$
	Mars	E.	283342	$26 \quad 49 \quad 5$	$25 \quad 422$	$\begin{array}{llll}23 & 19 & 34\end{array}$
	Sun	E.	$49 \quad 1924$	$47 \quad 37 \quad 4$	$\begin{array}{llll}45 & 54 & 34\end{array}$	4411155
23	a Arietis	W.	1085159	1104243	1123332	1142424
	Aldebaran	W.	$\begin{array}{llll}76 & 58 & 22\end{array}$	784740	$80 \quad 374$	822633
	Pollux	W.	$\begin{array}{llll}34 & 11 & 20\end{array}$	$\begin{array}{lll}36 & 1 & 38\end{array}$	37526	394242
	Jupiter	W.	$\begin{array}{llll}33 & 14 & 20\end{array}$	$\begin{array}{llll}35 & 411\end{array}$	$\begin{array}{llll}36 & 54 & 9\end{array}$	$\begin{array}{llll}38 & 44 & 12\end{array}$
	Sun	E.		$\begin{array}{llll}33 & 53 & 36\end{array}$	$\begin{array}{llll}32 & 10 \quad 19\end{array}$	$30 \quad 27 \quad 2$
28	Sun	W.	323551	$\begin{array}{llll}34 & 11 & 17\end{array}$	354623	
	Antares	E.	$30 \quad 8 \quad 21$	282455	264153	$24 \quad 5916$
	a Aquilæ	E.	$\begin{array}{llll}85 & 44 & 19\end{array}$	841541	824729	811944
	Fomalbaut	E.	1103350	$108 \quad 59 \quad 4$	1072430	$105 \quad 50 \quad 9$
29	Sun	W.	$45 \quad 9 \quad 4$	464130	4813132	494512
	a Aquilæ	E.	$74 \quad 8 \quad 31$	$72 \quad 4356$	$\begin{array}{llll}71 & 19 & 57\end{array}$	69 596
	Fomalhaut	E.	$98 \quad 224$	$96 \quad 2945$	945726	$\begin{array}{llll}93 & 25 \quad 27\end{array}$
30	Sun	W.	$57 \quad 1744$		$\begin{array}{llll}60 & 16 & 7\end{array}$	614446
	a Aquilæ	E.	$\begin{array}{llll}63 & 9 & 58\end{array}$	615051	$\begin{array}{llll}60 & 32 & 31\end{array}$	$\begin{array}{llll}59 & 15 & 1\end{array}$
	Fomalhaut	E.	855053	84215	825140	812239
	a Pegasi	E.	1074546	1061310	1044052	$\begin{array}{ll}103 & 851\end{array}$

GREENWICH MEAN TIME.						
LuNAR DIStances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$			Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
1	Stin	W.	$63^{\circ} 13{ }^{\prime \prime}$	$6441{ }^{\circ}$	$66^{\circ} 88{ }^{\prime \prime}$	$67^{\circ} 355$
	a Aquilæ	E.	575823	564239	$55 \quad 2750$	541359
	Fomalhaut	E.	7954	782548	76 57 58	753033
	a Pegasi	E.	101377	100541	983432	$97 \quad 341$
2	Sun	W.	744725	761249	773757	$79 \quad 248$
	Antares	W.	153923	171223	$1845 \quad 5$	$20 \quad 1732$
	Fomalhaut	E.	681939	665445	653017	$64 \quad 616$
	a Pegasi	E.	893345	$88 \quad 437$	863546	$85 \quad 711$
3	Sun	W.	$\begin{array}{llll}86 & 3 & 18\end{array}$	872643	884955	901256
	Antares	W.	275559	292659	$\begin{array}{llll}30 & 57 & 47\end{array}$	322824
	Fomalhaut	E.	57137	555158	543120	$\begin{array}{llll}53 & 1114\end{array}$
	a Pegasi	E.	774814	762113	$74 \cdot 5426$	732754
4	Sun			$98 \quad 2722$	994916	101112
	Antares	W.	395850	412828	425758	442722
	Fomalhaut	E.	463941	$45 \quad 2322$	$44 \quad 749$	$\begin{array}{lll}42 & 53 & 4\end{array}$
	a Pegasi	E.	661849	645341	$63 \quad 2848$	$62 \quad 48$
	a Arietis	E.	108417	106350	$105 \quad 5 \quad 51$	1033649
5	Sun	W.	1075826	1091941	1104053	$\begin{array}{lll}112 & 2\end{array}$
	Antares	W.	515255	532149	545040	561928
	Fomalhaut	E.	365333	$3545 \quad 3$	343755	333218
	a Pegasi	E.	$55 \quad 420$	53416	52187	505525
	a Arietis	E.	961258	944424	931553	914725
6	Sun	W.	1184722	$120 \quad 825$	121 2928	1225033
	Antares	W.	634313	651158	664045	$68 \quad 934$
	a Pegasi	E.	$44 \quad 6.27$	424543	412524	$40 \quad 533$
	a Arietis	E.	842519	825654	812828	$80 \quad 00$
7	Sun	W.		1305749	1321913	
	Antares	W.		$77 \quad 3828$	783242	$\begin{array}{lll}80 & 2 & 2\end{array}$
	a Pegasi	E.	$\begin{array}{llll}33 & 35 & 1\end{array}$	321910	$\begin{array}{lll}31 & 417\end{array}$	295031
	a Arietis	E.	$\begin{array}{llll}72 & 37 & 1\end{array}$	$\begin{array}{ll}71 & 314\end{array}$	$\begin{array}{ll}69 & 39 \\ 22\end{array}$	681026
	Aldebaran	E.	1043027	$103 \quad 250$	101357	$\begin{array}{ll}100 & 717\end{array}$
8	Antares	W.	873014	$89 \quad 0 \quad 14$	903023	$92 \quad 0 \quad 39$
	a Aquilæ	W.	434221	444317		$\begin{array}{llll}46 & 49 & 10\end{array}$
	a Arietis	E.	604419	$\begin{array}{llll}59 & 14 & 46\end{array}$	57456	561518
	Aldebaran	E.	924626	$91 \begin{array}{llll}917\end{array}$	894912	882023
9	a Aquilæ	W.	522353	533346	544431	$55 \quad 565$
	Fomalhaut	W.	27550	285021	294833	304919
	a Arietis	E.	484425	471350	45437	441215
	Aldebaran	E.	80548	792426	775436	762435
10	a Aquilæ	W.	$\begin{array}{lll}62 & 4 & 48 \\ 36\end{array}$	$\begin{array}{llll}63 & 20 & 29 \\ 37 & 36\end{array}$	$64 \quad 3645$ 8850	$\begin{array}{llll}65 & 53 & 33 \\ 40 & 5 & \end{array}$
	Fomalhaut	W.	362430	373639	385012	$40 \quad 5 \quad 2$
	a Arietis	E.	363559	35421	$33 \quad 32 \quad 37$	$\begin{array}{lll}32 & 0 & 47\end{array}$
	Aldebaran	E.	685214	672118	65.5013	641859
	Jupiter	E.	$\begin{array}{llll}114 & 3 & 5\end{array}$	1123114	1105912	1092657
11	a Aquilæ	W.	722454	734429	$75 \quad 4 \quad 27$	762447

GREENWICH MEAN TDME.

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	$\mathrm{III}^{\text {b }}$	VI ${ }^{\text {b }}$.	IX ${ }^{\text {b }}$.
11	Fomalhaut	W.	$46^{\circ} 35^{\prime} \quad 29^{\prime \prime}$	$4{ }^{4} 56^{\circ} 18$	$49^{\circ} 17^{\prime} 54$	$50^{\circ} 40^{\prime \prime} 1{ }^{\prime \prime}$
	a Pegasi	W.	$25 \quad 542$	261633	272944	28450
	Aldebaran	E.	564042	$55 \quad 840$	53 36 31	52415
	Jupiter	E.	1014243	$\begin{array}{ll}100 & 915\end{array}$	$\begin{array}{lllll}98 & 35 & 35\end{array}$	$97 \quad 143$
12	a Aquilæ	W.	831124	$\begin{array}{lllll}84 & 33 & 34\end{array}$	$85 \quad 5559$	
	Fomalhaut	W.	574131	$\begin{array}{ll}59 & 726\end{array}$	603351	$62 \quad 044$
	a Pegasi	W.	$35 \quad 25 \quad 29$	364921	381413	3940
	Aldebaran	E.	442145	42497	411629	394353
	Pollux	E.	861143	84366	83018	812417
	Jupiter	E.	$89 \quad 914$	87347	$85 \quad 5848$	842316
	Saturn	E.	1183344	1165833	1152311	1134736
13	Fomalhaut	W.	692126	705041	$72 \quad 2016$	735010
	${ }^{\text {a P Pegasi }}$	W.	$47 \quad 0 \quad 12$	48309	$\begin{array}{lll}50 & 0 & 38\end{array}$	513137
	Aldebaran	E.	$\begin{array}{lll}32 & 2 & 32\end{array}$	$\begin{array}{llll}30 & 30 & 57\end{array}$	285945	$27 \quad 29 \quad 3$
	Pollux	E.	732118	71447	$70 \quad 646$	682912
	Jupiter	E.	762236	744552	$\begin{array}{llll}73 & 8 & 56\end{array}$	713148
	Saturn		1054640	104952	1023253	1005543
14	Fomalhaut	W.	812357	825528	$\begin{array}{llll}84 & 27 & 12\end{array}$	$85 \quad 59 \quad 9$
	${ }_{a}$ Pegasi	W.	591314	604643	622034	635445
	Pollux	E.	601842	$5840 \quad 3$	$57 \quad 115$	$55 \quad 2216$
	Jupiter	E.	$63 \quad 2315$	614458	$60 \quad 6 \quad 29$	582750
	Saturn	E.	924654	$\begin{array}{llll}91 & 8 & 34\end{array}$	$8930 \quad 2$	875120
	Regulus	E.	$9710 \quad 9$	95319	935158	921236
15	${ }_{\text {a Pegasi }}$	W.	715010	73264	$75 \quad 213$	763837
	a Arietis	W.	282840	$30 \quad 732$	314644	$33 \quad 2615$
	Pollux	E.	$47 \quad 457$	$\begin{array}{llll}45 & 25 & 2\end{array}$	434457	42445
	Jupiter	E.	501149	$\begin{array}{llll}48 & 32\end{array}$	$\begin{array}{llll}46 & 52 & 9\end{array}$	45123
	Saturn	E.	79352	$77 \quad 5513$	$\begin{array}{llll}76 & 15 & 14\end{array}$	74 785
	Regulus	E.	83530	821232	803154	78515
	Mars	E.	1084318	$107 \quad 748$	$10532 \quad 7$	1035615
	Sun	E.	137244	1355138	1341859	132468
16	a Pegasi	W.	844350	$\begin{array}{llll}86 & 21 & 29\end{array}$	875919	$\begin{array}{llll}89 & 37 & 19\end{array}$
	a Arietis	W.	414751	432853	$\begin{array}{llll}45 & 10 & 9\end{array}$	465138
	Jupiter	E.	$3649 \quad 2$	$35 \quad 756$	$33 \quad 2641$	314515
	Saturn	E.	661138	643021	$6249 \quad 2$	$61 \quad 729$
	Regulus	E.	$70 \quad 2422$	684230	$\begin{array}{lll}67 & 0 & 28\end{array}$	$\begin{array}{llll}65 & 18 & 16\end{array}$
	Mars	E.	$95 \quad 5418$	$\begin{array}{ll}94 & 17 \\ 23\end{array}$	924019	$\begin{array}{llll}91 & 3 & 3\end{array}$
	Sun	E.	1245858	1232458	1215046	1201624
17		W.	55228	$57 \quad 449$	584742	603045
	Aldebaran	W.	$\begin{array}{llll}25 & 3 & 8\end{array}$	26 37 25	281249	294911
	Saturn	E.	$\begin{array}{llll}52 & 3710\end{array}$	$\begin{array}{llll}50 & 54 & 36\end{array}$	$\begin{array}{lllll}49 & 11 & 52\end{array}$	472858
	Regulus	E.	$\begin{array}{lll}56 & 4442\end{array}$	$\begin{array}{llll}55 & 1 & 29\end{array}$	$\begin{array}{llll}53 & 18 \\ 7 & 6\end{array}$	$\begin{array}{llll}51 & 34 & 34\end{array}$
	Mars	E.	825415	81160	$\begin{array}{llll}79 & 37 & 35\end{array}$	77590
	Sun	E.	1122151	1104625	1091049	$10735 \quad 2$
18		W.	$\begin{array}{llll}69 & 8 & 46\end{array}$	705253	723711	$74 \quad 21 \quad 39$
	Aldebaran		$38 \quad 2.7$	394224	$41 \quad 23 \quad 9$	$\begin{array}{lll} 43 & 4 & 18 \end{array}$

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Mone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
11	Fomalhaut	W.	$\begin{array}{llll}52 & 3 & 17\end{array}$	$532{ }^{2} 6{ }^{\prime \prime}$	$5451{ }^{\circ} 1{ }^{\prime \prime}$	56 16 6
	a Pegasi	W.	$\begin{array}{lll}30 & 2 & 7\end{array}$	312053	32418	$34 \quad 243$
	Aldebaran	E.	503153	485927	$47 \quad 2656$	455421
	Jupiter	E.	$\begin{array}{llll}95 & 27 & 38\end{array}$	935321	921851	90449
12	a Aquilæ	W.	884129	$\begin{array}{llll}90 & 4 & 32\end{array}$	912745	92517
	Fomalhaut	W.	63284	645550	662359	675231
	a Pegasi	W.	$41 \quad 637$	423359	$44 \quad 2 \quad 5$	453050
	Aldebaran	E.	381120	363853	$\begin{array}{llll}35 & 6 & 34\end{array}$	333426
	Pollux	E.	79485	781114	$7635 \quad 5$	745817
	Jupiter	E.	824733	811137	$7935 \quad 28$	77598
	Saturn	E.	1121149	1103550	1085938	1072315
13	Fomalhaut	W.	752022	765052	782138	795240
	u Pegasi	W.	$\begin{array}{llll}53 & 3 & 5\end{array}$	54350	$56 \quad 721$	57406
	Aldebaran	E.	$25 \quad 5859$	242940	23120	213412
	Pollux	E.	665128	651333	$63 \quad 35 \quad 26$	61579
	Jupiter	E.	695428	681657	663914	$65 \quad 120$
	Saturn	E.	991820	974046	$96 \quad 3 \cdot 0$	$94 \quad 25 \quad 2$
14	Fomalhaut	W.	873118	$89 \quad 3 \quad 38$	9036	$92 \quad 849$
	${ }^{\text {a Pegasi }}$	W.	652915	$67 \quad 4 \quad 3$	68398	701431
	Pollux	E.	53438	$\begin{array}{llll}52 & 3 & 49\end{array}$	502421	484444
	Jupiter	E.	56490	$\begin{array}{llll}55 & 9 & 58\end{array}$	$53 \quad 3046$	515123
	Saturn	E.	861226	843322	82546	811439
	Regulus	E.	$90 \quad 33$	885318	871323	$\begin{array}{llll}85 & 33 & 17\end{array}$
15	$a \text { Pegasi }$		$78 \quad 1514$	79524		
	a Arietis	W.	$\begin{array}{llll}35 & 6 & 3\end{array}$	36467	382627	$40 \quad 7 \quad 2$
	Pollux	E.	4024.24	384356	$37 \quad 321$	352240
	Jupiter	E.	$\begin{array}{llll}43 & 31 & 47\end{array}$	415121	$40 \quad 1045$	382959
	Saturn	E.	725444	71413	$\begin{array}{llll}69 & 33 & 32\end{array}$	675240
	Regrulus	E.	77105	752855	734734	$\begin{array}{llll}72 & 6 & 3\end{array}$
	Mars	E.	1022013	$10044 \quad 0$	$99 \quad 7 \quad 36$	9731
	Sun	E.	131135	1293951	$128 \quad 625$	1263247
16	a Pegasi	W.	$\begin{array}{llll}91 & 15 & 29\end{array}$	925349	$\begin{array}{llll}94 & 32 & 17\end{array}$	961055
	a Arietis	W.	483320	$\begin{array}{llll}50 & 15 & 14\end{array}$	515720	533938
	Jupiter	E.	$30 \quad 341$	282157	$2640 \quad 5$	24585
	Saturn	E.	592545	574352	$\begin{array}{lll}56 & 148\end{array}$	541934
	Regulus	E.	$63 \quad 3553$	615321	601038	582745
	Mars	E.	892538	87482	861017	843221
	Sun	E.	1184151	$117 \quad 7$	1153212	11357
17	a Arietis	W.	62140	635725	65412	672448
	Aldebaran	W.	312625	$33 \quad 424$	3443	$36 \quad 2219$
	Saturn	E.	454555	$44 \quad 242$	421919	403547
	Regulus	E.	495051	$48 \quad 6 \quad 59$	462257	443845
	Mars	E.	$76 \quad 20 \quad 16$	744122	7318	71235
	Sun	E.	105595	1042258	1024641	1011014
18	a Arietis	W.	$\begin{array}{llll}76 & 6 & 17\end{array}$	77514	$\begin{array}{llll}79 & 36 & 1\end{array}$	81218
	Aldebaran	W.	$4445 \quad 51$	462745	$48 \quad 959$	495232

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	$\mathrm{VI}^{\text {b }}$.	IX ${ }^{\text {. }}$
18	Saturn	E.	$38^{\circ} 52^{\prime \prime}$	$37^{\circ} \quad 8{ }^{\prime} 1{ }^{\prime \prime}$	$3524^{\circ} 14^{\prime \prime}$	$33^{\circ} 40$ " ${ }^{\prime \prime}$
	Regulus	E.	425424	$41 \quad 953$	392513	374024
	Mars	E.	694343	$\begin{array}{ll}68 & 411\end{array}$	662431	644442
	Sun	E.	993338	975651	961955	944249
19	a Arietis	W.	$83 \quad 623$	845148	863722	$88 \quad 235$
	Aldebaran	W.	513523	531831	$55 \quad 154$	564532
	Regulus	E.	28544	27823	252234	233637
	Mars	E.	562326	544246	531159	51214
	Sun	E.	8635	84571	831852	814035
20	Aldebaran	W.	$65 \quad 27 \quad 3$	671157	$\begin{array}{lll}68 & 57 & 0\end{array}$	704213
	Pollux	W.	22403	242459	261018	275555
	Jupiter	W.	184246	202837	221440	$24 \quad 054$
	Mars	E.	425452	411321	393146	$\begin{array}{llll}37 & 50 & 7\end{array}$
	Sun	E.	73278	71484	$\begin{array}{llll}70 & 8 & 54\end{array}$	682937
21	Aldebaran	W.			$\begin{array}{llll}83 & 2 & 31\end{array}$	844841
	Pollux	W.	$\begin{array}{llll}36 & 47 & 41\end{array}$	383436	402138	$\begin{array}{llll}42 & 8 & 49\end{array}$
	Jupiter	W.	$\begin{array}{llll}32 & 54 & 19\end{array}$	344122	$\begin{array}{llll}36 & 28 & 31\end{array}$	381545
	Mars	E.	292128	273948	255814	241647
	Sun	E.	601150	58323	565212	551218
22	Aldebaran	W.	934025	952651	$\begin{array}{llll}97 & 13 & 18\end{array}$	985944
	Pollux	W.	$51 \quad 66$	525345	544127	562910
	Jupiter	W.	$\begin{array}{llll}47 & 12 & 54\end{array}$	$\begin{array}{llll}49 & 0 & 28\end{array}$	5048	523540
	Saturn	W.	174830	193541	212257	231016
		E.	465225	451226	433229	415235
23	Pollux	W.	$65 \quad 2745$	$67 \quad 15 \quad 23$	$\begin{array}{ll}69 & 257\end{array}$	705028
	Jupiter	W.	613331	632059	$65 \quad 824$	665544
	Saturn	W.	$\begin{array}{llll}32 & 7 & 4\end{array}$	335423	354138	372849
	Regulus	W.	282730	301524	$\begin{array}{llll}32 & 3 & 14\end{array}$	33510
	Sun	E.	33 3416	315459	$3015 \quad 54$	28371
28	Sun	W.	313450	$\begin{array}{llll}33 & 4 & 27\end{array}$		
	a Aquilæ	E.	615622	$\begin{array}{llll}60 & 36 & 24\end{array}$	591715	575858
	Fomalhaut	E.	843820	$\begin{array}{llll}83 & 7 & 31\end{array}$	81374	$80 \quad 659$
	a Pegasi	E.	1062346	1044951	1031611	1014247
29			$\begin{array}{llll}43 & 24 & 17\end{array}$	$\begin{array}{llll}44 & 5142\end{array}$	$\begin{array}{llll}46 & 18 & 50\end{array}$	474540
	Antares	W.	105739	123315		154331
	a Aquilæ	E.	514147	$\begin{array}{llll}50 & 29 & 33\end{array}$	49 18 30 9 47	48843
	Fomalhaut	E.	724234	$\begin{array}{lll} 71 \quad 14 \quad 56 \end{array}$		6821
	a Pegasi	E.	$94 \quad 0 \quad 3$	922823	9057	892556
30	Sun	W.	545543	$\begin{array}{llll}56 & 20 & 54\end{array}$	574550	591031
	Antares	W.	233349	$\begin{array}{llll}25 & 7 & 1\end{array}$	263956	281235
	Fomalhant	E.	611426	$\begin{array}{llll}59 & 50 & 37\end{array}$	582720	57 77
	a Pegasi	E.	81553	802546	785648	$77 \quad 287$
31	Son	W.	661021	$\begin{array}{llll}67 & 33 & 39\end{array}$	$\begin{array}{lllll}68 & 56 & 44\end{array}$	701938
	Antares	W.	$35 \quad 52 \quad 5$	$\begin{array}{ll}37 & 2317\end{array}$	385417	$4025 \quad 5$
	Fomalhaut	E.	501950	$49 \quad 049$	474231	462459
	$\underset{a}{ }$ Pegasi	E.	$70 \quad 9 \quad 6$	684210	$67 \quad 1532$	654910

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month.	Star's Name and Position.		Midnight.	XVr.	XVIII.	XXI ${ }^{\text {b }}$
18	Saturn	E.	$31{ }^{\circ} 5{ }^{5} 546$	$30 \times 11{ }^{\circ} \mathrm{O}$	$28{ }^{\circ} 26^{\prime} 4{ }^{\prime \prime}$	$26{ }^{\circ} 42{ }^{\prime \prime}$
	Regulus	E.	355525	341018	$3225 \quad 2$	$\begin{array}{llll}30 & 39 & 37\end{array}$
	Mars	E.	$63 \quad 443$	612436	594421	$\begin{array}{llll}58 & 3 & 57\end{array}$
	Sun	E.	93	912810	$8950 \quad 36$	881253
19	a Arietis	W.	$\begin{array}{lll}90 & 8 & 56\end{array}$	$\begin{array}{llll}91 & 54 & 56\end{array}$	$\begin{array}{llll}93 & 41 & 4\end{array}$	$\begin{array}{llll}95 & 27 & 19\end{array}$
	Aldebaran	W.	$58 \quad 2925$	$60 \quad 13 \quad 31$	$\begin{array}{llll}61 & 57 & 50\end{array}$	634221
	Regulus	E.	215033	$20 \quad 423$	1818 8	163148
	Mars	E.	$49 \quad 40 \quad 2$	$47 \quad 5854$	4617 17	$\begin{array}{llll}44 & 36 & 18\end{array}$
	Sun	E.	$\begin{array}{llll}80 & 2 & 9\end{array}$	$78 \quad 23 \quad 35$	$76 \quad 4453$	$75 \quad 6 \quad 4$
20	Aldebaran	W.	$\begin{array}{llll}72 & 27 & 36\end{array}$	$\begin{array}{llll}74 & 13 & 7\end{array}$	$\begin{array}{llll}75 & 58 & 46\end{array}$	$\begin{array}{llll}77 & 44 & 33\end{array}$
	Pollux	W.	294150	312759	$\begin{array}{llll}33 & 14 & 22\end{array}$	$35 \quad 056$
	Jupiter	W.	254719	273352	$29 \quad 2034$	31723
	Mars	E.	$\begin{array}{llll}36 & 8 & 25\end{array}$	$\begin{array}{llll}34 & 2641\end{array}$	324456	$31 \quad 311$
	Sun	E.	$\begin{array}{llll}66 & 50 & 14\end{array}$	$\begin{array}{llll}65 & 10 & 46\end{array}$	$\begin{array}{llll}63 & 31 & 12\end{array}$	615133
21	Aldebaran	W.	863456	$88 \quad 2114$	90 7	915359
	Pollux	W.	43566	454329	$47 \quad 3057$	49 18 18
	Jupiter	W.	$40 \quad 3 \quad 3$	415026	$43 \quad 3752$	$\begin{array}{llll}45 & 25 & 22\end{array}$
	Mars	E.	223531	205431	191350	173337
	Sun	E.	$53 \quad 3222$	515224	501225	483225
22	Aldebaran	W.	100469	1023232	1041852	10659
	Pollux	W.	$58 \quad 1654$	$60 \quad 4 \quad 38$	615222	$63 \quad 40 \quad 4$
	Jupiter	W.	542316	$\begin{array}{llll}56 & 10 & 52\end{array}$	57 58 17	5946
	Saturn	W.	245737	$\begin{array}{llll}26 & 44 & 59\end{array}$	$28 \quad 3222$	$30 \quad 19 \quad 44$
	Sun	E.	$\begin{array}{ll}40 & 1244\end{array}$	$38 \quad 3257$	$\begin{array}{llll}36 & 53 & 16\end{array}$	351342
23	Pollux	W.	$\begin{array}{lllll}72 & 37 & 54\end{array}$	742514	$\begin{array}{llll}76 & 12 & 28\end{array}$	775935
	Jupiter	W.	$68 \quad 4259$	$7030 \quad 8$	$72 \quad 1712$	$\begin{array}{lll} 74 & 4 & 8 \end{array}$
	Saturn	W.	39 15 15	$41 \quad 257$	424952	$\begin{array}{llll}44 & 36 & 41\end{array}$
	Regulus	W.	$35 \quad 3842$	$\begin{array}{llll}37 & 2618\end{array}$	$\begin{array}{llll}39 & 13 & 48\end{array}$	4.1111
	Sun	E.	265824	$25 \quad 20 \quad 5$	23426	22433
28	Sun	W.	373145	$\begin{array}{llll}39 & 0 & 18\end{array}$	$40 \quad 2835$	415634
	a Aquilæ	E.	$\begin{array}{llll}56 & 41 & 34\end{array}$	$55 \quad 256$	$54 \quad 937$	525510
	Fomalhaut	E.	$78 \quad 3717$	$77 \quad 759$	$75 \quad 39 \quad 6$	$\begin{array}{llll}74 & 10 & 37\end{array}$
	a Pegasi	E.	$\begin{array}{llll}100 & 9 & 40\end{array}$	$98 \quad 36 \quad 50$	$\begin{array}{lll}97 & 417\end{array}$	$\begin{array}{llll}95 & 32 & 1\end{array}$
29	Sun	W.	$\begin{array}{llll}49 & 12 & 14\end{array}$	$\begin{array}{llll}50 & 38 & 31\end{array}$	$52 \quad 431$	533015
	Antares	W.	171811	$18 \quad 5232$	202635	$\begin{array}{ll}22 & 0\end{array}$
	\boldsymbol{a} Aquilæ	E.	$47 \quad 0 \quad 15$	$45 \quad 5311$	444735	$\begin{array}{llll}43 & 43 & 32\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}66 & 54 & 44\end{array}$	652856	$64 \quad 336$	623846
	a Pegasi	E.	8755	862441	$84 \quad 5430$	832438
30	Sun	W.	$60 \quad 3457$	$6159 \quad 9$	63236	644650
	Antares	W.	294458	$\begin{array}{lll}31 & 17 \\ 7\end{array}$	32490	$34 \quad 2039$
	Fomalhaut	E.	554226	$54 \quad 2051$	$\begin{array}{llll}52 & 59 & 52\end{array}$	$\begin{array}{ll}51 & 39 \\ 31\end{array}$
	a Pegasi	E.	$75 \quad 5944$	743138	$\begin{array}{llll}73 & 3 & 50\end{array}$	713619
31	Sun	W.	714221	$\begin{array}{llll}73 & 4 & 53\end{array}$	$74 \quad 2714$	
	Antares	W.	415540	$43 \quad 26 \quad 5$	$44 \quad 5620$	$46 \quad 26 \quad 24$
	Fomalhant	E.	$45 \quad 814$	435220	423720	$41 \quad 2316$
	a Pegasi	E.	$64 \quad 236$	625719	613150	$60 \quad 6 \quad 37$

GREENWICH MEAN TIME.

Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{aligned} & \text { Star's Name } \\ & \text { and } \\ & \text { Position. } \end{aligned}$		Noon.	IIP.	VI'.	IX ${ }^{\text {b }}$
1	Sun	W.	$77^{\circ} 11^{\prime} 30$	$78{ }^{\circ} 33^{\prime \prime}$	$795510^{\prime \prime}$	$81^{\circ} 16^{\prime \prime} 4$
	Fomalhaut	E.	401014	385817	374730	363759
	a Pegasi	E.	584143	57176	555247	542846
	a Arietis	E.	$\begin{array}{ll}100 & 724\end{array}$	983758	$97 \quad 841$	953931
2	Sun	W.	$88 \quad 3 \quad 30$	892436	904539	$92 \quad 638$
	a Pegasi	E.	473333	461133	444957	$43 \quad 2847$
	a Arietis	E.	881514	864636	85183	834932
3	Sun	W.	985115	1001210	101336	102544
	a Pegasi	E.	365016	353222	341512	325852
	a Arietis	E.	762721	745855	733008	$72 \quad 20$
	Aldebaran	E.	1082135	1065420	$105 \quad 27$	1035942
4	Sun	W.	1093941	$\begin{array}{lll}111 & 1 & 1\end{array}$	$\begin{array}{llll}112 & 22 & 27\end{array}$	1134359
	a Aquilæ	W.	405855	415554	425427	435428
	a Arietis	E.	643853	63103	61418	60127
	Aldebaran	E.	964152	95142	$9346 \quad 6$	92183
5	Sun	W.	1203328	1215546	1231814	1244051
	a Aquilæ	W.	491355	$\begin{array}{llll}50 & 2111\end{array}$	512927	523839
	a Arietis	E.	524520	511535	494542	481539
	Aldebaran	E.	845551	832659	815758	802846
6	a Aquilæ	W.	583716	$\begin{array}{lllll}59 & 51 & 15\end{array}$	$61 \quad 5 \quad 54$	$62 \quad 2113$
	Fomalhaut	W.	332243	342951	353846	364919
	a Arietis	E.	40436	39126	374056	$\begin{array}{llll}36 & 9 & 37\end{array}$
	Aldebaran	E.	$73 \quad 012$	712956	695928	682848
	Jupiter	E.	119539	1182128	1164934	1151727
7	a Aquilæ	W.	684641	$70 \quad 524$	712437	724419
	Fomalhaut	W.	$43 \quad 254$	44218	454022	$47 \quad 0 \quad 32$
	, a Pegasi	W.	$22 \quad 226$	$23 \quad 541$	241216	252147
	Aldebaran	E.	605233	592042	574840	561626
	Pollux	E.	$\begin{array}{llll}103 & 417\end{array}$	1013048	9957	$\begin{array}{llll}98 & 23 & 1\end{array}$
	Jupiter	E.	107338	$105 \quad 5930$	1042535	1025125
8	a Aquilæ	W.	792920	805131	82144	833658
	Fomalhaut	W.	535345	551835	5644	58109
	a Pegasi	W.	31438	$\begin{array}{lll}33 & 4 & 37\end{array}$	342727	355131
	Aldebaran	E.	483226	465922	45260	435231
	Pollux	E.	902849	88538	871711	854057
	Jupiter	E.	$94 \quad 5624$	$\begin{array}{llll}93 & 20 & 33\end{array}$	914425	9080
9	a Aquilæ	W.	903556		$\begin{array}{llll}93 & 25 & 18\end{array}$	$\begin{array}{lllll}94 & 50 & 17\end{array}$
	Fomalhaut	W.	65290	665818	$68 \quad 28 \quad 2$	695813
	a Pegasi	W.	$\begin{array}{llll}43 & 7 & 6\end{array}$	443647	$\begin{array}{llll}46 & 7 & 10\end{array}$	473814
	Aldebaran	E.	$\begin{array}{lll}36 & 4 & 17\end{array}$	343042	325714	312359
	Pollux	E.	773536	$75 \quad 5741$	741931	72415
	Jupiter	E.	82138	$80 \quad 2381$	78457	$77 \quad 626$
	Saturn	E.	1115520	1101733	1083928	$\begin{array}{lll}107 & 1 & 7\end{array}$
10	Fomalhaut	W.	$7735 \quad 3$	$79 \quad 729$	804014	$82 \quad 1317$
	a Pegasi	W.	$55 \quad 2223$	565646	583137	$60 \quad 654$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Nam and Position		Midnight.	$X V^{\text {h }}$.	XVIII ${ }^{\text {b }}$	XXI'.
1	Sun		82×3820	$83^{\circ} 599^{\prime \prime} 46$	$85^{\circ} 21{ }^{\prime \prime}$	$86{ }^{\circ} 42$ 20゙
	Fomalhaut	E.	$35 \quad 2950$	342310	$\begin{array}{llll}33 & 18 & 7\end{array}$	$\begin{array}{lll}32 & 14 & 49\end{array}$
	a Pegasi	E.	$53 \quad 504$	514140	501837	485554
	a Arietis	E.	$\begin{array}{llll}94 & 10 & 28\end{array}$	924132	911241	894355
2	Sun		$\begin{array}{llll}93 & 27 & 36\end{array}$	944832	$\begin{array}{lll}96 & 9 & 26\end{array}$	973021
	a Pegasi	E.	$42 \quad 8 \quad 3$	404747	$\begin{array}{llll}39 & 28 & 2\end{array}$	$38 \quad 851$
	a Arietis		82213	$80 \quad 5237$		775546
3	Sun	W.	$10415 \quad 5$	105368	1065715	1081825
	a Pegasi	E.	314327	30294	$2915 \quad 52$	$\begin{array}{llll}28 & 3 & 59\end{array}$
	a Arietis	E.	$\begin{array}{llll}70 & 33 & 29\end{array}$	69455	67 36 19	$66 \quad 738$
	Aldebaran	E.	102321 万	101448	$\begin{array}{llll}99 & 37 & 15\end{array}$	$\begin{array}{llll}98 & 9 & 36\end{array}$
4	Sun	W.	$\begin{array}{llll}115 & 5 & 38\end{array}$	1162724	1174917	1191118
	a Aquilæ	W.	$\begin{array}{llll}44 & 55 & 53\end{array}$	$\begin{array}{llll}45 & 58 & 36\end{array}$	$47 \quad 233$	$48 \quad 741$
	a Arietis	E.	58430	571346	$\begin{array}{llll}55 & 44 & 25\end{array}$	541456
	Aldebaran	E.	$90 \quad 4953$	892135	87539	862434
5	Sun	W.	$126 \quad 3 \quad 39$	1272636	1284945	
	a Aquilæ	W.	534845	545941	561127	572359
	a Arietis	E.	464528	$\begin{array}{llll}45 & 15 & 7\end{array}$	$\begin{array}{llll}43 & 44 & 37\end{array}$	421356
	Aldebaran	E.	785925	$77 \quad 2953$	$76 \quad 0 \quad 10$	$\begin{array}{lllll}74 & 30 & 17\end{array}$
6	a Aquilæ	W.	$\begin{array}{llll}63 & 37 & 9\end{array}$	$\begin{array}{llll}64 & 53 & 42\end{array}$	$\begin{array}{llll}66 & 10 & 49\end{array}$	672829
	Fomalhaut	W.	$\begin{array}{llll}38 & 1 & 24\end{array}$	$\begin{array}{llll}39 & 14 & 54\end{array}$	$40 \quad 2943$	414544
	a Arietis	E.	$\begin{array}{llll}34 & 38 & 8\end{array}$	$\begin{array}{lll}33 & 629\end{array}$	313443	$30 \quad 248$
	Aldebaran	E.	$\begin{array}{llll}66 & 57 & 57\end{array}$	$65 \quad 2654$	635539	$\begin{array}{ll} 62 \quad 24 \quad 12 \end{array}$
	Jupiter	E.	11345	1121229	1103937	$109 \quad 6 \quad 30$
7	a Aquilæ	W.	744828	$\begin{array}{llll}75 & 25 & 4\end{array}$	76465	$78 \quad 731$
	Fomalhaut	W.	482136	494329	$51 \quad 610$	522936
	a Pegasi	W.	$\begin{array}{llll}26 & 33 & 54\end{array}$	2 \% 4820	$29 \quad 450$	$3023-9$
	Aldebaran	E.	5444	531125	513838	$50 \quad 542$
	Pollux	E.	964844	$95 \quad 1410$	93 39 20	$\begin{array}{llll}92 & 4 & 12\end{array}$
	Jupiter	E.	1011658	994215	$98 \quad 714$	963158
8	a Aquilæ	W.	850011	862342	874731	891136
	Fomalhaut	W.	593651	6146	623153	$64 \quad 0 \quad 12$
	a Pegasi	W.	371643	$\begin{array}{llll}38 & 42 & 57\end{array}$	40 0 $10 \quad 8$	413813
	Aldebaran	E.	$\begin{array}{llll}42 & 18 & 57\end{array}$	404519	3911138	$\begin{array}{llll}37 & 37 & 57\end{array}$
	Pollux	E.	$84 \quad 4 \quad 26$	$82 \quad 2738$	$80 \quad 5034$	79 13
	Jupiter	E.	883118	$86 \quad 5419$	8517	$83 \quad 3929$
9	a Aquilæ	W.	$\begin{array}{llll}96 & 15 & 26\end{array}$	974045	$\begin{array}{llll}99 & 6 & 11\end{array}$	
	Fomalhaut	W.	71.2849	$72 \quad 5949$	743112	$\begin{array}{lll}76 & 2 & 57\end{array}$
	a Pegasi	W.	$\begin{array}{llll}49 & 9 & 56\end{array}$	504213	$52 \quad 15 \quad 5$	534829
	Aldebaran	E.	295059	281821	264613	251441
	Pollux	E.	$\begin{array}{lll}71 & 2 & 23\end{array}$	$69 \quad 23 \quad 25$	674411	$66 \quad 442$
	Jupiter	E.	$75 \quad 2729$	734815	72845	702859
	Saturn	E.	1052229	1034335	102425	1002459
10	Fomalhaut	W.	$\begin{array}{llll}83 & 46 & 37\end{array}$	$85 \quad 2014$	$\begin{array}{llll}86 & 54 & 5\end{array}$	$88 \quad 2810$
	a Pegasi		614235	631840	64558	663157

GREENWICH MEAN TIME.

LUNAR DISTANCES.						
Day of the Month.	Star's Na and Position		Noon.	III ${ }^{\text {b }}$	VI'b.	IX ${ }^{\text {b }}$
10	Pollux	E.	642458	$62^{\circ} 450$	$61^{\circ} 444$	$59^{\circ} 24^{\prime \prime} 0^{\prime \prime}$
	Jupiter	E.	684858	67840	$65 \quad 288$	634720
	Saturn	E.	$\begin{array}{llll}98 & 45 & 17\end{array}$	$97 \quad 5 \quad 20$	$\begin{array}{llll}95 & 25 & 7\end{array}$	$\begin{array}{llll}93 & 44 & 39\end{array}$
	Regulus	E.	101173	$\begin{array}{llll}99 & 36 & 43\end{array}$	$97 \quad 56$	$\begin{array}{llll}96 & 15 & 17\end{array}$
11	Fomalhaut	W.	$\begin{array}{lll}90 & 2 & 29\end{array}$	$\begin{array}{llll}91 & 37 & 0\end{array}$	$\begin{array}{llll}93 & 11 & 41\end{array}$	$\begin{array}{llll}94 & 46 & 32\end{array}$
	a Pegasi	W.	$68 \quad 9 \quad 6$	694635	712422	$\begin{array}{lll}73 & 2 & 27\end{array}$
	a Arietis	W.	244021	$26 \quad 2029$	$\begin{array}{llll}28 & 1 & 4\end{array}$	$29 \quad 42 \quad 4$
	Pollux	E.	505849	$\begin{array}{llll}49 & 17 & 6\end{array}$	$47 \quad 3513$	45 53
	Jupiter	E.	551945	$\begin{array}{llll}53 & 37 & 33\end{array}$	$\begin{array}{llll}51 & 55 & 9\end{array}$	$50 \quad 12 \quad 32$
	Saturn	E.	851844	$83 \quad 3653$	815448	801231
	Regulus	E.	874729	$86 \quad 5 \quad 15$	842248	82409
12	a Pegasi	W.	811639	82569	843551	861543
	a Arietis	W.	381157	$\begin{array}{llll}39 & 54 & 45\end{array}$	413746	$\begin{array}{llll}43 & 21 & 1\end{array}$
	Pollux	E.	$37 \quad 2039$	354749	$\begin{array}{llll}33 & 54 & 54\end{array}$	$\begin{array}{llll}32 & 11 & 55\end{array}$
	Jupiter	E.	413634	395251	$\begin{array}{llll}38 & 8 & 58\end{array}$	$\begin{array}{llll}36 & 24 & 56\end{array}$
	Saturn	E.	$71 \quad 3813$	695449	681115	$\begin{array}{llll}66 & 27 & 33\end{array}$
	Regulus	E.	$74 \quad 4 \quad 0$	$72 \quad 2014$	$\begin{array}{llll}70 & 36 & 19\end{array}$	$\begin{array}{llll}68 & 52 & 14\end{array}$
	Mars	E.	1162929	1145054	$\begin{array}{llll}113 & 1210\end{array}$	1113315
13	a Pegasi	W.	$\begin{array}{llll}94 & 37 & 12\end{array}$	$\begin{array}{llll}96 & 17 & 50\end{array}$	$\begin{array}{llll}97 & 58 & 33\end{array}$	$\begin{array}{llll}99 & 39 & 19\end{array}$
	a Arietis	W.	$52 \quad 0 \quad 5$	534422	$55 \quad 2848$	$\begin{array}{llll}57 & 13 & 22\end{array}$
	Aldebaran	W.	$21 \quad 5412$	$\begin{array}{llll}23 & 27 & 38\end{array}$	$\begin{array}{llll}25 & 2 & 37\end{array}$	263852
	Jupiter	E.	274247	$\begin{array}{lllll}25 & 58 & 1\end{array}$	2413 9	$\begin{array}{llll}22 & 28 & 13\end{array}$
	Saturn	E.	574652	$\begin{array}{llll}56 & 2 & 22\end{array}$	$\begin{array}{llll}54 & 17 & 45\end{array}$	$\begin{array}{llll}52 & 33 & 2\end{array}$
	Regulus	E.	$\begin{array}{ll}60 & 9\end{array}$	$58 \quad 2452$	$\begin{array}{llll}56 & 39 & 54\end{array}$	$\begin{array}{llll}54 & 54 & 49\end{array}$
	Mars	E.	1031627	1013642	$99 \quad 56 \quad 50$	$\begin{array}{lllll}98 & 16 & 52\end{array}$
14	a Arietis	W.	$\begin{array}{llll}65 & 57 & 50\end{array}$	$\begin{array}{llll}67 & 43 & 0\end{array}$	$69 \quad 2815$	$\begin{array}{llll}71 & 13 & 34\end{array}$
	Aldebaran	W.	345321	$\begin{array}{llll}36 & 34 & 7\end{array}$	$\begin{array}{llll}38 & 15 & 19\end{array}$	$\begin{array}{llll}39 & 56 & 54\end{array}$
	Saturn	E.	434810	$42 \quad 259$	401745	$\begin{array}{llll}38 & 32 & 27\end{array}$
	Regulus	E.	$\begin{array}{llll}46 & 8 & 6\end{array}$	$\begin{array}{llll}44 & 22 & 32\end{array}$	423655	405114
	Mars	E.	$89 \quad 55 \quad 38$	$88 \quad 15 \quad 9$	$\begin{array}{llll}86 & 34 & 37\end{array}$	$8454 \quad 1$
	Sun	E.	1294650	$128 \quad 924$	1263152	1245416
15	a Arietis	W.		814633	833211	$\begin{array}{llll}85 & 17 & 51\end{array}$
	Aldebaran	W.	$48 \quad 2915$	$\begin{array}{llll}50 & 12 & 23\end{array}$	515541	$\begin{array}{llll}53 & 39 & 8\end{array}$
	Saturn	E.	294533	$28 \quad 0 \quad 8$	261444	$24 \quad 2921$
	Regulus	E.	$\begin{array}{lll}32 & 2 & 18\end{array}$	301627	283035	$\begin{array}{llll}26 & 44 & 42\end{array}$
	Mars	E.	$\begin{array}{llll}76 & 30 & 26\end{array}$	744937	$73 \quad 848$	$71 \quad 2758$
	Spica	E.	$86 \quad 5 \quad 9$	841915	$\begin{array}{llll}82 & 33 & 19\end{array}$	804722
	Sun	E.	1164514	$\begin{array}{ll}115 & 717\end{array}$	$113 \quad 2917$	1115115
16	a Arietis	W.	94 620	$\begin{array}{llll}95 & 52 & 3\end{array}$	$\begin{array}{llll}97 & 37 & 45\end{array}$	$\begin{array}{llll}99 & 23 & 27\end{array}$
	Aldebaran	W.	$\begin{array}{llll}62 & 18 & 4\end{array}$	$\begin{array}{lll}64 & 2 & 7\end{array}$	$\begin{array}{llll}65 & 46 & 12\end{array}$	$67 \quad 3020$
	Pollux	W.	193830	212144	$\begin{array}{rrr}23 & 5 & 23\end{array}$	$24 \quad 4921$
	Jupiter	W.	14434	162845	$\begin{array}{llll}18 & 14 & 33\end{array}$	$20 \quad 0 \quad 25$
	Mars	E.	$\begin{array}{llll}63 & 3 & 48\end{array}$	$\begin{array}{llll}61 & 23 & 1\end{array}$	$\begin{array}{llllll}59 & 42 & 14\end{array}$	$\begin{array}{lll} 58 & 1 & 30 \end{array}$
	Spica	E.	$\begin{array}{llll}71 & 57 & 27\end{array}$	$\begin{array}{llll}70 & 11 & 27\end{array}$	682528 1002432	$\begin{array}{llll}66 & 39 & 30\end{array}$
	Sun	E.	1034047	102240	1002432	984625
17		W.	$\begin{array}{llll}76 & 11 & 28\end{array}$	$77 \quad 5544$	$79 \quad 40 \quad 0$	812415
	Pollux	W.	$\begin{array}{llll}33 & 32 & 8\end{array}$	$35 \quad 17 \quad 3$	$\begin{array}{lll} 37 & 2 & 1 \end{array}$	$\begin{array}{lll} 38 \quad 47 & 2 \end{array}$

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV^{h}.	XVIII.	XXI ${ }^{\text {b }}$.
10	Pollux	E.	$57^{\circ} 43^{\prime \prime} 39$	$56^{\circ} 2^{\prime} 45^{\prime \prime}$	$54^{\circ} 21^{\prime} 39$	$52^{\circ} 40{ }^{\prime \prime}$
	Jupiter	E.	$\begin{array}{llll}62 & 6 & 17\end{array}$	60250	584329	$57 \quad 144$
	Saturn	E.	$92 \quad 3 \quad 56$	902259	884148	$87 \quad 023$
	Regulus	E.	943411	925251	911118	892930
11	Fomalhant	W.	962132	975640	993154	101713
	a Pegasi	W.	744048	761924	775815	$\begin{array}{llll}79 & 37 & 21\end{array}$
	a Arietis	W.	312325	$33 \quad 56$	34476	$36 \quad 2923$
	Pollux	E.	441056	422833	40463	$39 \quad 324$
	Jupiter	E.	$\begin{array}{llll}48 & 29 & 43\end{array}$	464642	$45 \quad 3 \quad 30$	$43 \quad 208$
	Saturn	E.	$7830 \quad 2$	764721	$75 \quad 429$	$\begin{array}{ll}73 & 2126\end{array}$
	Regulus	E.	805718	791415	77311	754736
12	a Pegasi	W.	875545	893555	911614	925640
	a Arietis	W.	$45 \quad 429$	46487	483157	501556
	Pollux	E.	302855	284554	$27 \quad 255$	$25 \quad 20 \quad 1$
	Jupiter	E.	344046	$\begin{array}{llll}32 & 56 & 27\end{array}$	$\begin{array}{llll}31 & 12 & 1\end{array}$	292727
	Saturn	E.	644341	625940	611532	593116
	Regulus	E.	$67 \quad 80$	652338	63 39	615430
	Mars	E.	1095411	1081457	1063535	$10456 \quad 5$
13	a Pegasi	W.	101209	$\begin{array}{llll}103 & 1 & 1\end{array}$	1044153	1062247
	a Arietis	W.	5858	604251	622745	641245
	Aldebaran	W.	281611	295425	313325	33136
	Jupiter	E.	204312	18589	$1713 \quad 5$	15280
	Saturn	E.	504813	$49 \quad 319$	471821	$\begin{array}{llll}45 & 33 & 17\end{array}$
	Regulus	E.	$53 \quad 938$	512422	$4939 \quad 1$	475336
	Mars	E.	963647	945637	931622	9136
14		W.			$\begin{array}{ll}76 & 29 \\ 51\end{array}$	781523
	Aldebaran	W.	413850	43214	$45 \quad 3 \quad 34$	464618
	Saturn	E.	36478	35146	331622	313058
	Regulus	E.	$39 \quad 531$	371946	$\begin{array}{llll}35 & 33 & 58\end{array}$	33489
	Mars	E.	831322	813241	795158	$78 \quad 1113$
	Sun	E.	1231635	1213850	$\begin{array}{llll}120 & 1 & 1\end{array}$	118239
15	a Arietis	W.	$87 \quad 3 \begin{array}{lll}87\end{array}$	884913		
	Aldebaran	W.	552243	$57 \quad 6 \quad 25$	585013	60346
	Satura	E.	22440	205842	191329	172822
	Regulus	E.	245851	23130	212711	194125
	Mars	E.	$6947 \quad 7$	$68 \quad 617$	$6625 \quad 27$	644437
	Spiea	E.	79 1 1	771525	752926	$73 \quad 4326$
	Sun	E.	1101312	$10835 \quad 7$	106571	1051854
16	a Arietis	W.	$\begin{array}{llll}101 & 9 & 7\end{array}$	1025447	1044025	106262
	Aldebaran	W.	691431	705844	724258	742713
	Pollux	W.	263334	$2818 \quad 0$	$30 \quad 235$	314719
	Jupiter	W.	214620	233216	$\begin{array}{llll}25 & 18 & 14\end{array}$	$27 \quad 412$
	Mars	E.	562048	54408	525931	511856
	Spica	E.	645333	$\begin{array}{llll}63 & 7 & 36\end{array}$	612141	593547
	Son	E.	$\begin{array}{llll}97 & 8 & 18\end{array}$	$95 \quad 30 \quad 12$	93526	$\begin{array}{llll}92 & 14 & 1\end{array}$
. 17	Aldebaran Pollux	W. W.	$\begin{array}{lrr} 83 & 8 & 29 \\ 40 & 32 & 5 \end{array}$	$\begin{array}{lll} 84 & 52 & 42 \\ 42 & 17 & 10 \end{array}$	$\begin{array}{rrr} 86 & 36 & 53 \\ 44 & 2 & 16 \end{array}$	$\begin{array}{lll} 88 & 21 \\ 45 & 47 & 2 \\ 22 \end{array}$

GREENWICH MEAN TIME.						
LUNAR DIStances.						
$\begin{aligned} & \text { Day of } \\ & \text { Mone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	$\mathrm{Mr}^{\text {b }}$	VI' ${ }^{\text {. }}$	IX ${ }^{\text {b }}$
17	Jupiter	W.	$28^{\circ} 50^{\prime} 111$	$30^{\circ} 36{ }^{\prime \prime}$	$32 \times 8{ }^{\circ}$	$34{ }^{3} 88$
	Mars	E.	493826	475759	461737	443719
	Spica	E.	574955	$\begin{array}{llll}56 & 4 & 4\end{array}$	541815	523229
	Sun	E.	903558	885756	871956	854157
18	Aldebaran	W.	90.59	914913	$\begin{array}{llll}93 & 33 & 14\end{array}$	$\begin{array}{llll}95 & 17 & 12\end{array}$
	Pollux	W.	473229	$\begin{array}{llll}49 & 17 & 34\end{array}$	$51 \quad 239$	524742
	Jupiter	W.	425730	444318	$\begin{array}{llll}46 & 29 & 3 \\ 10 & 14 & \end{array}$	481445
	Saturn	W.	124613	143024	$\begin{array}{ll}1614 & 49\end{array}$	175922
	Mars	E.	$3617 \quad 25$	343750	$\begin{array}{lllll}32 & 58 & 25\end{array}$	$\begin{array}{llll}31 & 19 & 13\end{array}$
	Spica	E.	434417	415848	$\begin{array}{llll}40 & 13 & 24\end{array}$	3828 78
	Sun	E.	773238	$75 \quad 5454$	7417	723936
19	Pollux	W.	613227	631715	$65 \quad 2 \quad 0$	664641
	Jupiter	W.	$57 \quad 231$	584753	603312	621826
	Saturn	W.	264249	282730	30128	315644
	Regulus	W.	243119	261620	$\begin{array}{llll}28 & 1 & 19\end{array}$	294614
	Mars	E.	$23 \quad 714$	$2130 \quad 2$	195325	181732
	Spica	E.	294236	27 6749	261310	242840
		E.	643228	625516	$\begin{array}{llll}61 & 18 & 9\end{array}$	59417
20	Pollux	W.	$75 \quad 2859$	$\begin{array}{lllll}77 & 13 & 11\end{array}$	$\begin{array}{llllll}78 & 57 & 18\end{array}$	$\begin{array}{llll}80 & 41 & 18\end{array}$
	Jupiter	W.	$71 \quad 325$	72489	743247	$\begin{array}{llll}76 & 17 & 19\end{array}$
	Saturn	W.	403846	$42 \begin{array}{llll}42 & 57\end{array}$	$\begin{array}{llll}44 & 7 & 2\end{array}$	$45 \quad 51$
	Regulus	W.	382949	401417	415839	434255
	Sun	E.	51.3730	$\begin{array}{llll}50 & 1 & 7\end{array}$	482452	464845
21	Pollux	W.		91 2 50 86 42		
	Jupiter	W.	$\begin{array}{llll}84 & 58 & 14 \\ 54 & 29 & 19\end{array}$	$\begin{array}{llll}86 & 42 & 2 \\ 56 & 12 & 36\end{array}$	$88 \quad 2543$ 575546 57	$\begin{array}{lrrr}90 & 9 & 14 \\ 59 & 38 & 47\end{array}$
	Saturn Regulus	W.	$\begin{array}{llll}54 & 29 & 19 \\ 52 & 22 & 32\end{array}$	$\begin{array}{lrrr}56 & 12 & 36 \\ 54 & 6 & 6\end{array}$	574546 554930	593847 57 74
	Sun	E.	385032	371525	354031	$34 \quad 550$
26	Sun	W.	231741	244259	$\begin{array}{llll}26 & 8 & 14\end{array}$	273324
	Fomalhaut	E.	65300	$\begin{array}{ll}64 & 412\end{array}$	623853	61142
	a Pegasi	E.	861836	844738	831655	814629
27	Sun	W.	$\begin{array}{lllll}34 & 37 & 13\end{array}$	$\begin{array}{llll}36 & 1 & 30\end{array}$	$\begin{array}{llll}37 & 25 & 37\end{array}$	384933
	Fomalhaut	E.	$\begin{array}{llll}54 & 17 & 46\end{array}$	$\begin{array}{llll}52 & 56 & 15\end{array}$	513524	$\begin{array}{llll}50 & 1513\end{array}$
	a Pegasi	E.	741825	724939	712111	$\begin{array}{llll}69 & 53 & 0\end{array}$
	a Arietis	E.	1163115	1145853	1132644	1115447
28	Sun	W.	454637	$\begin{array}{lllll}47 & 9 & 31\end{array}$		$\begin{array}{llll}49 & 54 & 49\end{array}$
	Fomalhaut	E.	434548	423033	411619	$\begin{array}{llll}40 & 3 & 10 \\ 50\end{array}$
	${ }_{a}$ Pegasi	E.	623632	61109	59445	581821
	a Arietis	E.	1041815	1024732	101170	994640
29		W.	564526	$\begin{array}{llll}58 & 7 & 9\end{array}$	592845	$\begin{array}{llll}60 & 50 & 15\end{array}$
	Fomalhaut	E.	341644	$\begin{array}{llll}33 & 12 & 6\end{array}$	$\begin{array}{llll}32 & 9 & 19\end{array}$	31885
	a Pegasi	E.	511441	4951	$48 \quad 2745$	$\begin{array}{ll}47 & 4 \\ 52\end{array}$
	a Arietis	E.	$\begin{array}{llll}92 & 17 & 23\end{array}$	904758	891842	874932
30		W.	673616	$\begin{array}{llll}68 & 57 & 14\end{array}$	$\begin{array}{ll}7018 & 9\end{array}$	71392
	a Pegasi	E.	$40 \quad 1719$	385723	37 77 77	$\begin{array}{llll}36 & 19 & 24 \\ 75 & 59\end{array}$
	a Arietis	E.	802521	785645	$77 \quad 2814$	$75 \quad 5947$

GREENWICH MEAN TIME.						
LUNAR DIStances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nan } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XVb.	XVIII ${ }^{\text {b }}$	XXIb.
17	Jupiter	W.	3505411	$3789{ }^{\circ}$	3982549	41 11 4í
	Mars	E.	4257	$\begin{array}{llll}41 & 17 & 1\end{array}$	39371	37 57
	Spica	E.	504645	491	471525	452949
	Sun	E.	$84 \begin{array}{lll}84 & 1\end{array}$	82266	804814	791024
18	Aldebaran	W.	97×16	984456	1002842	1021223
	Pollux	W.	543244	561743	$58 \quad 241$	594735
	Jupiter	W.	$50 \quad 0 \quad 24$	514611	538134	55174
	Satura	W.	$1944 \quad 0$	212841	231324	24587
	Mars	E.	294013	$28 \quad 129$	$2623 \quad 2$	244456
	Spica	E.	364247	$\begin{array}{llll}34 & 57 & 36\end{array}$	331230	$\begin{array}{llll}31 & 27 & 30\end{array}$
	Sun	E.	$\begin{array}{lll}71 & 2 & 2\end{array}$	692433	67477	$66 \quad 945$
19	Pollux	W.	683118	701551	$72 \quad 0 \quad 19$	734442
	Jupiter	W.	$64 \quad 336$	654841	673341	691836
	Saturn	W.	334116	$\begin{array}{lll}35 & 2545\end{array}$	371010	385431
	Regulus	W.	$3131 \quad 6$	331554	$\begin{array}{llll}35 & 0 & 37\end{array}$	364516
	Mars	E.	164234	$15 \quad 847$	133635	$12 \quad 631$
	Spica	E.	224419	$\begin{array}{llll}21 & 0 & 9\end{array}$	191613	173233
	Sun	E.	58411	$\begin{array}{llll}56 & 27 & 21\end{array}$	545037	53140
20	Pollux	W.	822511	84858	855237	87369
	Jupiter	W.	$78 \quad 144$	$7946 \quad 2$	813014	831418
	Saturn	W.	473454	491841	$\begin{array}{ll}51 & 21\end{array}$	524553
	Regulus	W.	$45 \quad 274$	47117	4855	503852
	Sun	E.	451247	433658	$\begin{array}{llll}42 & 1 & 19\end{array}$	402550
21	Pollux	W.	961147	975428	993659	1011920
	Jupiter	W.	915237	933551	951856	$97 \quad 150$
	Saturn	W.	612140	$63 \quad 423$	644657	$66 \quad 2922$
	Regulus	W.	$\begin{array}{llll}59 & 15 & 54\end{array}$	605852	624141	642420
	Sun	E.	323123	305711	292316	274939
26	Sun	W.	285827	302322	31488	331246
	Fomalhaut	E.	594941	582552	$\begin{array}{llll}57 & 236\end{array}$	553953
	${ }^{\text {a Pegasi }}$	E.	801619	784625	771648	754728
27	Sun	W.	401319	413654	$43 \quad 0 \quad 19$	442333
	Fomalhaut	E.	485544	$\begin{array}{llll}47 & 37 & 1\end{array}$	46196	$45 \quad 20$
	a Pegasi	E.	$68 \quad 25 \quad 6$	665730	$65 \quad 3013$	$64 \quad 313$
	a Arietis	E.	110234	1085134	1072016	$10549 \quad 9$
28			511714		$\begin{array}{lll}54 & 1 & 36\end{array}$	$55 \quad 2335$
	Fomalhaut	E.	385110	374025	36312	$35 \quad 235$
	a Pegasi	E.	565256	552751	$54 \quad 3 \quad 7$	523843
	a Arietis	E.	981629	964628	$\begin{array}{llll}95 & 16 & 38\end{array}$	934656
29	Sun	W.	621138	633255	64546	$\begin{array}{llll}66 & 1513\end{array}$
	Fomalhant	E.	$3010 \quad 3$	291357	282028	272952
	a Pegasi	E.	454225	442025	425853	413750
	a Arietis	E.	862030	845134	832244	81540
30	Sun	W.	725952	742041	754128	$77 \quad 215$
	a Pegasi	E.	$35 \quad 129$	334422	32288	311253
	a. Arietis	E.	743122	$\begin{array}{ll}73 & 259\end{array}$	713439	$\begin{array}{ll}70 & 619\end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Name and Position.		Noon.	III ${ }^{\text {h. }}$	$\nabla I^{\text {b }}$.	IX ${ }^{\text {b }}$
1	Sun		$78{ }^{\circ} 23^{\prime \prime}$	$79^{\circ} 43^{\prime \prime} 49$		$82.25{ }^{\circ} 28^{\prime \prime}$
	a Arietis	E.	68380	$67 \quad 942$	654122	$\begin{array}{lll}64 & 13 & 2\end{array}$
	Aldebaran	E.	1004242	991526	$9748 \quad 8$	962048
2	Sun	W.	891025	903138	915256	$\begin{array}{llll}93 & 14 & 21\end{array}$
	a Aquilæ	W.	$46 \quad 241$	$47 \quad 638$	481140	491744
	a Arietis	E.	$\begin{array}{llll}56 & 50 & 47\end{array}$	$55 \quad 22 \quad 9$	$\begin{array}{llll}53 & 53 & 27\end{array}$	522439
	Aldebaran		$89 \quad 320$	873537	$86 \quad 749$	843954
3	Sun	W.	$100 \quad 323$	1012539	102486	1041044
	a Aquilæ	W.	$\begin{array}{lll}55 & 1 & 46\end{array}$	$\begin{array}{llll}56 & 13 & 1\end{array}$	$57 \quad 2459$	$\begin{array}{llll}58 & 37 & 39\end{array}$
	a Arietis	E.	$\begin{array}{llll}44 & 59 & 7\end{array}$	$43 \quad 2939$	$42 \quad 0 \quad 2$	$\begin{array}{llll}40 & 30 & 16\end{array}$
	Aldebaran	E.	$\begin{array}{llll}77 & 18 & 36\end{array}$	754955	74215	$72 \quad 52 \quad 6$
4	Sun	W.	$\begin{array}{lll}111 & 6 & 57\end{array}$	1123052	$\begin{array}{ll}113 & 55\end{array}$	1151928
	a Aquilæ	W.	645035	$66 \quad 656$	$67 \quad 2349$	$68 \quad 4114$
	Fomalhaut	W.	392711	404044	415530	4311124
	Aldebaran	E.	$65 \quad 2429$	63 54 1	$62 \quad 246$	$\begin{array}{llll}60 & 53 & 36\end{array}$
	Pollux	E.	107376	106536	1043351	103150
	Jupiter	E.	1112229	109508	1081733	1064441
5	Sun	W.	$122 \quad 2538$	1235143	$\begin{array}{llll}125 & 18 & 7\end{array}$	$\begin{array}{lll}126 & 44 & 49\end{array}$
	a Aquilæ	W.	$\begin{array}{llll}75 & 15 & 43\end{array}$	$\begin{array}{llll}76 & 36 & 0\end{array}$	$\begin{array}{lllll}77 & 56 & 43\end{array}$	$\begin{array}{llll}79 & 17 & 52\end{array}$
	Fomalhant	W.	494539	5178	$\begin{array}{llll}52 & 29 & 23\end{array}$	535223
	a Pegasi	W.	$27 \quad 3820$	$\begin{array}{llll}28 & 54 & 19\end{array}$	$\begin{array}{llll}30 & 12 & 7\end{array}$	$\begin{array}{llll}31 & 31 & 34\end{array}$
	Aldebaran	E.	$\begin{array}{llll}53 & 18 & 0\end{array}$	514615	501418	$48 \quad 42 \quad 9$
	Pollux	E.	$\begin{array}{lllll}95 & 17 & 33\end{array}$	$\begin{array}{llll}93 & 43 & 49\end{array}$	$\begin{array}{llll}92 & 9 & 45\end{array}$	$\begin{array}{lllll}90 & 35 & 23\end{array}$
	Jupiter	E.	$\begin{array}{llll}98 & 56 & 10\end{array}$	$\begin{array}{llll}97 & 21 & 34\end{array}$	$\begin{array}{llll}95 & 46 & 39\end{array}$	941125
6	a Aquilæ	W.	$\begin{array}{llll}86 & 9 & 29\end{array}$	873254	$88 \quad 5640$	902045
	Fomalhaut	W.	605741	$62 \quad 2438$	635211	$65 \quad 2018$
	a Pegasi	W.	$\begin{array}{llll}38 & 28 & 53\end{array}$	$\begin{array}{llll}39 & 55 & 40\end{array}$	$\begin{array}{llll}41 & 23 & 24\end{array}$	42520
	Aldebaran	E.	$\begin{array}{llll}40 & 58 & 47\end{array}$	$\begin{array}{llll}39 & 2541\end{array}$	$\begin{array}{llll}37 & 52 & 30\end{array}$	$\begin{array}{llll}36 & 19 & 16\end{array}$
	Pollux	E.	823833	$81 \quad 210$	$79 \quad 25 \quad 26$	774821
	Jupiter	E.	861013	84.3257	$\begin{array}{llll}82 & 55 & 19\end{array}$	811719
	Saturn	E.	1174133	116456	$\begin{array}{lll}114 & 27 & 57\end{array}$	1125037
7	Fomalhaut	W.	724853	$\begin{array}{llll}74 & 20 & 5\end{array}$	$\begin{array}{llll}75 & 51 & 46\end{array}$	$\begin{array}{llll}77 & 23 & 53\end{array}$
	a Pegasi	W.	$\begin{array}{llll}50 & 26 & 42\end{array}$	$\begin{array}{llll}51 & 59 & 44\end{array}$	$\begin{array}{llll}53 & 33 & 23\end{array}$	$\begin{array}{rrr}55 & 7 & 39\end{array}$
	Aldebaran	E.	$\begin{array}{ll}28 & 34\end{array}$	$\begin{array}{lll}27 & 1 & 43\end{array}$	$\begin{array}{llll}25 & 29 & 54\end{array}$	$\begin{array}{llll}23 & 58 & 46\end{array}$
	Pollux	E.	69 7 3735	675822	661847	$\begin{array}{llll}64 & 38 & 51\end{array}$
	Jupiter	E.	$\begin{array}{lll}73 & 1 & 53\end{array}$	712142	69419	$\begin{array}{llll}68 & 0 & 13\end{array}$
	Saturn	E.	1043828	1025855	101191	993845
8	Fomalhaut	W.	$\begin{array}{llll}85 & 10 & 47\end{array}$	$\begin{array}{llll}86 & 45 & 19\end{array}$	882011	$\begin{array}{llll}89 & 55 & 23\end{array}$
	a Pegasi	W.	$\begin{array}{llll}63 & 7 & 16\end{array}$	64 44 43	$\begin{array}{llll}66 & 22 & 39\end{array}$	$\begin{array}{llll}68 & 1 & 1\end{array}$
	Pollux	E.	$\begin{array}{llll}56 & 13 & 59\end{array}$	$\begin{array}{llll}54 & 32 & 0\end{array}$	$\begin{array}{llll}52 & 49 & 42\end{array}$	$\begin{array}{llll}51 & 7 & 5\end{array}$
	Jupiter	E.	$\begin{array}{llll}59 & 30 & 8\end{array}$	$\begin{array}{llll}57 & 47 & 3\end{array}$	$\begin{array}{rrrr}56 & 3 & 36 \\ 87 & 46\end{array}$	$\begin{array}{llll}54 & 19 & 49\end{array}$
	Saturn	E.	$\begin{array}{llll}91 & 11 & 54\end{array}$	$\begin{array}{llll}89 & 29 & 28\end{array}$	$\begin{array}{rrrr}87 & 46 & 40 \\ 89 & 39\end{array}$	$\begin{array}{rrr}86 & 3 & 33 \\ 87 & 55 & 55\end{array}$
	Regulus	E.	93421	912153	89394	875555
9	a Pegasi	W.	$\begin{array}{llll}76 & 19 & 7\end{array}$	$77 \quad 5952$	$\begin{array}{llll}79 & 40 & 58\end{array}$	812223
	a Arietis	W.	$\begin{array}{llll}33 & 4 & 34\end{array}$	344828	$\begin{array}{llll}36 & 32 & 45\end{array}$	$\begin{array}{llll}38 & 17 & 25\end{array}$
	Pollux	E.	$42 \quad 2936$	404518	$\begin{array}{lll}39 & 0 & 47\end{array}$	$37 \quad 16$

GREENWICH MEAN TLME.						
LUNAR DISTANCES.						
Day of the Month.	Star's Na and Position		Midnight.	XVb.	XVIII ${ }^{\text {b }}$	XXI'.
1	Sun	W.	$83^{\circ} 46{ }^{\prime \prime}$	$85^{\circ} 7{ }^{\prime} 15^{\prime \prime}$	$86^{\circ} 28^{\prime} 14^{\prime \prime}$	$87^{\circ} 49^{\prime} 17^{\prime \prime}$
	a Arietis	E.	624440	$61 \quad 1617$	594550	581920
	Aldebaran	E.	94 53 26	$93 \quad 260$	915831	$90 \quad 3058$
2	Sun	W.	$\begin{array}{llll}94 & 35 & 53\end{array}$	$\begin{array}{llll}95 & 57 & 33\end{array}$	$\begin{array}{llll}97 & 19 & 21\end{array}$	$\begin{array}{llll}98 & 417\end{array}$
	a Aquilæ	W.	502447	513245	524136	535117
	a Arietis	E.	505546	$49 \quad 2647$	$\begin{array}{llll}47 & 57 & 41\end{array}$	$46 \quad 2828$
	Aldebaran	E.	8311154	814346	$80 \quad 15 \quad 30$	$\begin{array}{llll}78 & 47 & 7\end{array}$
3	Sun	W.	1053333	1065634	1081948	1094316
	a Aquilæ'	W.	$\begin{array}{llll}59 & 51 & 0\end{array}$	$\begin{array}{lll}61 & 4 & 59\end{array}$	- 621935	$\begin{array}{llll}63 & 34 & 48\end{array}$
	a Arietis	E.	$\begin{array}{lll}39 & 0 & 22\end{array}$	$37 \quad 3019$	$\begin{array}{lll}36 & 0 & 7\end{array}$	342946
	Aldebaran	E.	712256	695336	68245	$66 \quad 5423$
4	Sun	W.	$\begin{array}{lll}116 & 44 & 9\end{array}$	$\begin{array}{lll}118 & 9 & 6\end{array}$	1193419	1205950
	a Aquilæ	W.	$\begin{array}{llll}69 & 59 & 10\end{array}$	$\begin{array}{llll}71 & 17 & 36\end{array}$	$\begin{array}{ll}72 & 36\end{array}$	$73 \quad 5553$
	Fomaliaut	W.	442821	$\begin{array}{llll}45 & 4618\end{array}$	$\begin{array}{llll}47 & 5 & 12\end{array}$	48250
	Aldebaran	E.	$\begin{array}{llll}59 & 22 & 54\end{array}$	57520	$\begin{array}{lll}56 & 2052\end{array}$	544933
	Pollux	E.	1012933	995659	$98 \quad 24 \quad 8$	96510
	Jupiter	E.	1051133	103389	102427	1003027
5	Sun	W.	1281149	129398	131647	$\begin{array}{ll}132 & 3444\end{array}$
	a Aquilæ	W.	80 39 25	82 l 22	832342	844624
	Fomalhaut	W.	$\begin{array}{llll}55 & 16 & 6\end{array}$	564031	$\begin{array}{llll}58 & 5 & 36\end{array}$	593120
	a Pegasi	W.	325231	341449	$\begin{array}{llll}35 & 38 & 22\end{array}$	$\begin{array}{llll}37 & 3 & 5\end{array}$
	Aldebaran	E.	$47 \quad 949$	$\begin{array}{llll}45 & 37 & 18\end{array}$	$\begin{array}{llll}44 & 4 & 37\end{array}$	423146
	Pollux	E.	$89 \quad 041$	872539	$85 \quad 5018$	841436
	Jupiter	E.	923551	$90 \quad 5958$	892343	$8747 \quad 9$
6	a Aquilæ	W.	$\begin{array}{llll}91 & 45 & 8\end{array}$	$\begin{array}{llll}93 & 9 & 49\end{array}$	$\begin{array}{llll}94 & 34 & 46\end{array}$	$95 \quad 5959$
	Fomalhaut	W.	664858	681811	694755	$\begin{array}{llll}71 & 18 & 9\end{array}$
	a Pegasi	W.	442126	$45 \quad 5140$	$47 \quad 2239$	$48 \quad 5420$
	Aldebaran	E.	$\begin{array}{llll}34 & 46 & 1\end{array}$	331248	313941	30644
	Pollux	E.	$\begin{array}{llll}76 & 10 & 54\end{array}$	$\begin{array}{lllll}74 & 33 & 6\end{array}$	$\begin{array}{lllll}72 & 54 & 57\end{array}$	$\begin{array}{llll}71 & 16 & 27\end{array}$
	Jupiter	E.	$79 \quad 3858$	$78 \quad 0 \quad 15$	762110	744143
	Saturn	E.	1111255	1093451	1075625	1061738
7	Fomalhaut	W.	$\begin{array}{llll}78 & 56 & 27\end{array}$	802926		$\begin{array}{llll}83 & 36 & 37\end{array}$
	a Pegasi	W.	$\begin{array}{lllll}56 & 42 & 30\end{array}$	$\begin{array}{llll}58 & 17 & 54\end{array}$	595350	613018
	Aldebaran	E.	222831	205928	193158	$18 \quad 629$
	Pollux	E.	$\begin{array}{lllll}62 & 58 & 34\end{array}$	$\begin{array}{llll}61 & 17 & 56\end{array}$	$\begin{array}{llll}59 & 36 & 57\end{array}$	575538
	Jupiter	E.	$\begin{array}{lllll}66 & 18 & 56\end{array}$	$\begin{array}{llll}64 & 37 & 16\end{array}$	$62 \quad 5515$	611252
	Saturn	E.	97 578	$\begin{array}{llllll}96 & 17 & 6\end{array}$	943543	925359
8	Fomalhaut	W.	$\begin{array}{llll}91 & 30 & 53\end{array}$	93642	944246	$\begin{array}{llll}96 & 19 & 6\end{array}$
	a Pegasi	W.	693950	$\begin{array}{llll}71 & 19 & 4\end{array}$	$72 \quad 5842$	$74 \quad 3843$
	Pollux	E.	$49 \quad 2410$	474056	$\begin{array}{llll}45 & 57 & 26\end{array}$	$4413 \quad 39$
	Jupiter	E.	523542	$\begin{array}{llll}50 & 51 & 15\end{array}$	49628	472122
	Saturn	E.	$\begin{array}{llll}84 & 20 & 4\end{array}$	823616	$80 \quad 52 \quad 8$	$79 \quad 741$
	Regulus	E.	861226	$\begin{array}{llll}84 & 28 & 37\end{array}$	824428	81001
9	a Pegasi	W.	$83 \quad 46$	$84 \quad 46 \quad 7$	$\begin{array}{ll}86 & 28 \\ 23\end{array}$	881056
	a Arietis	W.	$\begin{array}{llll}40 & 2 & 26\end{array}$	414747	$\begin{array}{llll}43 & 33 & 26\end{array}$	$45 \quad 1924$
	Pollux	E.	35317	33462	$32 \quad 0 \quad 47$	301527

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Name and Position.		Noon.	III ${ }^{\text {b }}$	VI' ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
9	Jupiter	E.	$45^{\circ} 35^{\prime} 588$	$43^{\circ} 500^{\prime} \quad 16^{\prime \prime}$	$42^{\circ} 4{ }^{\prime}{ }^{115}$	$40^{\circ} 177^{\prime} 58^{\prime \prime}$
	Saturn	E.	772256	$75 \quad 3752$	$\begin{array}{llll}73 & 52 & 30\end{array}$	$\begin{array}{llll}72 & 6 & 52\end{array}$
	Regulus	E.	$\begin{array}{llll}79 & 15 & 14\end{array}$	$77 \quad 3010$	$\begin{array}{lllll}75 & 44 & 47\end{array}$	$\begin{array}{llll}73 & 59 & 8\end{array}$
10	a Pegasi	W.	895342	913641	$\begin{array}{llll}93 & 19 & 53\end{array}$	$\begin{array}{llll}95 & 3 & 15\end{array}$
	a Arietis	W.	$47 \quad 5 \quad 39$	485210	. 503856	522556
	Aldebaran	W.	173811	$\begin{array}{ll}19 & 7 \\ 19\end{array}$	203925	$\begin{array}{llll}22 & 13 & 53\end{array}$
	Jupiter	E.	$\begin{array}{llll}31 & 22 & 39\end{array}$	293453	274655	$\begin{array}{llll}25 & 58 & 46\end{array}$
	Saturn	E.	631441	612732	594011	$57 \quad 5237$
	Regulus	E.	$65 \quad 655$	631946	$61 \quad 3224$	594450
11	a Arietis	W.	$61 \quad 2356$	$\begin{array}{llll}63 & 12 & 1\end{array}$	$\begin{array}{lll}65 & 0 & 15\end{array}$	664836
	Aldebaran	W.	$30 \quad 2937$	$\begin{array}{llll}32 & 11 & 52\end{array}$	335449	35 38
	Saturn	E.	$48 \quad 5218$	$47 \quad 349$	$\begin{array}{llll}45 & 15 & 14\end{array}$	$\begin{array}{llll}43 & 26 & 33\end{array}$
	Regulus	E.	504425	$48 \quad 55 \quad 55$	$47 \quad 7$47 19	$\begin{array}{llll}45 & 18 & 36\end{array}$
	Mars	E.	1112355	1094040	1075718	1061349
12	a Arietis	W.	$\begin{array}{llll}75 & 51 & 35\end{array}$	774021	$\begin{array}{llll}79 & 29 & 7\end{array}$	$81 \quad 1754$
	Aldebaran	W.	442242	$46 \quad 8 \quad 30$	475430	494042
	Saturn	E.	$\begin{array}{llll}34 & 2217\end{array}$	323322	304428	285536
	Regulus	E.	$\begin{array}{llll}36 & 14 & 4\end{array}$	$\begin{array}{llll}34 & 25 & 4\end{array}$	$\begin{array}{llll}32 & 36 & 4\end{array}$	30474
	Spica	E.	$90 \quad 1653$	882750	863846	844943
	Mars	E.	$97 \quad 3510$	$95 \quad 5118$	$94 \quad 724$	$92 \quad 2330$
13	a Arietis	W.	902133	$\begin{array}{llll}92 & 10 & 8\end{array}$	$\begin{array}{llll}93 & 58 & 39\end{array}$	$\begin{array}{llll}95 & 47 & 6\end{array}$
	Aldebaran	W.	$58 \quad 3318$	$6020 \quad 0$	$62 \quad 643$	$63 \quad 5324$
	Spica	E.	$\begin{array}{lllll}75 & 44 & 45\end{array}$	73 555	72 $7 \begin{aligned} & 7\end{aligned}$	$\begin{array}{llll}70 & 18 & 27\end{array}$
	Mars	E.	834419	$82 \quad 0038$	$80 \quad 17 \quad 2$	$78 \quad 33 \quad 30$
	Sun	E.	1344946	$\begin{array}{llll}133 & 8 & 56\end{array}$	131288	1294724
14	Aldebaran	W.	724613	$\begin{array}{llll}74 & 32 & 33\end{array}$	$\begin{array}{llll}76 & 18 & 47\end{array}$	$\begin{array}{llll}78 & 4 & 54\end{array}$
	Pollux	W.	$30 \quad 1041$	315724	33448	$\begin{array}{llll}35 & 30 & 50\end{array}$
	Jupiter	W.	$27 \quad 0 \quad 17$	$2849 \quad 2$	$\begin{array}{llll}30 & 37 & 40\end{array}$	$\begin{array}{llll}32 & 2610\end{array}$
	Spica	E.	$\begin{array}{llll}61 & 16 & 37\end{array}$	$\begin{array}{llll}59 & 28 & 37\end{array}$	$\begin{array}{lllll}57 & 40 & 46\end{array}$	$\begin{array}{llll}55 & 53 & 5\end{array}$
	Mars	E.	695735	$\begin{array}{llll}68 & 14 & 47\end{array}$	$\begin{array}{llll}66 & 32 & 9\end{array}$	644940
	Sun	E.	1212455	1194444	118440	1162444
15	Aldebaran	W.	$86 \quad 53 \quad 26$	883840	$\begin{array}{llll}90 & 23 & 44\end{array}$	$\begin{array}{llll}92 & 8 & 37\end{array}$
	Pollux	W.	$44 \quad 2313$	$\begin{array}{llll}46 & 9 & 22\end{array}$	$\begin{array}{llll}47 & 55 & 24\end{array}$	494116
	Jupiter	W.	$\begin{array}{llll}41 & 26 & 31\end{array}$	$\begin{array}{llll}43 & 14 & 7\end{array}$	$\begin{array}{lll}45 & 1 & 32\end{array}$	464846
	Spica	E.	$\begin{array}{llll}46 & 57 & 5\end{array}$	$\begin{array}{llll}45 & 10 & 25\end{array}$	$\begin{array}{llll}43 & 23 & 57\end{array}$	$\begin{array}{llll}41 & 37 & 41\end{array}$
	Mars	E.	$\begin{array}{rrrr}56 & 20 & 0\end{array}$	$\begin{array}{llll}54 & 38 & 39\end{array}$	525731	511637 1031049
	Sun	E.	$\begin{array}{ll}108 & 718\end{array}$	1062818	1044928	1031049
16	Pollux	W.	$58 \quad 2818$	$\begin{array}{llll}60 & 13 & 12\end{array}$	$\begin{array}{llll}61 & 57 & 54\end{array}$	634226
	Jupiter	W.	$\begin{array}{llll}55 & 42 & 14\end{array}$	$\begin{array}{llll}57 & 28 & 22\end{array}$	$\begin{array}{llll}59 & 14 & 18\end{array}$	$\begin{array}{lll}61 & 0 & 2\end{array}$
	Saturn	W.	$23 \quad 2630$	$\begin{array}{llll}25 & 11 & 28\end{array}$	$\begin{array}{llll}26 & 56 & 18\end{array}$	284059
	Regulus	W.	$\begin{array}{llll}21 & 26 & 34\end{array}$	2311135	$\begin{array}{llll}24 & 56 & 27\end{array}$	$\begin{array}{llll}26 & 41 & 10\end{array}$
	Mars	E.	$\begin{array}{llll}42 & 55 & 39\end{array}$	41 16 14 8	$\begin{array}{llll}39 & 37 & 6 \\ 91 & 45 & \end{array}$	$\begin{array}{lll} 37 & 58 & 16 \end{array}$
	Sun	E.	$\begin{array}{llll}95 & 0 & 17\end{array}$	$93 \quad 2245$	914524	$\begin{array}{llll}90 & 8 & 16\end{array}$
17	Pollux		$\begin{array}{llll}72 & 22 & 17\end{array}$	$74 \quad 541$	$\begin{array}{llll}75 & 48 & 53\end{array}$	7731154
	Jupiter	W.	$\begin{array}{llll}69 & 45 & 46\end{array}$	$\begin{array}{llll}71 & 30 & 19 \\ 39 & 5 & 49\end{array}$	$\begin{array}{llll}73 & 14 & 40\end{array}$	$\begin{array}{llll}74 & 58 & 49 \\ 40 & 32\end{array}$
	Saturn	W.	$37 \quad 221$	$39 \quad 5 \quad 42$	404913	423232

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month	Star's Na and Position		Midnight.	$X V^{\text {h }}$.	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
9	Jupiter	E.	$38^{\circ} 31{ }^{\prime \prime}$	$36^{\circ} 444^{\prime \prime}$	345730	$33^{\circ} 10{ }^{\prime} 11{ }^{\prime \prime}$
	Saturn	E.	702056	683445	$66 \quad 4818$	$\begin{array}{llll}65 & 1 & 37\end{array}$
	Regulus	E.	72 13 12	$70 \quad 27 \quad 0$	$68 \quad 4033$	665351
10	a Pegasi	W.	$\begin{array}{llll}96 & 46 & 47\end{array}$	$98 \quad 3028$	1001415	101588
	a Arietis	W.	$\begin{array}{llll}54 & 13 & 9\end{array}$	$56 \quad 0 \quad 34$	574811	59 35
	Aldebaran	W.	$\begin{array}{llll}23 & 50 & 18\end{array}$	252820	$27 \quad 742$	284811
	Jupiter	E.	241026	222158	203321	184438
	Saturn	E.	$56 \quad 453$	$\begin{array}{llll}54 & 16 & 58\end{array}$	522853	504039
	Regulus	E.	$\begin{array}{llll}57 & 57 & 4\end{array}$	$\begin{array}{llll}56 & 9 & 8\end{array}$	54213	523248
11	a Arietis	W.	$68 \quad 37 \quad 3$	702535	$\begin{array}{llll}72 & 14 & 11\end{array}$	$\begin{array}{llll}74 & 2 & 52\end{array}$
	Aldebaran	W.	372228	$39 \quad 6 \quad 59$	405154	42379
	Saturn	E.	413748	394858	$38 \quad 006$	
	Regulus	E.	432948	414056	$3952 \quad 1$	$\begin{array}{llll}38 & 3 & 4\end{array}$
	Mars	E.	1043014	1024634	101249	$\begin{array}{llll}99 & 19 & 1\end{array}$
12	a Arietis	W.	$\begin{array}{lll}83 & 6 & 42\end{array}$	$84 \quad 55 \quad 28$	$86 \quad 44 \quad 12$	$\begin{array}{llll}88 & 32 & 54\end{array}$
	Aldebaran	W.	$51 \quad 27 \quad 2$	531329	55001	564638
	Saturn	E.	$27 \quad 6 \quad 47$	$\begin{array}{llll}25 & 18 & 3\end{array}$	$23 \quad 2925$	214055
	Regulus	E.	28587	$27 \quad 9 \quad 12$	$25 \quad 2022$	233136
	Spica	E.	$83 \quad 0 \quad 39$	811137	$\begin{array}{llll}79 & 22 & 37\end{array}$	$\begin{array}{ll}77 & 33 \\ 39\end{array}$
	Mars	E.	$90 \quad 3936$	$88 \quad 5543$	871152	$85 \quad 284$
13	a Arietis	W.	$97 \quad 35 \quad 26$	$\begin{array}{llll}99 & 23 & 41\end{array}$	1011148	1025949
	Aldebaran	W.	$65 \quad 40 \quad 4$	$67 \quad 2642$	$\begin{array}{llll}69 & 1317\end{array}$	705948
	Spica	E.	682952	664122	64530	$\begin{array}{llll}63 & 4 & 45\end{array}$
	Mars	E.	$76 \quad 50 \quad 5$	$75 \quad 6 \quad 46$	$\begin{array}{llll}73 & 23 & 35\end{array}$	714030
	Sun	E.	$128 \quad 643$	126268	1244537	$123 \quad 513$
14	Aldebaran	W.	$79 \quad 5054$	813645	$83 \quad 2228$	$\begin{array}{llll}85 & 8 & 2\end{array}$
	Pollux	W.	371729	$39 \quad 4 \quad 3$	$40 \quad 5033$	$42 \quad 3656$
	Jupiter	W.	$\begin{array}{llll}34 & 14 & 32\end{array}$	$\begin{array}{llll}36 & 2 & 46\end{array}$	375051	393846
	Spica	E.	$54 \quad 5 \quad 32$	$\begin{array}{llll}52 & 18 & 9\end{array}$	$\begin{array}{llll}50 & 30 & 57\end{array}$	484355
	Mars	E.	$63 \quad 722$	$\begin{array}{llll}61 & 25 & 14\end{array}$	594318	$58 \quad 133$
	Sun	E.	1144457	$113 \quad 518$	1112549	1094629
15	Aldebaran	W.	$\begin{array}{llll}93 & 53 & 19\end{array}$	$\begin{array}{llll}95 & 37 & 49\end{array}$	$97 \quad 22 \quad 8$	$\begin{array}{llll}99 & 6 & 15\end{array}$
	Pollux	W.	51270	$\begin{array}{llll}53 & 12 & 35\end{array}$	$\begin{array}{llll}54 & 57 & 59\end{array}$	$\begin{array}{llll}56 & 43 & 14\end{array}$
	Jupiter	W.	$48 \quad 35 \quad 50$	502243	$52 \quad 9 \quad 25$	$\begin{array}{llll}53 & 55 & 55\end{array}$
	Spica	E.	395138	$\begin{array}{llll}38 & 5 & 46\end{array}$	$\begin{array}{llll}36 & 20 & 8\end{array}$	343443
	Mars	E.	$4935 \quad 56$	$47 \quad 55 \quad 29$	$\begin{array}{llll}46 & 15 & 17\end{array}$	$4435 \quad 20$
	Sun	E.	1013220	99 $54 \quad 2$	$98 \quad 15 \quad 56$	96381
16	Pollux	W.	$65 \quad 2647$	$67 \quad 10 \quad 57$	685455	703842
	Jupiter	W.	$62 \quad 4534$	643055	$\begin{array}{llll}66 & 16\end{array}$	$\begin{array}{llll}68 & 1\end{array}$
	Saturn	W.	$\begin{array}{llll}30 & 25 & 31\end{array}$	$\begin{array}{llll}32 & 9 & 53\end{array}$	33546	$\begin{array}{llll}35 & 38 & 9\end{array}$
	Regulus	W.	282543	$\begin{array}{llll}30 & 10 & 5\end{array}$	$\begin{array}{llll}31 & 54 & 17\end{array}$	$\begin{array}{llll}33 & 3817\end{array}$
	Mars	E.	361944	344132	$\begin{array}{llll}33 & 3\end{array}$	312611
	Sun	E.	883119	865434	85181	834140
17	Pollux	W.	79 14 42	$\begin{array}{llll}80 & 57 & 19\end{array}$	823944	842158
	Jupiter	W.	764246	$78 \quad 2632$	80106	815328
	Satura	W.	$44 \quad 15 \quad 40$	$45 \quad 5837$	474123	492358

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
17	Regulus Mars Sun	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	35 22 29 49 6 82 5 31	$\begin{array}{rrrr} 37 & 5 & 46 \\ 28 & 12 & 26 \\ 80 & 29 & 34 \end{array}$	$\begin{array}{llll} 38 & 49 & 113 \\ 26 & 36 & 14 \\ 78 & 53 & 50 \end{array}$	$\begin{array}{rrr} 40 & 32 & 28 \\ 40^{\prime \prime} & 0 & 33 \\ 77 & 18 & 17 \end{array}$
18	Pollux Jupiter Saturn Regulus Sun	W. W. W. W. E.	86 3 59 83 36 38 51 6 21 49 5 52 69 23 35	87 45 49 85 19 36 52 48 33 50 47 59 67 49 15	89 27 28 87 2 22 54 30 33 52 29 53 66 15 6	91 8 54 88 44 57 56 12 22 54 11 36 64 41 10
19	Pollux Jupiter Saturn Regulus Sun	W. W. W. W. E.	$\begin{array}{lll} 99 & 33 & 10 \\ 97 & 14 & 58 \\ 64 & 38 & 39 \\ 62 & 37 & 19 \\ 56 & 54 & 27 \end{array}$	$\begin{array}{rrr} 101 & 13 & 26 \\ 98 & 56 & 24 \\ 66 & 19 & 21 \\ 64 & 17 & 53 \\ 55 & 21 & 42 \end{array}$	$\begin{array}{rrr} 102 & 53 & 31 \\ 100 & 37 & 39 \\ 67 & 59 & 52 \\ 65 & 58 & 16 \\ 53 & 49 & 9 \end{array}$	$\begin{array}{rrr} 104 & 33 & 24 \\ 102 & 18 & 42 \\ 69 & 40 & 11 \\ 67 & 38 & 28 \\ 52 & 16 & 48 \end{array}$
20	Jupiter Saturn Regulus Spica Sun	W. W. W. W. E.	$\begin{array}{rrr} 110 & 41 & 9 \\ 77 & 59 & 1 \\ 75 & 56 & 38 \\ 22 & 0 & 58 \\ 44 & 38 & 2 \end{array}$	$\begin{array}{rrr} 112 & 21 & 6 \\ 79 & 38 & 14 \\ 77 & 35 & 42 \\ 23 & 39 & 19 \\ 43 & 6 & 53 \end{array}$	$\begin{array}{rrr} 114 & 0 & 50 \\ 81 & 17 & 16 \\ 79 & 14 & 35 \\ 25 & 17 & 35 \\ 41 & 35 & 56 \end{array}$	$\begin{array}{rrr} 115 & 40 & 24 \\ 82 & 56 & 7 \\ 80 & 53 & 18 \\ 26 & 55 & 44 \\ 40 & 5 & 11 \end{array}$
21	Saturn Regulus Spica Sun	W. W. W. E.	$\begin{array}{lrrr}91 & 7 & 37 \\ 89 & 4 & 2 \\ 35 & 4 & 30 \\ 32 & 34 & 38\end{array}$	92 45 22 90 41 37 36 41 48 31 5 11	$\begin{array}{lll} 94 & 22 & 55 \\ 92 & 19 & 2 \\ 38 & 18 & 57 \\ 29 & 35 & 57 \end{array}$	$\begin{array}{rrr} 96 & 0 & 18 \\ 93 & 56 & 15 \\ 39 & 55 & 56 \\ 28 & 6 & 58 \end{array}$
26	Sun a Pegasi a Arietis	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 25 & 22 & 26 \\ 54 & 53 & 23 \\ 96 & 12 & 17 \end{array}$	$\begin{array}{lll} 26 & 44 & 35 \\ 53 & 28 & 19 \\ 94 & 42 & 8 \end{array}$	$\begin{array}{rrr} 28 & 6 & 38 \\ 52 & 3 & 35 \\ 93 & 12 & 7 \end{array}$	$\begin{array}{lll} 29 & 28 & 36 \\ 50 & 39 & 12 \\ 91 & 42 & 14 \end{array}$
27	Sun a Pegasi a Arietis	W. E. E.	$\begin{array}{llr} 36 & 17 & 9 \\ 43 & 43 & 19 \\ 84 & 14 & 46 \end{array}$	$\begin{array}{lll} 37 & 38 & 36 \\ 42 & 21 & 30 \\ 82 & 45 & 38 \end{array}$	$\begin{array}{rrr} 38 & 59 & 58 \\ 41 & 0 & 13 \\ 81 & 16 & 37 \end{array}$	$\begin{array}{lll} 40 & 21 & 15 \\ 39 & 39 & 29 \\ 79 & 47 & 41 \end{array}$
28	Sun a Pegasi a Arietis Aldebaran	W. E. E. E.	$\begin{array}{rrr} 47 & 6 & 40 \\ 33 & 6 & 3 \\ 72 & 24 & 23 \\ 104 & 29 & 24 \end{array}$	$\begin{array}{rrr} 48 & 27 & 35 \\ 31 & 49 & 53 \\ 70 & 55 & 57 \\ 103 & 2 & 6 \end{array}$	$\begin{array}{rrr} 4948 & 27 \\ 3034 & 47 \\ 6927 & 34 \\ 10134 & 50 \end{array}$	$\begin{array}{rrr} 51 & 9 & 17 \\ 29 & 20 & 51 \\ 67 & 59 & 15 \\ 100 & 7 & 36 \end{array}$
29	Sun a Aquilæ a Arietis Aldebaran	W. W. E. E.	$\begin{array}{lll} 57 & 53 & 7 \\ 43 & 14 & 11 \\ 60 & 38 & 12 \\ 92 & 51 & 41 \end{array}$	$\begin{array}{lll} 59 & 13 & 53 \\ 44 & 14 & 51 \\ 59 & 10 & 3 \\ 91 & 24 & 31 \end{array}$	$\begin{array}{lll} 60 & 34 & 39 \\ 45 & 16 & 45 \\ 57 & 41 & 54 \\ 89 & 57 & 21 \end{array}$	$\begin{array}{lll} 61 & 55 & 27 \\ 46 & 19 & 48 \\ 56 & 13 & 45 \\ 88 & 30 & 9 \end{array}$
30	Sun a Aquilæ a Arietis Aldebaran	W. W. E. E.	68 40 4 51 49 54 48 52 42 81 13 41	70 1 11 52 58 30 47 24 23 79 46 14	$\begin{array}{rrr} 71 & 22 & 23 \\ 54 & 7 & 52 \\ 45 & 56 & 0 \\ 78 & 18 & 44 \end{array}$	$\begin{array}{lll} 72 & 43 & 41 \\ 55 & 17 & 56 \\ 44 & 27 & 34 \\ 76 & 51 & 9 \end{array}$
31	Sun a Aquilæ a Arietis Aldebaran Jupiter	W. W. E. E. E.	$\begin{array}{rrr} 79 & 31 & 55 \\ 61 & 17 & 54 \\ 37 & 4 & 16 \\ 69 & 31 & 52 \\ 112 & 43 & 4 \end{array}$	$\begin{array}{rrr} 80 & 53 & 59 \\ 62 & 31 & 38 \\ 35 & 35 & 21 \\ 68 & 3 & 41 \\ 111 & 12 & 19 \end{array}$	$\begin{array}{rrr} 82 & 16 & 12 \\ 63 & 45 & 53 \\ 34 & 6 & 20 \\ 66 & 35 & 23 \\ 109 & 41 & 25 \end{array}$	$\begin{array}{rrr} 83 & 38 & 36 \\ 65 & 0 & 38 \\ 32 & 37 & 14 \\ 65 & 6 & 57 \\ 108 & 10 & 21 \end{array}$

GREENWICH MEAN TLME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIIT.	XXI ${ }^{\text {b }}$
17	Regulus Mars Sun	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	42 15 32 23 25 27 75 42 56	$\begin{array}{lll} 43^{\circ} & 58 & 8^{\prime \prime} \\ 21 & 51 & 1 \\ 74 & 7 & 48 \end{array}$	45 41 11 20 17 21 72 32 52	$\begin{array}{llr} 47 & 23 & 35 \\ 18 & 44 & 36 \\ 70 & 58 & 7 \end{array}$
18	Pollux Jupiter Saturn Regulus Sun	W. W. W. W. E.	$\begin{array}{rrr} 92 & 50 & 9 \\ 90 & 27 & 20 \\ 57 & 54 & 0 \\ 55 & 53 & 8 \\ 63 & 7 & 26 \end{array}$	94 31 12 92 9 32 59 35 27 57 34 28 61 33 53	96 12 3 93 51 32 61 16 42 59 15 37 60 0 33	97 52 42 95 33 21 62 57 46 60 56 34 58 27 24
19	Pollux Jupiter Saturn Regulus Sun	W. W. W. W. E.	$\begin{array}{rrr} 106 & 13 & 5 \\ 103 & 59 & 34 \\ 71 & 20 & 19 \\ 69 & 18 & 28 \\ 50 & 44 & 39 \end{array}$	107 52 34 105 40 15 73 0 16 70 58 17 49 12 41	$\begin{array}{rrr} 109 & 31 & 52 \\ 107 & 20 & 44 \\ 74 & 40 & 2 \\ 72 & 37 & 55 \\ 47 & 40 & 56 \end{array}$	111 10 58 109 1 2 76 19 37 74 17 22 46 9 23
20	Jupiter Saturn Regulus Spica Sun	W. W. W. W. E.	$\begin{array}{r} 1171947 \\ 843447 \\ 823149 \\ 283345 \\ 3834 \end{array}$	$\begin{array}{rrr} 118 & 58 & 59 \\ 86 & 13 & 16 \\ 84 & 10 & 9 \\ 30 & 11 & 39 \\ 37 & 4 & 19 \end{array}$	$\begin{array}{rrr} 120 & 37 & 59 \\ 87 & 51 & 34 \\ 85 & 48 & 17 \\ 31 & 49 & 25 \\ 35 & 34 & 12 \end{array}$	$\begin{array}{rrr} 122 & 16 & 49 \\ 89 & 29 & 41 \\ 87 & 26 & 15 \\ 33 & 27 & 2 \\ 34 & 4 & 18 \end{array}$
21	Saturn Regulus Spica Sun	W. W. W. E.	97 37 30 95 33 17 41 32 45 26 38 14	99 14 31 97 10 8 43 9 24 25 9 46	100 51 21 98 46 48 44 45 53 23 41 34	$\begin{array}{rrr} 102 & 27 & 59 \\ 100 & 23 & 17 \\ 46 & 22 & 11 \\ 22 & 13 & 39 \end{array}$
26	Sun a Pegasi a Arietis	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 30 & 50 & 29 \\ 49 & 15 & 12 \\ 90 & 12 & 29 \end{array}$	32 12 17 47 51 35 88 42 52	$\begin{array}{lll} 33 & 34 & 0 \\ 46 & 28 & 23 \\ 87 & 13 & 23 \end{array}$	$\begin{array}{lrr} 34 & 55 & 37 \\ 45 & 5 & 37 \\ 85 & 44 & 1 \end{array}$
27	Sun ${ }_{a}$ Pegasi a Arietis	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 41 & 42 & 28 \\ 38 & 19 & 21 \\ 78 & 18 & 51 \end{array}$	$\begin{array}{rrr} 43 & 3 & 37 \\ 36 & 59 & 53 \\ 76 & 50 & 7 \end{array}$	$\begin{array}{lll} 44 & 24 & 41 \\ 35 & 41 & 8 \\ 75 & 21 & 27 \end{array}$	$\begin{array}{llr} 45 & 45 & 42 \\ 34 & 23 & 9 \\ 73 & 52 & 53 \end{array}$
28	Sun a Pegasi a Arietis Aldebaran	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 52 & 30 & 5 \\ 28 & 8 & 15 \\ 66 & 30 & 58 \\ 98 & 40 & 23 \end{array}$	$\begin{array}{rrr} 53 & 50 & 51 \\ 26 & 57 & 8 \\ 65 & 2 & 44 \\ 97 & 13 & 12 \end{array}$	$\begin{array}{llll} 55 & 11 & 37 \\ 25 & 47 & 42 \\ 63 & 34 & 32 \\ 95 & 46 & 1 \end{array}$	$\begin{array}{rrr} 56 & 32 & 22 \\ 24 & 40 & 11 \\ 62 & 6 & 21 \\ 94 & 18 & 51 \end{array}$
29	Sun a Aquilæ a Arietis Aldebaran	W. W. E. E.	63 16 17 47 23 55 54 45 36 87 2 56	$\begin{array}{rrr} 64 & 37 & 9 \\ 48 & 29 & 3 \\ 53 & 17 & 25 \\ 85 & 35 & 41 \end{array}$	$\begin{array}{rrr} 65 & 58 & 4 \\ 49 & 35 & 7 \\ 51 & 49 & 13 \\ 84 & 8 & 24 \end{array}$	$\begin{array}{llr} 67 & 19 & 2 \\ 50 & 42 & 5 \\ 50 & 20 & 59 \\ 82 & 41 & 4 \end{array}$
30	Sun a Aquilæ a Arietis Aldebaran	W. W. E. E.	$\begin{array}{rrr} 74 & 5 & 5 \\ 56 & 28 & 41 \\ 42 & 59 & 4 \\ 75 & 23 & 29 \end{array}$	75 26 36 57 40 6 41 30 29 73 55 44	76 48 14 58 52 7 40 1 50 72 27 53	$\begin{array}{rrr} 78 & 10 & 0 \\ 60 & 4 & 43 \\ 38 & 33 & 5 \\ 70 & 59 & 55 \end{array}$
31	Sun a Aquilæ a Arietis Aldebaran Jupiter	W. W. E. E. E.	$\begin{array}{rrr} 85 & 1 & 11 \\ 66 & 15 & 53 \\ 31 & 8 & 3 \\ 63 & 38 & 23 \\ 106 & 39 & 7 \end{array}$	$\begin{array}{rrr} 86 & 23 & 57 \\ 67 & 31 & 36 \\ 29 & 38 & 46 \\ 62 & 9 & 41 \\ 105 & 7 & 41 \end{array}$	$\begin{array}{rrr} 87 & 46 & 56 \\ 68 & 47 & 47 \\ 28 & 9 & 25 \\ 60 & 40 & 50 \\ 103 & 36 & 2 \end{array}$	$\begin{array}{rrr} 89 & 10 & 7 \\ 70 & 4 & 25 \\ 26 & 39 & 59 \\ 59 & 11 & 50 \\ 102 & 4 & 9 \end{array}$

MARCM, 1859.						APIELC, 1859.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geocentrio.					Day of the Month.	GEOCENTRIC.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	N. $\begin{array}{r}\circ \\ 8 \\ 8 \\ 8\end{array}$	14 31 49		h. 2 2 2 2	$\begin{aligned} & \mathrm{m} . \\ & 43 \cdot 1 \\ & 41 \cdot 9 \\ & 40 \cdot 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	N. $\begin{array}{r}\circ \\ 16 \\ 16\end{array}$	1 13 26 39	17 7 25 34	h. 2 2 2	m. 6.3 5•1 $4 \cdot 0$
4	9	5		2	$39 \cdot 5$	4	16	52	34	2	$2 \cdot 9$
5	9	22	45	2	38.3	5	17	5		2	$1 \cdot 8$
6	9	39		2	$37 \cdot 1$	6	17	18	4	2	$0 \cdot 6$
7	9	56	7	2	$35 \cdot 8$	7	17	30	35	1	$59 \cdot 5$
8	10	12	39	2	$34 \cdot 6$	8	17	42	56	1	$58 \cdot 4$
9		29	4	2	$33 \cdot 4$	9	17	55	8	1	$57 \cdot 3$
10	10	45	23	2	$32 \cdot 2$	10	18	7	9	1	$56 \cdot 2$
11	11	1	36	2	$31 \cdot 0$	11	18	19	0	1	$55 \cdot 0$
12	11	17	41	2	$29 \cdot 8$	12	18	30	41	1	$53 \cdot 9$
13	11	33	40	2	$28 \cdot 6$	13	18	42	12	1	$52 \cdot 8$
14	11	49	32	2	$27 \cdot 4$	14	18	53	32	1	$51 \cdot 7$
15	12	5	17	2	$26 \cdot 2$	15	19	4	42	1	$50 \cdot 7$
16	12	20	55	2	$25 \cdot 0$	16		15	41	1	$49 \cdot 6$
17	12	36	25	2	$23 \cdot 8$	17		26	30	1	$48 \cdot 5$
18	12	51	48	2	$22 \cdot 6$	18	19	37	8	1	$47 \cdot 4$
19	13	7	4	2	$21 \cdot 4$	19		47	35	1	46•3
20	13	22	11	2	$20 \cdot 3$	20	19	57	52	1	$45 \cdot 2$
21	13	37	11	2	$19 \cdot 1$	21	20	7	58	1	$44 \cdot 1$
22	13	52	4	2	$17 \cdot 9$	22		17	52	1	$43 \cdot 1$
23	14	6	48	2	$16 \cdot 7$	23	20	27	36	1	$42 \cdot 0$
24	14	21	24	2	$15 \cdot 5$	24	20	37	8	1	$40 \cdot 9$
25	14	35	51	2	$14 \cdot 4$	25		46	29	1	$39 \cdot 9$
26	14	50	11	2	$13 \cdot 2$	26	20	55	39	1	$38 \cdot 8$
27	15	4	22	2	$12 \cdot 0$	27	21	4	38	1	$37 \cdot 8$
28	15		25	2	$10 \cdot 9$	28		13	25	1	$36 \cdot 7$
29	15	32	18	2	$9 \cdot 7$	29		22	1	1	$35 \cdot 6$
30	15	46	4	2	$8 \cdot 6$	30	21	30	25	1	$34 \cdot 6$
31	15	59	40	2	$7 \cdot 4$						
32	N. 16	13	7		$6 \cdot 3$	31	N. 21	38	38	1	$33 \cdot 5$

JULY, 1859.						AUGUST, 1859.					
mean time.						mean time.					
Day of the Month.	geocentric.					Day of the Month.	geocentric.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1	N. 23	35	" 2		$\begin{aligned} & \mathrm{m} . \\ & 30 \cdot 3 \end{aligned}$	1	N. $\stackrel{\circ}{0}^{0}$	$\dot{4}$	$\stackrel{11}{1}$	${ }_{23}$	$\frac{\mathrm{m}}{52 \cdot 0}$
2	23	30	45	0	$29 \cdot 2$	2	19	53	31	23	$50 \cdot 7$
3		26	16	0	$28 \cdot 1$	3	19	44	3	23	$49 \cdot 4$
4	23	21	37	0	$27 \cdot 0$	4	19	34	27	23	$48 \cdot 1$
5	23	16	47	0	$25 \cdot 8$	5	19	24	43	23	$46 \cdot 8$
6		11	46	0	$24 \cdot 7$	6	19	14	51	23	$45 \cdot 4$
7	23	6	35	0	$23 \cdot 6$		19	4	51	23.	44 1
8	23	1	13	0	$22 \cdot 4$	8	18	54	43	23	$42 \cdot 8$
9		55	40	0	$21 \cdot 3$	9	18	44	28	23	$41 \cdot 5$
10	22	49	57	0	$20 \cdot 1$	10	18	34	6	23	$40 \cdot 1$
11	22	44	3	0	$19 \cdot 0$	11	18	23	36	23	$39 \cdot 8$
12		37	59	0	$17 \cdot 8$	12	18	12	58	23	$37 \cdot 4$
13	22	31	45	0	$16 \cdot 6$	13	18	2	14	23	$36 \cdot 0$
14	22	25	21	0	$15 \cdot 4$	14	17	51	22	23	$34 \cdot 6$
15		18	47	0	$14 \cdot 3$	15	17	40	23	23	$33 \cdot 3$
16	22	12	2	0	$13 \cdot 1$	16	17	29	18	23	$31 \cdot 9$
17	22	5	8	0	$11 \cdot 9$	17	17	18	5	23	$30 \cdot 5$
18	21	58	4	0	$10 \cdot 7$	18	17	6	46	23	$29 \cdot 1$
19	21	50	50	0	$9 \cdot 5$	19	16	55	20	23	$27 \cdot 7$
20	21	43	27	0	$8 \cdot 3$	20	16	43	47	23	$26 \cdot 3$
21		35	54	0	$7 \cdot 1$	21	16	32	8	23	$24 \cdot 9$
22		28	12	0	$5 \cdot 8$	22	16	20	23	23	$23 \cdot 5$
23	21	20	20	0	$4 \cdot 6$	23	16	8	31	23	$22 \cdot 0$
24		12	20	,	$3 \cdot 4$	24	15	56	34	23	$20 \cdot 6$
25	21	4	9		$2 \cdot 1$	25	15	44	30	23	19.2
26		55	50		59:9, ${ }_{5}^{0 \cdot 9}$	26	15	32	20	23	$17 \cdot 7$
27		47	22	23	$58 \cdot 4$	27	15	20	4	23	$16 \cdot 3$
28	20	38	45	23	$57 \cdot 1$	28	15	7	43	23	$14 \cdot 9$
29	20	29	59	23	$55 \cdot 8$	29	14	55	16	23	$13 \cdot 4$
30	20	21	5	23	$54 \cdot 6$	30	14	42	44	23	$11 \cdot 9$
31	20	12	2	23	$53 \cdot 3$	31	14	30	6	23	$10 \cdot 5$
32	N. 20	2	51		$52 \cdot 0$	32	N. 14	17	23	23	$9 \cdot 0$

JANUARY, 1859.						FEBEEALEY, 1859.						
MEAN TIME.						MEAN TIME.						
Day of the Month.	grocentric.					Day of the Month.	geocentrio.					
	Apparent Declination.			Meridian Passage.				linati			idian	
	Noon.						Noom.			sage.		
1	N. 21	53	37				1	N. 21	44	48	h_{7}	
2	21	53	2		$0 \cdot 2$	2	21	44	55	7	$50 \cdot 4$	
3	21	52	28		55.8	3	21	45	3	7	$46 \cdot 5$	
4			54		$51 \cdot 5$	4	21	45		7		
5	21	51	22	9	$47 \cdot 1$	5	21	45	24	7	$38 \cdot 6$	
6		50	50			6	21	45		7	$34: 7$	
7	21	50	20	9	$38 \cdot 4$	7	21	45	52	7	$30 \cdot 8$	
8	21	49	51	9	$34 \cdot 1$	8	21	46	9	7	$26 \cdot 9$	
9	21	49	22		$29 \cdot 8$	9	21	46	27	7	$23 \cdot 0$	
10	21	48	55	9	25.5	10	21	46	46	7	$19 \cdot 2$	
11	21	48	29	9	$21 \cdot 2$	11	21	47	8	7	$15^{\prime} 3$	
12	21	48	4	9	$17 \cdot 0$	12	21	47	30	7	11.5	
13.	21	47	41	9	$12 \cdot 7$	13	21	47	55	7	$7 \cdot 6$	
14	21	47	19	9	$8 \cdot 5$	14	21	48	20	7	$3 \cdot 8$	
15	21	46	58	9	$4 \cdot 3$	15	21	48	48	7	$0 \cdot 0$	
16	21	46	38	9	0.0	16	21	49	17	6	$56 \cdot 2$	
17	21	46	20	8	$55 \cdot 8$	17	21	49	47	6	$52 \cdot 4$	
18	21	46	3		$51 \cdot 6$	18	21	50	19	6	$48 \cdot 7$	
19		45	48	8	$47 \cdot 5$	19	21	50	52	6	$44 \cdot 9$	
20	21	45	34		$43 \cdot 3$	20	21	51	27	6	$41 \cdot 2$	
21		45	22		$39 \cdot 1$	21	21	52	3	6	$37 \cdot 5$	
22	21	45	11	8	$35 \cdot 0$	22	21	52	40	6	33.8	
23	21	45	1	8	$30 \cdot 9$	23	21	53	19	6	$30 \cdot 1$	
24		44	53		$26 \cdot 8$	24	21	53	59	6	26.5	
25		44	47		$22 \cdot 7$	25	21	54	40	6	$22 \cdot 8$	
26	21	44	42	8	$18 \cdot 6$	26	21	55		6	$19 \cdot 2$	
27	21	44	39		$14 \cdot 5$	27 28	21	56 56	7 52	${ }_{6}^{6}$	$15 \cdot 6$ 11.9	
28		44	38		$10 \cdot 5$							
29		44	38	8	$6 \cdot 4$	29	N. 21	57	38	6	$8 \cdot 3$	
30			40		$2 \cdot 4$							
31		44	43		$58 \cdot 4$							
32	N. 21	44	48	7	$54 \cdot 4$							

MAItCH, 1850.						APIELC, 1859.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geooentric.					Day of the Month.	geocentrio.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1	N ${ }^{\circ}$	57	38				N $\stackrel{\circ}{2}$	${ }^{1} 8$		h.	m.
2	N. 21	57			$8 \cdot 3$ 4.7	1	N. 22	28			$22 \cdot 0$ $18 \cdot 8$
3	21	59		6	$1 \cdot 1$	3	22	30	26	4	$15 \cdot 5$
4	22	0		5	$57 \cdot 6$	4	22	31	32	4	$12 \cdot 3$
5		0	54	5	$54 \cdot 0$	5	22	32	38	4	$9 \cdot 0$
6		1	46	5	$50 \cdot 5$	6	22	33	44	4	$5 \cdot 8$
7	22	2		5	$46 \cdot 9$	7	22	34	49	4	$2 \cdot 5$
8	22	3	33	5	$43 \cdot 4$	8	22	35	55	3	$59 \cdot 3$
9	22	4	27	5	$39 \cdot 9$	9	22	37	0	3	$56 \cdot 1$
10	22	5	23	5	$36 \cdot 4$	10	22	38	5	3	$52 \cdot 9$
11	22	6	19	5	$32 \cdot 9$	11	22	39	10	3	$49 \cdot 7$
12	22	7	16	5	$29 \cdot 4$	12	22	40	15	3	$46 \cdot 5$
13	22	8	14	5	$26 \cdot 0$	13	22	41	19	3	$43 \cdot 3$
14	22	9	13	5	$22 \cdot 5$	14	22	42	23	3	$40 \cdot 1$
15	22	10	12	5	$19 \cdot 1$	15	22	43	26		$37 \cdot 0$
16	22	11	12	5	$15 \cdot 6$	16	22		29	3	$33 \cdot 8$
17	22	12	13	5	$12 \cdot 2$	17	22	45	32	3	$30 \cdot 7$
18	22	13	14	5	$8 \cdot 8$	18	22	46	34	3	$27 \cdot 5$
19	22	14	16	5	5-4	19	22		36		$24 \cdot 4$
20	22	15	18	5	$2 \cdot 0$	20	22	48	37	3	$21 \cdot 2$
21	22	16	21	4	$58 \cdot 6$	21	22	49	38	3	$18 \cdot 1$
22	22	17	24	4	$55 \cdot 2$	22	22		38		$15 \cdot 0$
23	22	18	28	4	$51 \cdot 9$	23	22	51	38	3	$11 \cdot 9$
24	22	19	32	4	$48 \cdot 5$	24	22	52	36	3	$8 \cdot 7$
25	22	20	36	4	$45 \cdot 2$	25	22	53	35	3	5•6
26	22	21	41	4	$41 \cdot 9$	26	22	54	32	3	$2 \cdot 5$
27	22	22	46	4	$38 \cdot 5$	27	22	55	29	2	$59 \cdot 4$
28	22			4	$35 \cdot 2$	28	22	56	25	2	$56 \cdot 3$
29	22	24	57		$31 \cdot 9$	29	22,	57	20	2	$53 \cdot 3$
30	22	26			$28 \cdot 6$	30	22	58	14	2	$50 \cdot 2$
31						31	$\text { N. } 22$		8		$47 \cdot 1$
32	N. 22	28			$22 \cdot 0$	31			8		$47 \cdot 1$

MAY, 1859.						JUNE, 1859.						
mean time.						mean time.						
Day of the Month.	geocentric.					Day of the Month.	geocentric.					
	Apparent Declination.			Meridian Passage			Apparent Declination.			Meridian		
	Noon.					Noon.	Passage.					
	N. 22	59	${ }_{8}^{\prime \prime}$		m . $47 \cdot 1$		1	N. 23	18	10	h.	$\frac{\mathrm{m}}{13 \cdot 8}$
2	23	0	1	2	$44 \cdot 0$	2	23	18	27		10.8	
3	23	0	53	2	$41 \cdot 0$	3		18	43	1	$7 \cdot 8$	
4	23	1	44	2	$37 \cdot 9$	4		18	57	1	$4 \cdot 9$	
5	23	2	34	2	$34 \cdot 9$	5	23 .	19	10	1	$1 \cdot 9$	
6	23	3	23	2	$31 \cdot 8$	6		19	22	0	$58 \cdot 9$	
7	23	4	11	2	$28 \cdot 8$	7		19	32	0	56.0	
8	23	4	58	2	$25 \cdot 7$	8	23	19	41	0	$53 \cdot 0$	
9	23	5	45	2	$22 \cdot 7$	9	23	19	49	0	$50 \cdot 1$	
10	23	6	30	2	$19 \cdot 7$	10	23	19	55	0	$47 \cdot 1$	
11	23	7	14	2	$16 \cdot 6$	11	23	19	59	0	$44 \cdot 2$	
12	23	7	57	2	$13 \cdot 6$	12		20	2	0	$41 \cdot 2$	
13	23	8	39	2	$10 \cdot 6$	13		20	4	0	$38 \cdot 3$	
14	23	9	20	2	$7 \cdot 5$	14		20	5	0	35.3	
15	23	9	59	2	$4 \cdot 5$	15		20	4	0	$32 \cdot 4$	
16	23		38	2	$1 \cdot 5$	16		20	1	0	$29 \cdot 5$	
17	23	11	16	1	$58 \cdot 5$	17		19	57	0	$26 \cdot 5$	
18	23	11	52	1	$55 \cdot 5$	18		19	52	0	$23 \cdot 6$	
19	23	12	27	1	$52 \cdot 5$	19		19	45	0	$20 \cdot 6$	
20	23	13	1.	1	$49 \cdot 5$	20		19	37	0	$17 \cdot 7$	
21	23	13	34	1	$46 \cdot 5$	21		19	28	0	$14 \cdot 7$	
22	23	14	5	1	$43 \cdot 5$	22		19	17	0	$11 \cdot 8$	
23	23	14	35	1	$40 \cdot 5$	23		19	4	0	$8 \cdot 8$	
24	23	15	4		$37 \cdot 5$	24		18	50	0	$5 \cdot 9$	
25	23	15	32	1	$34 \cdot 6$	25		18	35		$2 \cdot 9$	
26	23	15	59	1	$31 \cdot 6$	26		18	18		50.0 5	
27	23	16	24	1	$28 \cdot 6$	27		18	0		54-1	
28	23	16	48	1	$25 \cdot 6$	28	23	17	41	23	51.2	
29	23	17	10	1	$22 \cdot 7$	29		17	20	23	$48 \cdot 2$	
30	23	17	32	1	$19 \cdot 7$	30		16	57	23	$45 \cdot 3$	
31			52			31	N. 23	16		23	42•3	
32	N. 23	18	10		$13 \cdot 8$							

JULY, 1859.						AUGUST, 1859.						
mean time.						MEAN TIME.						
Day of the Month.	geocentric.					Day of the Month.	geocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian		
	Noon.					Noon.	Passage.					
1	N. $2{ }_{3}$	16	$\stackrel{\prime \prime}{3}$		$\mathrm{m}_{42 \cdot 3}$		1	N. 22	53	${ }_{36}$	${ }_{22}$	$\frac{\mathrm{m}}{10 \cdot 1}$
2	23	16	8	23	$39 \cdot 4$	2	22	52	34	22	$7 \cdot 1$	
3	23	15	42	23	$36 \cdot 4$	3	22	51	30	22	$4 \cdot 1$	
4	23	15	14	23	$33 \cdot 5$	4	22	50	25	22	$1 \cdot 1$	
5	23	14	44	23	$30 \cdot 5$	5	22	49	20	21	$58 \cdot 0$	
6		14	14	23	$27 \cdot 6$	6	22	48	14	21	$55 \cdot 0$	
7	23	13	42	23	$24 \cdot 6$	7	22	47	7	21	$52 \cdot 0$	
8	23	13	8	23	$21 \cdot 6$	8	22	45	59	21	$48 \cdot 9$	
9		12	34	23	$18 \cdot 7$	9	22	44	50	21	$45 \cdot 9$	
10	23	11	58	23	$15 \cdot 7$	10	22	43	41	21	$42 \cdot 8$	
11	23	11	20	23	$12 \cdot 8$	11	22	42	30	21	$39 \cdot 8$	
12		10	42	23	$9 \cdot 8$	12	22	41	19	21	$36 \cdot 7$	
13	23	10	2	23	$6 \cdot 9$	13	22	40	8	21	$33 \cdot 7$	
14	23	9	21	23	$3 \cdot 9$	14	22	38	55	21	$30 \cdot 6$	
15	23	8	38	23	$0 \cdot 9$	15	22	37	42	21	$27 \cdot 5$	
16	23	7	55	22	$57 \cdot 9$	16	22	36	28	21	$24 \cdot 5$	
17	23	7	10	22	$55 \cdot 0$	17	22	35	14	21	$21 \cdot 4$	
18	23	6	23	22	$52 \cdot 0$	18	22	33	59	21	$18 \cdot 3$	
19	23	5	36	22	$49 \cdot 0$	19		32	44	21		
20	23	4	48	22	$46 \cdot 0$	20	22	31	28	21	$12 \cdot 1$	
21	23	3	58	22	$43 \cdot 1$	21	22	30	12	21	$9 \cdot 0$	
22		3	7			22	22	28	55	21	$5 \cdot 9$	
23		2	15	22	$37 \cdot 1$	23	22	27	38	21	$2 \cdot 8$	
24		1	21	22	$34 \cdot 1$	24	22	26	20	20	$59 \cdot 7$	
25			27			25	22	25	2	20	$56 \cdot 6$	
26	22	59	31	22	$28 \cdot 1$	26	22	23	44	20	$53 \cdot 4$	
27	22	58	35	22	$25 \cdot 1$	27	22	22	25	20	$50 \cdot 3$	
28	22	57	37	22	$22 \cdot 1$	28	22	21	6	20	$47 \cdot 2$	
29	22	56	38	22	$19 \cdot 1$	29	22	19	47	20	$44 \cdot 0$	
30	22	55	39	22	$16 \cdot 1$	30	22	18	28	20	$40 \cdot 9$	
31		54	38	22	$13 \cdot 1$	31	22	17	8	20	$37 \cdot 7$	
32	N. 22	53	36		$10 \cdot 1$	32	N. 22	15	49	20	$34 \cdot 5$	

SEPTEMEER, 1859.						OCTOBER, 1859.						
mean time.						mean tige.						
Day of the Month.	geocentric.					Day of the Month.	abocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian Passage.		
	Noom.					Noon.						
1	N. 22	15	49		$\frac{\mathrm{m} \cdot}{34 \cdot 5}$		1	N. 21	38	" 8	h. 18	$\frac{\mathrm{m} .}{56 \cdot 0}$
2	22	14	29		$31 \cdot 4$	2	21	37	3	18	$52 \cdot 5$	
3	22	13	10		$28 \cdot 2$	3	21	35	59	18	$49 \cdot 1$	
4	22	11	50	20	$25 \cdot 0$	4	21	34	57	18	$45 \cdot 7$	
5	22	10	30	20	$21 \cdot 8$	5	21	33	55	18	$42 \cdot 2$	
6	22	9	11		$18 \cdot 6$	6	21	32	55	18	$38 \cdot 7$	
7	22	7	51	20	$15 \cdot 4$	7	21	31	56	18	$35 \cdot 2$	
8	22	6	32	20	$12 \cdot 2$	8	21	30	59	18	$31 \cdot 8$	
* 9	22	5	13	20	$8 \cdot 9$	9	21	30	3	18	$28 \cdot 3$	
10	22	3	54		$5 \cdot 7$	10	21	29	8	18	$24 \cdot 7$	
11	22	2	35	20	$2 \cdot 5$	11	21	28	14	18	$21 \cdot 2$	
12	22	1	16	19	$59 \cdot 2$	12	21	27	22	18	$17 \cdot 7$	
13	21	59	58	19	$56 \cdot 0$	13	21	26	32	18	$14 \cdot 1$	
14	21	58	40	19	$52 \cdot 7$	14	21	25	43	18	$10 \cdot 6$	
15	21	57	23	19	$49 \cdot 4$	15	21	24	56	18	$7 \cdot 0$	
16	21	56	6	19	$46 \cdot 2$	16	21	24	10	18	$3 \cdot 5$	
17	21	54	49	19	$42 \cdot 9$	17	21	23	25	17	$59 \cdot 9$	
18	21	53	33	19	$39 \cdot 6$	18	21	22	43	17	$56 \cdot 3$	
19	21	52	17	19	$36 \cdot 3$	19	21	22	2	17	$52 \cdot 6$	
20	21	51	2	19	$33 \cdot 0$	20	21	21	23	17	$49 \cdot 0$	
21	21	49	48	19	$29 \cdot 7$	21	21	20	46	17	$45 \cdot 4$	
22	21	48	34	19	$26 \cdot 3$	22	21	20	10	17	$41 \cdot 7$	
23	21	47	21	19	$23 \cdot 0$	23	21	19	36	17	$38 \cdot 0$	
24	21	46	9	19	$19 \cdot 6$	24	21	19	5	17	$34 \cdot 4$	
25	21	44	58	19	$16 \cdot 3$	25	21	18	35	17	$30 \cdot 7$	
26	21	43	47	19	$12 \cdot 9$	26	21	18	7	17	$27 \cdot 0$	
27	21	42	37	19	$9 \cdot 5$	27	21	17	41	17	$23 \cdot 3$	
28	21	41	28	19	$6 \cdot 2$	28		17	17	17	$19 \cdot 5$	
29	21	40	20	19	$2 \cdot 8$	29	21	16	55	17	$15 \cdot 8$	
30	21	39	13	18	$59 \cdot 4$	30 31	21		35 17	17	$12 \cdot 0$ 8.3	
31	N. 21	38	8			32	N. 21	16	1	17	$4 \cdot 5$	

NOVEMBER, 1859.						DECEMBER, 1859.						
mean time.						mean time.						
Day of the Month.	geocentric.					Day of the Month.	geocentric.					
	Apparent Declination			Meridian Passage.			Apparent Declination			Meridian		
	Noon.					Noom.	Passage.					
	N. 21	16	11		$\mathrm{m} .$ $4 \cdot 5$		1	N. 21	24	${ }_{55}^{\prime \prime}$	h. 15	$\underset{4 \cdot 7}{m_{i}}$
2	21	15	48	17	$0 \cdot 7$	2	21	25	46	15	$0 \cdot 4$	
3		15	36		$56 \cdot 9$	3	21	26	38	14	$56 \cdot 2$	
4		15	27		$53 \cdot 0$	4	21	27	32	14	$52 \cdot 0$	
5		15	19	16	$49 \cdot 2$	5	21	28	28	14	$47 \cdot 8$	
6		15	14		$45 \cdot 4$	6	21	29	26	14	$43 \cdot 5$	
7		15	11	16	$41 \cdot 5$	7	21	30	25	14	$39 \cdot 2$	
8		15	10	16	$37 \cdot 6$	8	21	31	26	14	$34 \cdot 9$	
9		15	12		$33 \cdot 7$	9	21	32	29	14	$30 \cdot 7$	
10		15	15	16	$29 \cdot 8$	10	21	33	33	14	$26 \cdot 3$	
11	21	15	21	16	$25 \cdot 9$	11	21	34	38	14	$22 \cdot 0$	
12		15	29		$22 \cdot 0$	12	21	35	45	14	$17 \cdot 7$	
13	21	15	39		$18 \cdot 1$	13	21	36	54	14	$13 \cdot 4$	
14	21	15	52	16	$14 \cdot 1$	14	21	38	3	14	$9 \cdot 0$	
15		16	6		10•1	15	21	39	14	14	$4 \cdot 7$	
16	21	16	23	16	$6 \cdot 1$	16	21	40	27	14	$0 \cdot 3$	
17	21	16	42	16	$2 \cdot 1$	17	21	41	40	13	$55 \cdot 9$	
18		17	3	15	$58 \cdot 1$	18	21	42	55	13	$51 \cdot 5$	
19		17	27	15	$54 \cdot 1$	19	21	44	10	13	$47 \cdot 2$	
20	21	17	52	15	$50 \cdot 0$	20	21	45	27	13	$42 \cdot 7$	
21	21	18	20		$46 \cdot 0$	21	21	46	44	13	$38 \cdot 3$	
22		18	50	15	$41 \cdot 9$	22	21	48	2	13	$33 \cdot 9$	
23	21	19	22	15	$37 \cdot 8$	23	21	49	21	13	$29 \cdot 5$	
24		19	57	15	$33 \cdot 7$	24	21	50	41	13	$25 \cdot 1$	
25		20	33		$29 \cdot 6$	25	21	52	1	13	$20 \cdot 6$	
26	21	21	12	15	$25 \cdot 5$	26	21	53	22	13	$16 \cdot 2$	
27	21	21	52	15	$21 \cdot 3$	27	21	54	44	13	$11 \cdot 7$	
28		22	35		17.2	28	21	56	5	13	$7 \cdot 2$	
29		23	20		$13 \cdot 0$	29	21	57	27	13	$2 \cdot 8$	
30	21	24	7	15	8.8	30	21		50	12	$58 \cdot 3$	
31	N. 21	24				31	22		12	12	$53 \cdot 8$	
						32	N. 22	1	35	12	$49 \cdot 3$	

JANUARY, 1859.						FEERUARY, 1859.						
mean time.						mean time.						
Day of the Month.	grocentrio.					Day of the Month.	geocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian Passage.		
	Noon.					Noon.						
1	N. 18	11	" 9				1	N. 18	53	" 8	h. 11	$\frac{\mathrm{m}}{58 \cdot 3}$
2	18	12	22	14	$5 \cdot 6$	2	18	54	31	11	$54 \cdot 1$	
3		13	36	14	$1 \cdot 4$	3	18	55	53	11	$49 \cdot 8$	
4	18	14	50	13	$57 \cdot 2$	4	18	57	15	11	$45 \cdot 5$	
5	18	16	6	13	$53 \cdot 0$	5	18	58	36	11	$41 \cdot 3$	
6		17	23	13	$48 \cdot 8$	6	18	59	57	11	$37 \cdot 0$	
7	18	18	40	13	$44 \cdot 6$	7	19	- 1	17	11	$32 \cdot 8$	
8		19	58	13	$40 \cdot 3$	8	19	2	37	11	$28 \cdot 5$	
9		21	17	13	$36 \cdot 1$	9	19.	3	55	11	$24 \cdot 3$	
10		22	36	13	$31 \cdot 9$	10	19	5	13	11	$20 \cdot 0$	
11		23	57	13	$27 \cdot 6$	11	19	6	31	11	$15 \cdot 8$	
12		25	18	13	$23 \cdot 4$	12	19	7	47	11	$11 \cdot 5$	
13		26	39	13	$19 \cdot 2$	13	19	9	3	11		
14		28	1	13	$14 \cdot 9$	14	19	10	18	11	$3 \cdot 0$	
15		29	23		$10 \cdot 7$	15		11		10	$58 \cdot 8$	
16	18	30	46	13	$6 \cdot 4$	16	19	12	44	10	54.8	
17	18	32	9	13	$2 \cdot 2$	17	19	13	56	10	$50 \cdot 3$	
18		33	32	12	$57 \cdot 9$	18	19	15	7	10	$46 \cdot 1$	
19	18	34	56	12	$53 \cdot 7$	19	19	16	17	10	$41 \cdot 9$	
20	18	36	20	12	$49 \cdot 4$	20	19	17	26	10	$37 \cdot 7$	
21	18	37	44	12	$45 \cdot 2$	21	19	18	34	10	$33 \cdot 5$	
22	18	39	8	12	$40 \cdot 9$	22	19	19	40	10	$29 \cdot 3$	
23	18	40	33	12	$36 \cdot 7$	23	19	20	46	10	$25 \cdot 1$	
24		41	57	12	$32 \cdot 4$	24	19	21	50	10	$20 \cdot 9$	
25	18	43	22	12	28.2	25	19	22	53	10	$16 \cdot 7$	
26	18	44	46	12	$23 \cdot 9$	26	19	23	55	10	$12 \cdot 5$	
27	18	46	10	12	$19 \cdot 6$	27 28	19	24 25		10 10		
28		47	34									
29	18	48	58	12.	$11 \cdot 1$, 29	N. 19	26		9	$59 \cdot 9$	
30		50	22	12								
31	18	51	45		$2 \cdot 6$							
32	N. 18	53	8	11	58.3							

						APRIL, 1859.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geocentrio.					Day of the Month.	geocentrio.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
	\bigcirc	,	"	h.			${ }^{\circ}$	${ }^{\prime}$	$\prime \prime$	h.	m.
1	N. 19	26	53	9	$59 \cdot 9$	1	N. 19	44		7	$53 \cdot 5$
2	19	27		9	$55 \cdot 7$	2	19	44		7	$49 \cdot 5$
3		28	45	9	$51 \cdot 6$	3	19	44		7	$45 \cdot 6$
4	19	29	39	9	$47 \cdot 4$	4	19	44	49	7	$41 \cdot 6$
5	19	30	31	9	$43 \cdot 2$	5	19	44	53	7	$37 \cdot 7$
6		31	23	9	$39 \cdot 1$	6	19	44	55	7	$33 \cdot 7$
7	19	32	12	9	$34 \cdot 9$	7	19	44	55	7	$29 \cdot 8$
8	19	33	0	9	$30 \cdot 8$	8	19	44	53	7	$25 \cdot 9$
9		33	47	9	$26 \cdot 7$	9	19	44	50	7	$22 \cdot 0$
10	19	34	32	9	22.5	10	19	44	45	7	18•1
11	19	35	16	9	18.4	11	19	44	39	7	$14 \cdot 2$
12		35	58	9	$14 \cdot 3$	12	19	44	31	7	$10 \cdot 3$
13	19	36	39	9	$10 \cdot 2$	13	19	44	21	7	$6 \cdot 4$
14	19	37	18	9	$6 \cdot 1$	14	19	44	10	7	$2 \cdot 5$
15		37	55	9	$2 \cdot 0$	15	19	43	57	6	$58 \cdot 6$
16	19	38	31	8	$57 \cdot 9$	16	19	43	43	6	$54 \cdot 8$
17	19	39	6		$53 \cdot 9$	17	19	43	27	6	$50 \cdot 9$
18	19	39	38	8	$49 \cdot 8$	18	19	43	9	6	$47 \cdot 1$
19	19	40	10	8	$45 \cdot 7$	19	19	42	50	6	$43 \cdot 2$
20	19	40	39		$41 \cdot 7$	20	19	42	29	6	$39 \cdot 4$
21	19	41	7		$37 \cdot 6$	21	19	42	7	6	$35 \cdot 6$
22	19	41	34	8	$33 \cdot 6$	22	19	41	43	6	$31 \cdot 8$
23	19	41	59	8	$29 \cdot 5$	23	19	41	17	6	$27 \cdot 9$
24	19	42	22	8	$25 \cdot 5$	24	19	40	50	6	$24 \cdot 1$
25	19	42	43	8	$21 \cdot 5$	25	19	40	21	6	$20 \cdot 3$
26	19	43	3	8	$17 \cdot 4$	26	19	39	51	6	$16 \cdot 5$
27		43	22	8	$13 \cdot 4$	27	19	39	19	6	$12 \cdot 8$
28	19	43	38	8	$9 \cdot 4$	28	19	38	46	6	$9 \cdot 0$
29	19	43	54	8	$5 \cdot 4$	29	19	38	11	6	$5 \cdot 2$
30		44		8	$1 \cdot 5$	30	19	37	35	6	$1 \cdot 4$
31		44			$57 \cdot 5$						
32	N. 19	44			$53 \cdot 5$	31	N. 19	36		5	$57 \cdot 7$

MAY, 1859.						$\pm \mathrm{JNE}^{\text {E }} 1859$.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geocentric.					Day of the Month.	GEOCENTRIO.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1 2 3	N. 19 19 19	36 36 35	11 57 17 36		$\begin{aligned} & \mathrm{m} . \\ & 57 \cdot 7 \\ & 53 \cdot 9 \\ & 50 \cdot 2 \end{aligned}$	1 2 3	N. 19 19 19	5 5 4 2	11 34 12 49		$\begin{array}{lc} \text { 2. } & \text { m. } \\ 4 & 4 \cdot 3 \\ 4 & 0 \cdot 7 \\ 3 & 57 \cdot 1 \end{array}$
4	19	34	54		$46 \cdot 4$	4	19	1	25		$353 \cdot 6$
5	19	34	10		$42 \cdot 7$	5	19	0			$350 \cdot 0$
6	19	33	24	5	$39 \cdot 0$	6	18	58	33		$36 \cdot 5$
7	19	32	37		$35 \cdot 3$	7	18	57	5		$342 \cdot 9$
8	19	31	49		$31 \cdot 6$	8	18	55	36		$3 \mathrm{3} \cdot 4$
9	19	30	59		$27 \cdot 9$	9	18	54	6.		3 35-8
10	19	30	8		$24 \cdot 2$	10	18	52	35		3 32•3
11	19	29	15		$20 \cdot 5$	11	18	51	2		$328 \cdot 8$
12	19	28	21		$16 \cdot 8$	12	18	49	29		3 25.2
13	19	27	25		13•1	13	18	47	54	3	$31 \cdot 7$
14	19	26	28	5	$9 \cdot 5$	14	18	46	19		$318 \cdot 2$
15	19	25	30		$5 \cdot 8$	15	18	44	42		$314 \cdot 7$
16	19	24	30	5	$2 \cdot 1$	16	18	43	5		$311 \cdot 2$
17	19	23	29	4	$58 \cdot 5$	17	18	41	26		$3 \quad 7 \cdot 6$
18	19	22	27		$54 \cdot 8$	18	18	39	46		3 4•1
19	19	21	23	4	$51 \cdot 2$	19	18	38	5		$3 \quad 0 \cdot 6$
20	19	20	18		$47 \cdot 5$	20	18	36	24		$27 \cdot 1$
21	19	19	11		$43 \cdot 9$	21	18	34	41		$2,53 \cdot 6$
22	19	18	4	4	$40 \cdot 3$	22	18	32	57		2. $50 \cdot 1$
23	19	16	55		$36 \cdot 7$	23	18	31	12		$2 \quad 46 \cdot 6$
24	19	15	44	4	$33 \cdot 0$	24	18	29	27		$2^{\prime} 43 \cdot 2$
25	19	14	32	4	$29 \cdot 4$	25	18	27	40		$239 \cdot 7$
26	19	13	19		25.8	26	18	25	53		$236 \cdot 2$
27	19	12	5	4	$22 \cdot 2$	27	18	24	4		$232 \cdot 7$
28	19	10	49		$18 \cdot 6$	28	18	22	15		$2 \quad 29 \cdot 2$
29	19	9	32		$15 \cdot 0$	29	18	20	24		25^{-8}
30	19	8	14		11.5	30	18	18	33		$222 \cdot 3$
31						31	N. 18	16	41		218.8
32	N. 19	5			$4 \cdot 3$						

JULY, 1859.						AUGUST, 1859.						
MEAN TIME.						mean time.						
Day of the Month.	geocentric.					Day of the Month.	geocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian Passage.		
	Noon.					Noon.						
1	N. 18	16	41		m. $18 \cdot 8$		1	N. 17	13	" 1	h.	$\stackrel{\mathrm{m}}{32 \cdot 3}$
2	18	14	48		$15 \cdot 4$	2	17	10	50	0	$28 \cdot 8$	
3	18	12	54		$11 \cdot 9$	3	17	8	38	0	$25 \cdot 4$	
4	18	11	0	2	$8 \cdot 4$	4	17	6	26	0	$22 \cdot 0$	
5	18	9	4		$5 \cdot 0$	5	17	4	13	0	$18 \cdot 6$	
6	18	7	8		$1 \cdot 5$	6	17	2	1	0	$15 \cdot 2$	
7	18	5	11		$58 \cdot 1$	7	16	59	48	0	11•7	
8	18	3	13		$54 \cdot 6$	8	16	57	34	0	$8 \cdot 3$	
9		1	15		$51 \cdot 2$	9	16	55	21	0	$4 \cdot 9$	
10	17	59	16	1	$47 \cdot 7$	10	16	53	7	\{ 20	${ }_{58}^{1} .5$	
11	17	57	16	1	$44 \cdot 3$	11	16	50	54	23	$54 \cdot 6$	
12		55	15		$40 \cdot 9$	12	16	48	40	23	$51 \cdot 2$	
13	17	53	14	1	$37 \cdot 4$	13	16	46	26	23	$47 \cdot 8$	
14	17	51	12	1	$34 \cdot 0$	14	16	44	12	23	$44 \cdot 4$	
15		49	10		$30 \cdot 5$	15	16	41	57	23.	$40 \cdot 9$	
16	17	47	7	1	$27 \cdot 1$	16	16	39	43	23	37.5	
17	17	45	3	1	$23 \cdot 7$	17	16	37	29	23	$34 \cdot 1$	
18		42	58		$20 \cdot 2$	18	16	35	14	23	$30 \cdot 7$	
19	17	40"	53	1	16.8	19	16	33	0	23	$27 \cdot 2$	
20	17	38	48	1	$13 \cdot 4$	20	16	30	46	23	$23 \cdot 8$	
21		36	42		$9 \cdot 9$	21	16	28	31	23	$20 \cdot 4$	
22	17	34	35	1	$6 \cdot 5$	22	16	26	17	23	$17 \cdot 0$	
23	17	32	28	1	$3 \cdot 1$	23	16	24	3	23	$13 \cdot 5$	
24	17	30	20	0	$59 \cdot 7$	24	16	21	49	23	$10 \cdot 1$	
25		28	12	0	56.2	25	16	19	34	23	$6 \cdot 6$	
26	17	26	3		$52 \cdot 8$	26	16	17	21	23	$3 \cdot 2$	
27	17	23	54	0	$49 \cdot 4$	27	16	15	7	22	$59 \cdot 8$	
28		21	44	0	$46 \cdot 0$	28	16	12	53	22	$56 \cdot 3$	
29	17	19	34	0	$42 \cdot 5$	29	16	10	40	22	$52 \cdot 9$	
30		17	23	0	$39 \cdot 1$	30	16	8	27	22	$49 \cdot 5$	
31		15	13		$35 \cdot 7$	31	16	6	14	22	$46 \cdot 0$	
32	N. 17	13	1		$32 \cdot 3$	32	N. 16	4	1	22	$42 \cdot 6$	

SEPTEMEER, 1859.						OCTOBER, 1859.						
mean time.						mean time.						
Day of the Month.	giocentric.					Day of the Month.	grocentrio.					
	Apparent Declination.			Meridian Passage.			Apparent Declination			Meridian		
	Noon.					Noon.	Passage.					
1	N. ${ }^{\circ} 6$	4	" 1		$\mathrm{m}_{42 \cdot 6}$		1	N. ${ }^{\circ} 5$	$\dot{2}$	" 2	h.	$\mathrm{m}_{58 \cdot 1}$
2	16	1	49		$39 \cdot 1$	2	15	0	11	20	$54 \cdot 5$	
3	15	59	37		$35 \cdot 7$	3	14	58	21	20	$51 \cdot 0$	
4	15	57	26	22	$32 \cdot 2$	4	14	56	32	20	$47 \cdot 4$	
5	15	55	15	22	$28 \cdot 8$	5	14	54	44	20	$43 \cdot 9$	
6	15	53	4		$25 \cdot 3$	6	14	52	58	20	$40 \cdot 4$	
7	15	50	54	22	$21 \cdot 9$	7	14	51	12	20	$36 \cdot 8$	
8	15	48	44	22	$18 \cdot 4$	8	14	49	28	20	$33 \cdot 2$	
9		46	35		$14 \cdot 9$	9	14	47	46	20	$29 \cdot 7$	
10	15	44	26	22	$11 \cdot 5$	10	14	46	4	20	$26 \cdot 1$	
11	15	42	18	22	$8 \cdot 0$	11	14	44	24	20	$22 \cdot 5$	
12		40	10	22	$4 \cdot 6$	12		42	45	20	$19 \cdot 0$	
13	15	38	3	22	$1 \cdot 1$	13	14	41	1	20	$15 \cdot 4$	
14	15	35	57	21	$57 \cdot 6$	14		39	31	20	$11 \cdot 8$	
15		33	51		$54 \cdot 1$	15		37	56	20	$8 \cdot 2$	
16	15	31	46	21	$50 \cdot 6$	16		36	23	20	$4 \cdot 6$	
17	15	29	41	21	$47 \cdot 2$	17	14	34	51	20	$1 \cdot 0$	
18		27	37	21	$43 \cdot 7$	18	14	33	21	19	57.4	
19	15	25	34	21	$40 \cdot 2$	19	14	31	52	19	$53 \cdot 8$	
20	15	23	31	21	$36 \cdot 7$	20	14	30	25	19	$50 \cdot 1$	
21	15	21	30	21	$33 \cdot 2$	21	14	28	59	19	$46 \cdot 5$	
22	15	19	29	21	$29 \cdot 7$	22	14	27	35	19	$42 \cdot 9$	
23	15	17	29	21	$26 \cdot 2$	23	14	26	13	19	$39 \cdot 3$	
24	15	15	30		$22 \cdot 7$	24	14	24	52	19	$35 \cdot 6$	
25	15	13	31		$19 \cdot 2$	25		23	33	19	$32 \cdot 0$	
26	15	11	34	21	$15 \cdot 7$	26	14	22	16	19	$28 \cdot 3$ 24.7	
27	15	9	38		$12 \cdot 2$	27			0	19	$24 \cdot 7$	
28	15	7	42	21	$8 \cdot 6$	28		19	46	19	$21 \cdot 0$	
29	15	5	48	21	$5 \cdot 1$	29		18		19	$17 \cdot 3$ 13	
30		3	55		$1 \cdot 6$	30 31				19	$13 \cdot 7$ 10.0	
31	N. 15	2	2		$58 \cdot 1$	32	N. 14	15	9	19	$6 \cdot 3$	

NAUTICAL ALMANAC FOR THE YEAR
 1860.

ECLIPSES 0F THE SUN AND MOON.

In the year 1860 there will be two Eclipses of the Sun and two of the Moon.
I.-An Annular Eclipse of the $S U N$, January 22, 1860, invisible at Greenwich.

Begins on the Earth generally January $22^{\mathrm{d}} 9^{\mathrm{h}} 54^{\mathrm{m}} 3$, in Mean Time at Greenwich. Longitude $99^{\circ} 58^{\prime} \mathrm{E}$. of Greenwich, and Latitude . . $49^{\circ} \quad 20^{\prime} \mathrm{S}$.
Central Eclipse begins generally January $22^{\mathrm{d}} 11^{\mathrm{h}} 35^{\mathrm{m} \cdot} 0$, in
Longitude $30^{\circ} 29^{\prime}$ E. of Greenwich, and Latitude . . . 69 9° S.
Central Eelipse at Noon January $22^{\mathrm{d}} 11^{\mathrm{h}} 51^{\mathrm{m}} \cdot 2$, in Longitude $5^{\circ} 10^{\prime}$ E. of Greenwich, and Latitude $88^{\circ} \quad 59^{\prime} \quad \mathrm{S}$.
Central Eclipse ends generally January $22^{\mathrm{d}} 13^{\mathrm{h}} 19^{\mathrm{m}} 2$, in Longitude $88^{\circ} 11^{\prime}$ W. of Greenwich, and Latitude . .
Ends on the Earth generally January $22^{\mathrm{d}} 14^{\mathrm{h}} 59^{\mathrm{m}} \cdot 9$, in
Longitude $126^{\circ} 30^{\circ} \mathrm{W}$. of Greenwich, and Latitude.
$41^{\circ} \quad 59^{\prime} \mathrm{S}$.
$15^{\circ} \quad 8^{\prime} \mathrm{S}$.
II.-A Partial Eclipse of the MOON, February 6, 1860, invisible at Greenwich.

At these times respectively the Moon will be in the Zenith of the places whose positions are-

Longitude	1°	55^{\prime}	E.		Latitude	15°	44^{\prime}	N.
	12	55	W.			15	29	
	33	50		of Greenwich.		15	8	
	54	44				14	46	
	69	35	W.			14	30	N

Magnitude of the Eclipse (Moon's diameter $=1$) 0.809 .
The first contact with the Shadow occurs at 79° from the Northernmost point of the Mon's limb toward the East.
The last contact at 32° toward the West ; in each case, for direct image.
III.-A Total Eclipse of the $S U N$, July 18, 1860, visible (as a partial one) at Greenwich.

Begins on the Earth generally July $17^{\mathrm{d}} 23^{\mathrm{h}} 53^{\mathrm{m} \cdot 8}$, in Mean Time at Greenwich.
Longitude $102^{\circ} 14^{\prime} \mathrm{W}$. of Greenwich, and Latitude . .
$34^{\circ} 43^{\prime} \mathrm{N}$.
Central Eclipse begins generally July $18^{d} 0^{\mathrm{h}} \quad 57^{\mathrm{m} \cdot 3}$, in Longitude $125^{\circ} 47^{\prime}$ W. of Greenwich, and Latitude .
$45^{\circ} \quad 42^{\prime} \mathrm{N}$.
Central Eclipse at Noon Jnly $18^{d} 2^{\mathrm{h}} 8^{\mathrm{m} \cdot} 1$, in Longitude $30^{\circ} 33^{\prime}$ W. of Greenwich, and Latitude $56^{\circ} \quad 8^{\prime} \mathrm{N}$.
Central Eclipse ends generally July $18^{\text {d }} 3^{3^{\mathrm{h}}} 53^{\mathrm{m} .2}$, in Longitude $39^{\circ} 25^{\prime}$ E. of Greenwich, and Latitude
$15^{\circ} \quad 56^{\prime} \mathrm{N}$.
Ends on the Earth generally July $18^{\mathrm{d}} 4^{\mathrm{h}} 56^{\mathrm{m} \cdot 6}$, in
Longitude $18^{\circ} 56^{\prime}$ E. of Greenwich, and Latitude
$4^{\circ} \quad 16^{\prime} \quad$ N.
IV:-A Partial Eclipse of the MOON, August 1, 1860, invisible at Greenwich.

ELEMENTS OF THE ECLIPSES OF THE SUN.

1860.	January 22.	July 18.
Greenwich Mean Time of δ in R. A.	$\begin{array}{ccccc} \hline \text { d. } & \text { b. } & \text { m. } & \text { s. } \\ 22 & 11 & 51 & 13 \end{array}$	d. h. m. 18 2 8
\% and (1)'s Right Ascension	20186	75220
(1)'s Declination .	S. $\quad 200318119$	N. 21 1 31111
©'s Declination. .	S. 194024	N. 20570

PHASES OF THE MOON FOR 1860.

JANUARY.

juLy.
(2) Full Moon $\quad 2{ }_{2}^{\mathrm{d}} \mathrm{l}_{6}^{\mathrm{h}} \mathrm{m}_{7 \cdot 0}$
(1) Last Quarter . . . $101758 \cdot 1$
(1) New Moon $18220 \cdot 3$
(1) First Quarter . . . $241819 \cdot 7$

FEBRUARY.

MARCH

APRIL.

MAY.

may.					
(2) Full Moon	.	d.	h.		$\stackrel{\mathrm{m} .}{1 \cdot 8}$
(1) Last Quarter		12	7		$16 \cdot 4$
(1) New Moon		20	6		$46 \cdot 0$
(1) First Quarter		27	8		4.7

JONE.

SEPTEMBER.
(10) Last Quarter . . . ${ }_{7}{ }_{23}^{\mathrm{h}}{ }_{7 \cdot 1}^{\mathrm{m}}$
(10) New Moon $14189 \cdot 5$
(10) First Quarter . . . $211124 \cdot 9$
(ㄷ) Full Moon $291339 \cdot 8$

OCTOBER.

NOVEMBER.

(5) Full Moon $27 \quad 2337 \cdot 9$

DECRMREER.

(1) Last Quarter	.	.	5	6	0.8
(1) New Moon	12	0	$48 \cdot 5$
(1) First Quarter	.	.	19	18	$9 \cdot 8$

JANUARE,						FEERUAET, 1860.					
		THE SUN'S Apparent Heut inin.	Diff. for 1 hr.	Equation of Time, to be added to Apparent Time.	Diff.			THE SUN'S Apparent Declination.	Diff. for 1 hr.	Equation of Time, to be added to Apparent Trme.	Diff. for i hr
Sun.	1	S. $23^{\circ} 31818$	11	m. $\begin{gathered}\text { ¢ } \\ 3\end{gathered}$	-	Wed.	1	S. $17^{\circ} 13^{\prime} 4{ }^{\prime \prime}$	42	m. s. 13	s. 0
Mon.	2	$\begin{array}{llll}22 & 5812\end{array}$	13	45	1	Thur.	2	$\begin{array}{llll}16 & 56 & 36\end{array}$	43	1356	0
Tues.	3	225245	14	433	1	Fri.	3	$16 \quad 3912$	43	143	0
Wed.	4	$\begin{array}{llll}22 & 46 & 51\end{array}$	15	50	1	Sat.	4	162132	44	$14 \quad 9$	0
Thur.	5	224030	16	527	1	Sun.	5	$16 \quad 3 \begin{array}{ll}16\end{array}$	45	1415	0
Fri.	6	223341	17	554	1	Mon.	6	154519	45	1419	0
Sat.	7	$22 \quad 2626$	18	620	1	Tues.	7	152649	46	1423	0
Sun.	8	221845	19	646	1	Wed.	8	1588	47	1426	0
Mon.	9	$\begin{array}{llll}22 & 10 & 37\end{array}$	20	712	1	Thur.	9	$1449 \quad 1$	47	1428	0
Tues.	10	$\begin{array}{llll}22 & 2 & 3\end{array}$	21	736	1	Fri.	10	$\begin{array}{lll}14 & 29 & 45\end{array}$	48	1429	0
Wed.	11	$\begin{array}{llll}21 & 53 & 4\end{array}$	23	80	0	Sat.	11	141014	49	1430	0
Thur.	12	214338	24	8.24	0	Sun.	12	$13 \quad 5029$	49	1430	0
Fri.	13	213348	25	847	0	Mon.	13	133030	50	1429	0
Sat.	14	212332	26	$9 \quad 9$	0	Tues.	14	131018	50	1427	0
Sun.	15	211252	27	931	0	Wed.	15	124953	51	1425	0
Mon.	16	$21 \quad 147$	28	952	0	Thur.	16	122915	51	1421	0
Tues.	17	205018	29	1013	0	Fri.	17	12825	52	1418	0
Wed.	18	203825	30	1033	0	Sat.	18	114724	52	1413	0
Thur.	19	20268	31	1052	0	Sun.	19	$11 \begin{array}{lll}11 & 2611\end{array}$	53	148	0
Fri.	20	201328	32	1110	0	Mon.	20	11448	53	$14 \quad 2$	0
Sat.	21	$20 \quad 026$	33	1128	0	Tues.	21	104314	54	1355	0
Sun.	22	19471	33	1144	0	Wed.	22	102131	54	1348	0
Mon.	23	193314	34	120	0	Thur.	23	95938	54	1340	0
Tues.	24	19195	35	1216	0	Fri.	24	93736	55	1332	0
Wed.	25	$19 \quad 435$	36	1230	0	Sat.	25	$\begin{array}{lll}9 & 15 & 25\end{array}$	55	1323	0
Thur.	26	184944	37	1244	0	Sun.	26	8536	55	1313	0
Fri.	27	183433	38	1257	0	Mon.	27	83039	56	$13 \quad 3$	0
Sat.	28	$\begin{array}{lll}18 & 19 & 1\end{array}$	39	139	0	Tues.	28	$8 \quad 8 \quad 5$	56	1252	0
Sun.	29	$18 \quad 310$	40	1320	0	Wed.	29	74524	56	1241	0
Mon.	30	174659	40	1330	0						
Tues.	31	173030	41	1340	0	Thur.	30	S. 72237	57	1229	0
Wed.	32	S. $17 \quad 1342$	42	1348	0						

1860.

AT GREENWICH APPARENT NOON.
1860.

MAY, 1860.						JUNE, 1860.					
	${ }^{\text {qqu }}$	THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation to be subt. from Apparent	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \text { hr. } \end{gathered}$			$\begin{gathered} \text { THE SUN'S } \\ \text { Apparent } \\ \because \text { Deçlinatión. } \end{gathered}$	Diff. for 1 hr .	Equation of Time, to be subt.from added to Apparent Time.	Dif:
Tues.	1		45	$\underset{3}{\mathrm{~m} .} \mathrm{s} .$	$\begin{gathered} \text { s. } \\ 0 \end{gathered}$	Fri.	1	N. 2208149	19	m. 2 2 26	s.
Wed.	2	153144	44	312	0	Sat.	2	221536	18	217	0
Thur.	3	154923	43	319	0	Sun.	3	22230	18	27	0
Fri.	4	$16 \quad 645$	43	325	0	Mon.	4	22301	17	157	0
Sat.	5	162352	42	330	0	Tues.	5	223638	16	147	0
Sun.	6	164042	41	335	0	Wed.	6	224251	15	137	0
Mon.	7	165716	41	340	0	Thur.	7	224840	14	126	0
Tues.	8	171333	40	343	0	Fri.	8	22545	13	114	0
Wed.	9	172932	39	347	0	Sat.	9	22597	12	13	0
Thur.	10	174515	38	349	0	Sun.	10	$\begin{array}{llll}23 & 3 & 44\end{array}$	11	051	0
Fri.	11	$18 \quad 039$	38	351	0	Mon.	11	$23 \quad 757$	10	039	0
Sat.	12	181546	37	353	0	Tues.	12	231145	9	027	0
Sun.	13	183034	36	354	0	Wed.	13	$\begin{array}{llll}23 & 15 & 9\end{array}$	7	014	0
Mon.	14	18454	35	354	0	Thar.	14	23188	6	$0 \quad 2$	0
Tues.	15	185915	35	354	0	Fri.	15	232043	5	010	0
Wed.	16	19137	34	353	0	Sat.	16	$\begin{array}{lll}23 & 2253\end{array}$	4	023	0
Thur.	17	192639	33	351	0	Sun.	17	232438	3	036	0
Fri.	18	193951	32	349	0	Mon.	18	232558	2	049	0
Sat.	19	195244	31	346	0	Tues.	19	232654	1	12	0
Sun.	20	$20 \quad 516$	30	343	0	Wed.	20	232724	0	115	0
Mon.	21	$2017 \quad 27$	30	339	0	Thur.	21	$23 \quad 2730$	0	128	0
Tues.	22	202918	29	335	0	Fri.	22	232711	1	141	0
Wed.	23	204048	28	330	0	Sat.	23	232627	2	154	0
Thur.	24	205156	27	325	0	Sun.	24	232518	3	27	0
Fri.	25	$21 \quad 243$	26	319	0	Mon.	25	232345	4	220	0
Sat.	26	21138	25.	313	0	Tues.	26	232147	5	232	0
Sun.	27	212311	24	36	0	Wed.	27	231924	6	245	0
Mon.	28	213251	23	259	0	Thur.	28	$\begin{array}{llll}23 & 16 & 37\end{array}$		257	0
Tues.	29	214210	22	252	0	Fri.	29	231325	8	3	0
Wed.	30	21516	21	244	0	Sat.	30	$23 \quad 949$	9	321	0
Thur.	31	215939	20			Sun.	31	N. 23549	10	332	0
Fri.	32	N. 22.749	19	226	0						

1860.		AT GREENWICH				APPARENT NOON.			1860.		
JUKY, 1860.						AUGUST, 1860.					
$$		THE SUN'S Apparent	$\begin{gathered} \text { Diff. } \\ \text { for } \end{gathered}$	Equation of Time, to be added to	$\begin{gathered} \text { Diff. } \\ \text { for } \end{gathered}$			THE SUN'S Apparent	Diff. for	Equation of Time, to be added to	Diff.
$\begin{aligned} & \overleftarrow{0} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \underline{E} \end{aligned}$	Declination.	1 hr .	Appint	Ane:	¢		Declination.	1 hr .	subt.from Apparent Time.	hr.
		N $23 \times 1{ }^{\prime \prime}$	10	m. 3 3	0			N17 55 13	38	m. s.	s.
Sun.	1	N. 23 5 49	10	$\begin{array}{ll}3 & 3: \\ 3\end{array}$	0	Wed.	1	N. 175518	38	60	0
Mon.	2	$\begin{array}{lll}23 & 1 & 25\end{array}$	11	344	0	Thur.	2	173950	38	556	0
Tues.	3	$22 \quad 5636$	12	355	0	Fri.	3	$17 \quad 2410$	39	551	0
Wed.	4	225124	13	45	0	Sat.	4	$\begin{array}{llll}17 & 8 & 13\end{array}$	40	546	0
Thur.	5	224547	14	416	0	Sun.	5	165159	40	540	0
Fri.	6	$\begin{array}{lllll}22 & 39 & 47\end{array}$	15	426	0	Mon.	6	163528	41	534	0
Sat.	7	$\begin{array}{llll}22 & 33 & 24\end{array}$	16	435	0	Tues.	7	161842	42	526	0
Sun.	8	$\begin{array}{llll}22 & 26 & 37\end{array}$	17	445	0	Wed.	8	$16 \quad 139$	42	519	0
Mon.	9	221926	18	454	0	Thur.	9	154421	43	511	0
Tues.	10	$\begin{array}{llll}22 & 1153\end{array}$	19	$5 \quad 2$	0	Fri.	10	$\begin{array}{lll}15 & 2647\end{array}$	44	$5 \quad 2$	0
Wed.	11	$22 \quad 356$	20	510	0	Sat.	11	$15 \quad 8 \quad 59$	44	453	0
Thur.	12	215537	21	518	0	Sun.	12	145056	45	443	0
Fri.	13	214655	22	525		Mon.	13	143239	46	432	0
Sat.	14	213751	23	532	0	Tues.	14	$\begin{array}{llll}14 & 14 & 8\end{array}$	46	421	0
Sun.	15	212824	24	538	0	Wed.	15	135523	47	410	0
Mon.	16	211835	24	544	0	Thur.	16	$\begin{array}{llll}13 & 36 & 25\end{array}$	47	358	0
Tues.	17	21825	25	550	0	Fri.	17	$\begin{array}{llll}13 & 17 & 14\end{array}$	48	345	0
Wed.	18	205753	26	554	0	Sat.	18	125750	48	332	0
Thur:	19	20470	27	559	0	Sun.	19	$\begin{array}{llll}12 & 38 & 13\end{array}$	49	319	0
Fri.	20	203546	28	$6 \quad 2$	0	Mon.	20	$12 \quad 1825$	49	35	0
Sat.	21	202411	29	65	0	Tues.	21	115826	50	251	0
Sun.	22	$\begin{array}{llll}20 & 12 & 15\end{array}$	30	68	0	Wed.	22	$11 \begin{array}{lll}11 & 38\end{array}$	50	236	0
Mon.	23	$20 \quad 0 \quad 0$	31	610	0	Thur.	23	$\begin{array}{ll}11 & 17 \\ 11\end{array}$	51	220	0
Tues.	24	194724	31	611	0	Fri.	24	$\begin{array}{llll}10 & 57 & 20\end{array}$	51	24	0
Wed.	25	193429	32	612	0	Sat.	25	$\begin{array}{llll}10 & 36 & 37\end{array}$	52	148	0
Thur.	26	192114	33	612	0	Sun.	26	101544	52	131	0
Fri.	27	$19 \quad 740$	34	612	0	Mon.	27	95441	52	114	0
Sat.	28	$\begin{array}{llll}18 & 53 & 47\end{array}$	35	611	0	Tues.	28	93329	53	057	0
Sun.	29	183936	35	$6 \quad 9$	0	Wed.	29	$\begin{array}{lll}9 & 12 & 8\end{array}$	53	039	0
Mon.	30	18256	36	67	0	Thur.	30	85038	53	021	0
Tues.	31	$18 \quad 1019$	37	64	0	Fri.	31	8290	54	$0 \quad 2$	0
Wed.	82	N. $17 \quad 5513$	84	60	0	Sat.	$3{ }^{\prime \prime}$	N. 87714	54	016	0

SEPTEMEER, 1860.						OCTOEER, 1860.					
		THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt. from Apparent Time.	Diff.	Day of the Week.	Day of the Month.	THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt.from Apparent Time.	Diff.
Sat.	1	N. $\stackrel{\circ}{8}_{8}^{7} 1814$	54	$\begin{gathered} \mathrm{m} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { s. } \\ 0 \end{gathered}$	Mon.	1	S. $\stackrel{\circ}{3}_{3}^{22} 30 \not 17$	58	m. s. 1028	S.
Sun.	2	$\begin{array}{llll}7 & 45 & 19\end{array}$	54	035	0	Tues.	2	34554	58	1046	0
Mon.	3	$7 \quad 2317$	55	054	0	Wed.	3	$4 \quad 98$	58	115	0
Tues.	4	$\begin{array}{lll}7 & 1 & 8\end{array}$	55	114	0	Thur.	4	$\begin{array}{llll}4 & 32 & 18\end{array}$	57	1123	0
Wed.	5	$\begin{array}{llll}6 & 38 & 51\end{array}$	55	133	0	Fri.	5	45526	57	1141	0
Thur.	6	61628	56	153	0	Sat.	6	51831	57	1159	0
Fri.	7	$\begin{array}{llll}5 & 53 & 59\end{array}$	56	214	0	Sun.	7	54131	57	1216	0
Sat.	8	53123	56	234	0	Mon.,	8	$6 \quad 4 \quad 27$	57	1232	0
Sun.	9	$5 \quad 8 \quad 42$	56	255	0	Tues.	9	$\begin{array}{lll}6 & 27 & 19\end{array}$	57	1248	0
Mon.	10	44556	57	315	0	Wed.	10	$650 \quad 5$	56	$13 \quad 4$	0
Tues.	11	4235	57	336	0	Thur.	11	71246	56	1319	0
Wed.	12	$4 \quad 0 \quad 8$	57	357	0	Fri.	12	73521	56	1334	0
Thur.	13	$\begin{array}{llll}3 & 37 & 7\end{array}$	57	418	0	Sat.	13	75750	56	1348	0
Fri.	14	$314 \begin{array}{lll}3 & 14\end{array}$	57	439	0	Sun.	14	82013	55	14	0
Sat.	15	25055	57	50	0	Mon.	15	84228	55	1414	0
Sun.	16	22744	58	521	0	Tues.	16	$\begin{array}{llll}9 & 4 & 35\end{array}$	55	1427	0
Mon.	17	$\begin{array}{lll}2 & 4 & 29\end{array}$	58	542	0	Wed.	17	92635	54	1439	0
Tues.	18	14112	58	63	0	Thur.	18	94827	54	1450	0
Wed.	19	11753	58	624	0	Fri.	19	$\begin{array}{llll}10 & 10 & 10\end{array}$	54	151	0
Thur.	20	0543.3	58	645	0	Sat.	20	$\begin{array}{llll}10 & 31 & 44\end{array}$	53	1511	0
Fri.	21	03111	58	7.6	0	Sun.	21	10539	53	1520	0
Sat.	22	N. 0	58	727	0	Mon.	22	111423	52	1529	0
Sun.	23	S. 0151536	58	748	0	Tnes.	23	113528	52	$15 \quad 37$	0
Mon.	24	$\begin{array}{lll}0 & 3.9 & 1\end{array}$	58	88	0	Wed.	24	115621	52	1545	0
Tues.	25	1225	58	829	0	Thur.	25	$\begin{array}{llll}12 & 17 & 4\end{array}$	51	$15 \quad 51$	0
Wed.	26	12550	58	849	0	Fri.	26	$\begin{array}{llll}12 & 37 & 35\end{array}$	51	$\begin{array}{ll}15 & 57\end{array}$	0
Thur.	27	14914	58	9.9	0	Sat.	27	125755	50	$16 \quad 3$	0
Fri.	28	21237	58	929	0	Sun.	28	$\begin{array}{lll}13 & 18 & 2\end{array}$	50	$16 \quad 7$	0
Sat.	29	23558	58	949	0	Mon.	29	133757	49	1611	0
Sun.	30	25919	58	108	0	Tues.	30	135739	48	1614	0
Mon.	30 31	S. 32237	58	1028	0	Wed. Thur.	31 32	$\left\lvert\, \begin{array}{rrrr}14 & 17 & 8 \\ \text { S. } & 14 & 36 & 23\end{array}\right.$	48 47	$\begin{array}{lll}16 & 16 \\ 16 & 18\end{array}$	0 0

1860. AT GREENWICH APPARENT NOON. 1860.											
NOVEMEER, 1860.						DECEIIEER, 1860.					
	Dry of the Month.	THE SUN'S Apparent Declination.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$	Equation of Time, to be subt.from Apparent Time.	$\begin{gathered} \text { Diff } \\ \text { for } \\ 1 \mathrm{hr} \end{gathered}$		Day of the Month.	THE SUN'S Apparent Declination.	Diff. for 1 hr.	Equation of Time, to be subt. from added to Apparent Time.	Diff
Thur.	1	S. $14^{\circ} 366^{\prime} \quad 23^{\prime \prime}$	47	$\begin{array}{cc}\text { m. } \\ 16 & 18\end{array}$	s.	Sat.	1	S. 2105418	21	m. 10 10	s.
Fri.	2	14 5523	47	1618	0	Sun.	2	22 38	21	1012	0
Sat,	3	$\begin{array}{llll}15 & 14 & 10\end{array}$	46	1618	0	Mon.	3	221138	20	948	1
Sun.	4	$\begin{array}{llll}15 & 32 & 41\end{array}$	45	$\begin{array}{ll}16 & 17\end{array}$	0	Tues.	4	$\begin{array}{llll}22 & 19 & 41\end{array}$	19	924	1
Mon.	5	$15 \quad 5057$	45	1615	0	Wed.	5	$\begin{array}{llll}22 & 27 & 18\end{array}$	18	859	1
Tues.	6	$16 \quad 858$	44	1612	0	Thur.	6	223429	17	833	1
Wed.	7	$16 \quad 2642$	43	169	0	Fri.	7	224113	16	87	1
Thur.	8	$16 \quad 4410$	43	$16 \quad 4$	0	Sat.	8	$\begin{array}{llll}22 & 47 & 31\end{array}$	15	741	1
Fri.	9	17120	42	$15 \quad 59$	0	Sun.	9	$\begin{array}{llll}22 & 53 & 21\end{array}$	14	714	1
Sat.	10	171813	41	$15 \quad 53$	0	Mon.	10	$\begin{array}{llll}22 & 58 & 44\end{array}$	12	646	1
Sun.	11	173449	41	1546	0	Tues.	11	$23 \quad 340$	11	618	1
Mon.	12	17516	40	1538	0	Wed.	12	$23 \quad 8 \quad 9$	10	550	1
Tues.	13	$18 \quad 7 \quad 5$	39	1529	0	Thur.	13	$\begin{array}{llll}23 & 12 & 10\end{array}$	9	521	1
Wed.	14	$18 \quad 2244$	38	1520	0	Fri.	14	$\begin{array}{llll}23 & 1543\end{array}$	8	453	1
Thur.	15	$18 \quad 38 \quad 4$	37	$15 \quad 9$	0	Sat.	15	231848	7	423	1
Fri.	16	18534	37	1458	0	Sun.	16	$\begin{array}{llll}23 & 21 & 25\end{array}$	5	354	1
Sat.	17	19744	36	1446	0	Mon.	17	$\begin{array}{llll}23 & 23 & 34\end{array}$	4	324	1
Sun.	18	$19 \quad 223$	35	1433	0	Tues.	18	$\begin{array}{llll}23 & 2515\end{array}$	3	255	1
Mon.	19	$19 \quad 36 \quad 2$	34	$14 \quad 19$	0	Wed.	19	$\begin{array}{llll}23 & 26 & 28\end{array}$	2	225	1
Tues.	20	194938	33	145	0	Thur.	20	$\begin{array}{llll}23 & 27 & 12\end{array}$	1	155	1
Wed.	21	$20 \quad 254$	32	1349	0	Fri.	21	$23 \quad 2729$	0	125	1
Thur.	22	$\begin{array}{llll}20 & 15 & 47\end{array}$	31	1333	0	Sat.	22	$\begin{array}{llll}23 & 27 & 16\end{array}$	1	055	1
Fri.	23	$20 \quad 2817$	30	1316	0	Sun.	23	$23 \quad 2636$	2	025	1
Sat.	24	204025	29	$12 \quad 59$	0	Mon.	24	$\begin{array}{lll}23 & 25 & 27\end{array}$	3	04	1
Sun.	25	$\begin{array}{llll}20 & 52 & 10\end{array}$	28	1240	0	Tues.	25	$\begin{array}{llll}23 & 23 & 50\end{array}$	4	034	1
Mon.	26	21331	27	1221	0.	Wed.	26	232145	5	14	1
Tues.	27	211428	26	$12 \quad 2$	0	Thur.	27	$\begin{array}{llll}23 & 19 & 11\end{array}$	6	133	1
Wed.	28	$2125 \quad 2$	25	1141	0	Fri.	28	$\begin{array}{llll}23 & 16 & 10\end{array}$	8	$2 \quad 2$	1
Thur.	29	213511	24	1120	0	Sat.	29	231241	9	232	1
Fri.	30	214455	23	1058	- 0	Sun.	30	$\begin{array}{lll}23 & 8 & 43\end{array}$	10	31	1
Sat.	31	S. $21 \quad 5415$	22	1035	0	Mon. Tues.	31 32	S. $22 \begin{array}{rrrr}23 & 4 & 59 & 26\end{array}$	11 12	329 358	1 1

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
JANUARY, 1860.				FEEREARY, 1860.			
MEAN TIME.				mean time.			
might ascengion.		declination.		riget ascension.,		dechination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	$\begin{array}{ccccc}\text { h. m. } & \\ 0 & 5 . \\ 0 & 55 & 26\end{array}$	N. ${ }^{\circ} 8$	$\begin{array}{cccc}\text { N. } 11 & \prime & \prime \prime & 59\end{array}$	1	$\begin{array}{ccrrr}\text { h. m. } & \text { s. } \\ 4 & 3 & 9\end{array}$	N. 24×30	N. 25 ¢ 4.410
2	14224	$13 \quad 3919$	$\begin{array}{llll}16 & 6 & 19\end{array}$	2	$\begin{array}{lllll}5 & 3 & 31\end{array}$	263712	$\begin{array}{llll}27 & 716\end{array}$
3	2337	$18 \quad 25 \quad 3$	$\begin{array}{llll}20 & 33 & 14\end{array}$	3	$\begin{array}{llll}6 & 6 & 39\end{array}$	27128	$26 \quad 5021$
4	32818	222821	$24 \quad 740$	4	71033	$\begin{array}{llll}26 & 1 & 8\end{array}$	24 44 39
5	4285	$25 \quad 2816$	$\begin{array}{llll}26 & 27 & 19\end{array}$	5	8 13	$\begin{array}{llll}23 & 1 & 54 \\ 18\end{array}$	$\begin{array}{lllll}20 & 54 & 47 \\ 15 & 38\end{array}$
6	53129	$27 \quad 211$	271043	6	$\begin{array}{llll}9 & 1310\end{array}$	182553	153821
7	63625	265130	$26 \quad 4 \quad 3$	7	101016	123545	92145
8	74026	244851	$23 \quad 724$	8	$11 \quad 459$	N. 6000	N. 23436
9	84139	$\begin{array}{lll}21 & 2 & 3\end{array}$	183548	9	115814	S. 055123	S. 4,1431
10	$\begin{array}{llll}9 & 39 & 19\end{array}$	15523	125425	10	12514	73146	104024
11	$10 \quad 3346$	94630	N. 63146	11	134423	$\begin{array}{ll}13 & 37 \\ 184\end{array}$	$\begin{array}{llll}16 & 22 & 3\end{array}$
12	112554	N. 313131	S. 00514	12	$\begin{array}{lllllllllllll}14 & 38 & 49\end{array}$	185051	$21 \quad 235$
13	121653	S. 32143	63321	13	$\begin{array}{llll}15 & 34 & 27\end{array}$	225545	$\begin{array}{llll}24 & 29 & 11\end{array}$
14	$\begin{array}{lll}13 & 7 & 51\end{array}$	93751	12338	14	163055	254158	26 33 32 6 12
15	$13 \quad 5944$	151657	174743	15	$\begin{array}{llll}17 & 27 & 18\end{array}$	$27 \quad 339$	271230
16	14538	$\begin{array}{llll}20 & 3 & 36\end{array}$	$22 \quad 258$	16	182230	$\begin{array}{lll}27 & 0 & 32 \\ 25 & 87\end{array}$	$\begin{array}{llll}26 & 28 & 36\end{array}$
17	15488	234426	$25 \quad 642$	17	191536	253747	$24 \quad 2923$
18	164413	$\begin{array}{ll}26 & 849\end{array}$	26507	18	$\begin{array}{llll}20 & 6 & 3\end{array}$	23451	212546
19	$17 \quad 4023$	$\begin{array}{llll}27 & 10 & 16\end{array}$	$27 \quad 921$	19	$\begin{array}{llll}20 & 53 & 48\end{array}$	193341	$\begin{array}{llll}17 & 30 & 13\end{array}$
20	$18 \quad 35 \quad 26$	$\begin{array}{llll}26 & 47 & 50\end{array}$	$26 \quad 633$	20	213910	151656	125520
21	192817	$25 \quad 641$	$23 \quad 4936$	21	$22 \quad 2244$	102653	75259
22	201824	$\begin{array}{llll}22 & 1655\end{array}$	203017	22	$\begin{array}{lll}23 & 5 & 14\end{array}$	S. 514149	S. 23413
23	$21 \quad 544$	183123	162157	23	234730	N. 088	N. 25035
24	215039	14 3	113750	24	03025	$532 \quad 2$	8119
25	223350	$\begin{array}{llll}9 & 6 & 9\end{array}$	62956	25	11450	$\begin{array}{llll}1046 & 32\end{array}$	$\begin{array}{lll}13 & 16 & 46\end{array}$
26	$\begin{array}{llll}23 & 16 & 5\end{array}$	S.3	S. 18853	26	$\begin{array}{llll}2 & 1 & 40 \\ 2 & 51 & 41\end{array}$	$\begin{array}{rrr}15 & 40 & 21 \\ 20 & 0 & 45\end{array}$	$\begin{array}{llll}17 & 55 & 36 \\ 21 & 53 & 54\end{array}$
27	$\begin{array}{lllll}23 & 58 & 19\end{array}$	N. 13331	N. 41536	27	25141	$20 \quad 045$	215354
28	04130	65610	$\begin{array}{llll}9 & 33 & 59\end{array}$	28	$\begin{array}{ll}3 & 45 \\ 451\end{array}$	23 \times	245557 $\times 264445$
29	12641	$12 \quad 742$	143554	29	44240	N. $26 \quad 0 \quad 33$	N. 264445
30	21450	165655	19859	30			
31	$3 \quad 650$	N. $21 \quad 10 \quad 3$	N. $22 \begin{array}{lll}57 & 52\end{array}$	31			

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
MARCH, 1860.				APRIL, 1860.			
MEAN TIME.				MEAN TIME.			
Right ASCENSION.		declination.		RIGHT ASCENSION.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
	h. m. s.	- ' 1	- , "		h. m. s.	- ' "	- ' "
1	54251	N. 276638	N. 27438	1	92042	N. 172426	N. 144213
2	64428	$\begin{array}{llll}26 & 37 & 38\end{array}$	$2545 \quad 5$	2	101531	114553	8388
3	$7 \quad 45 \quad 51$	24279	224436	3	11918	N. 512154	N. $2 \quad 0 \quad 017$
4	84540	203856	$18 \quad 1212$	4	$\begin{array}{lll}12 & 2 & 59\end{array}$	S. 12232	S. 44615
5	94322	$15 \quad 271$	122620	5	$12 \quad 5729$	$8 \quad 433$	11159
6	$\begin{array}{lll}10 & 39 & 7\end{array}$	91327	N. $5 \quad 5150$	6	$13 \quad 5331$	141450	17036
7	113337	N. 2254	S. $1 \begin{array}{lll}1 & 3\end{array}$	7	145123	192938	213933
8	122749	S. 42933	75028	8	$15 \quad 5042$	$23 \quad 2819$	245427
9	$13 \quad 2234$	11246	$14 \quad 3 \quad 27$	9	165024	$\begin{array}{llll}25 & 57 & 4\end{array}$	263550
10	141828	$16 \quad 4950$	191931	10	$17 \quad 49 \quad 2$	26512	264327
11	$\begin{array}{llll}15 & 15 & 39\end{array}$	213028	23214	11	184517	$\begin{array}{llll}26 & 14 & 20\end{array}$	$25 \quad 2514$
12	161340	$2450 \quad 4$	$25 \quad 5643$	12	193821	241755	$\begin{array}{ll}22 & 5413\end{array}$
13	171131	264044	$\begin{array}{lll}27 & 2 & 13\end{array}$	13	$20 \quad 284$	21160	19253
14	$\begin{array}{llll}18 & 8 & 3\end{array}$	271145	264016	14	211449	$17 \quad 234$	151137
15	$\begin{array}{llll}19 & 2 & 14\end{array}$	25590	245921	15	215916	12529	10261
16	$19 \quad 5331$	234255	221118	16	224217	75428	S. 5181844
17	204153	$20 \quad 26 \quad 9$	18293	17	$23 \quad 2445$	S. 23958	N. $0 \quad 0 \quad 39$
18	212742	162132	$14 \quad 5 \quad 4$	18	$0 \quad 736$	N. 24154	52232
19	221136	11414	$910 \quad 52$	19	05144	8111	103626
20	225421	63546	S. 31571	20	1380	$13 \quad 641$	$15 \quad 3014$
21	$23 \quad 3646$	S. 11555	N. 12618	21	2278	174515	194945
22	01942	N. 48819	64846	22	$\begin{array}{llll}3 & 19 & 33\end{array}$	214142	231858
23	140	$\begin{array}{llll}9 & 26 & 17\end{array}$	115920	23	$\begin{array}{llll}4 & 15 & 12\end{array}$	243930	254120
24	15029	142620	164538	24	51323	262242	$26 \quad 4214$
25	23950	185525	$20 \quad 5349$	25	$6 \quad 1247$	263855	$\begin{array}{llll}26 & 12 & 17\end{array}$
26	33227	223852	$24 \quad 835$	26	71153	252225	$24 \quad 952$
27	42817	25211	$\begin{array}{llll}26 & 14 & 16\end{array}$	27	$8 \quad 928$	223544	204127
28	$5 \quad 2640$	264640	$\begin{array}{llll}26 & 56 & 51\end{array}$	28	$9 \quad 458$	182851	$\begin{array}{lll}15 & 59 & 56\end{array}$
29	$6 \quad 26 \quad 22$	264349	$\begin{array}{lll}26 & 7 & 2\end{array}$	29	$\begin{array}{llll}9 & 58 & 33\end{array}$	$\begin{array}{lll}13 & 1656\end{array}$	102212
30	72556	25630	234243	30	$10 \quad 5052$	N. 71810	N. 4723
31	82413	N. 215644	N. $19 \quad 50 \quad 0$	31			

THE MOON'S RIGHT ASCENSION AND DECLINATION.

MIAY, 1860.				JUNE, 1860.			
MEAN TIME.				MEAN TIME.			
RIGHt AScension.		declination.		RIGHT AsCension.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
	h. m. s.	- '"	- ${ }^{\circ}{ }^{\prime \prime}$		h. m. s.	- ${ }^{\circ}$ ' ${ }^{\prime \prime}$	¢ ${ }^{\circ}{ }^{\prime}{ }^{\prime \prime}$
1	114253	N. 05229	S. 22348	1	1546	S. 203037	S. $22 \quad 25 \quad 58$
2	$\begin{array}{llll}12 & 35 & 38\end{array}$	S. $5 \quad 38888$	8497	2	$\begin{array}{llll}16 & 3 & 14\end{array}$	2410	25144
3	$\begin{array}{llll}13 & 30 & 4\end{array}$	115216	14456	3	$17 \quad 316$	$26 \quad 358$	$26 \quad 3010$
4	$\begin{array}{llll}14 & 26 & 45\end{array}$	$17 \quad 2441$	194812	4	$\begin{array}{lll}18 & 2 & 31\end{array}$	$\begin{array}{llll}26 & 32 & 44\end{array}$	$\begin{array}{llll}26 & 12 & 24\end{array}$
5	$15 \quad 2539$	21534	$\begin{array}{llll}23 & 37 & 6\end{array}$	5	$18 \quad 59 \quad 23$	$25 \quad 30 \quad 24$	242824
6	162555	$24 \quad 5833$	$\begin{array}{llll}25 & 56 & 19\end{array}$	6	$19 \quad 52 \quad 54$	$23 \quad 8 \quad 23$	213226
7	17265	$\begin{array}{lll}26 & 29 & 52\end{array}$	263925	7	204251	194241	174110
8	182425	262546	$25 \quad 5013$	8	$\begin{array}{llll}21 & 29 & 37\end{array}$	$15 \quad 2948$	131021
9	191942	245428	234030	9	$2213 \quad 58$	104424	81323
10	$\begin{array}{llll}20 & 11 & 23\end{array}$	$\begin{array}{llll}22 & 10 & 21\end{array}$	20263	10	$\begin{array}{llll}22 & 56 & 51\end{array}$	53836	S. 31114
11	205939	182935	162246	11	$\begin{array}{llll}23 & 39 & 16\end{array}$	S. 02226	N. 2161645
12	21457	$14 \quad 716$	114436	12	$0 \quad 2215$	N. 45513	73149
13	$22 \quad 2839$	$\begin{array}{lll}9 & 16 & 7\end{array}$	6435	13	1649	$10 \quad 520$	$\begin{array}{llll}12 & 34 & 24\end{array}$
14	231113	S. 4640	S. 12759	14	15358	$14 \quad 5733$	$\begin{array}{llll}17 & 13 & 5\end{array}$
15	$23 \quad 5349$	N. 111151	N. 35154	15	24430	$\begin{array}{ll}19 & 19\end{array}$	211331
16	03727.	63024	$9 \quad 6 \quad 38$	16	$3 \quad 3854$	$\begin{array}{llll}22 & 54 & 7\end{array}$	241833
17	1233	11390	$14 \quad 555$	17	43658	$\begin{array}{llll}25 & 24 & 29\end{array}$	$\begin{array}{llll}26 & 9 & 44\end{array}$
18	21132	162538	183615	18	$\begin{array}{llll}5 & 37 & 38\end{array}$	$26 \quad 32 \quad 23$	26314
19	$\begin{array}{lll}3 & 3 & 28\end{array}$	203541	222142	19	$\begin{array}{llll}6 & 39 & 7\end{array}$	$\begin{array}{lll}26 & 4 & 59\end{array}$	$\begin{array}{llll}25 & 14 & 3\end{array}$
20	$\begin{array}{llll}3 & 59 & 0\end{array}$	$23 \quad 52 \quad 3$	$\begin{array}{ll}25 & 4 \\ 30\end{array}$	20	73933	$\begin{array}{llll}23 & 58 & 56\end{array}$	22210
21	45733	$25 \quad 5659$	262743	21	83738	$20 \quad 229$	$18 \quad 446$
22	$\begin{array}{llll}5 & 57 & 45\end{array}$	$\begin{array}{llll}26 & 35 & 23\end{array}$	$\begin{array}{llll}26 & 19 & 12\end{array}$	22	$\begin{array}{lll}9 & 32 & 56\end{array}$	$\begin{array}{llll}15 & 31 & 29\end{array}$	$1245 \quad 5$
23	$\begin{array}{llll}6 & 57 & 53\end{array}$	$\begin{array}{llll}25 & 39 & 3\end{array}$	243525	23	102550	94823	$\begin{array}{llll}6 & 44 & 12\end{array}$
24	75625	$23 \quad 923$	212232	24	111711	N. 33513	N. 0244
25	85230	$\begin{array}{llll}19 & 1652\end{array}$	165434	25	$\begin{array}{lll}12 & 8 & 7\end{array}$	S. 24642	S. 5154
26	9468	14182	112943	26	$\begin{array}{llll}12 & 59 & 42\end{array}$	85722	$\begin{array}{llll}11 & 52 & 31\end{array}$
27	103755	8325	N. 52737	27	135253	143746	171049
28	112850	N. 21846	S. 0522	28	144814	192926	213128
29	$1220 \quad 0$	S. 42218	$\begin{array}{llll}7 & 9 & 33\end{array}$	29	$\begin{array}{llll}15 & 45 & 43\end{array}$	$\begin{array}{llll}23 & 14 & 57\end{array}$	$\begin{array}{llll}24 & 38 & 11\end{array}$
30	131227	101114	$13 \quad 447$	30	164433	S. 253948	S. $2618 \quad 54$
31	$14 \quad 7 \quad 3$	S. 154735	S. $1817 \quad 2$				

THE MOON'S RIGHT ASCENSION AND DECLINATION.

JULE, 1860.				AUGUST, 1860.			
MEAN TIME.				MEAN TIME.			
RIGHt ASCENSTON.		dechination.		RIGET ASCENSION.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Miduight.	Noon.	Midnight.
	h. m. s.	- ' "	- '"		h. m. s.	$\bigcirc{ }^{\circ} 1$	○ ' "
1	174323	S. 26356	S. $2628 \quad 33$	1	2100	S. 181024	S. $16 \quad 0 \quad 56$
2	184038	2600	$25 \quad 1039$	2	$2146 \quad 2$	134240	$\begin{array}{ll}11 & 1719\end{array}$
3	19356	$24 \quad 2 \quad 4$	22368	3	$22 \quad 2954$	84629	61139
4	$20 \quad 2614$	205450	$19 \quad 0 \quad 15$	4	$23 \quad 1235$	S. 33410	S. 05552
5	21149	165423	14397	5	$\begin{array}{llll}23 & 54 & 57\end{array}$	N. 14333	N. 42124
6	215923	121616	94727	6	03754	$\begin{array}{llll}6 & 57 & 1\end{array}$	$9 \quad 2912$
7	224247	7149	S. $4 \quad 3744$	7	12223	115645	141822
8	$23 \quad 2514$	S. 155925	N. 03937	8	2915	163240	18388
9	$0 \quad 745$	N. 31818	$5 \quad 55 \quad 21$	9	25915	20336	$\begin{array}{llll}22 & 15 & 47\end{array}$
10	$\begin{array}{llll}0 & 51 & 19\end{array}$	$829 \cdot 50$	11028	10	35251	234415	245629
11	13656	132559	154456	11	44954	$25 \quad 5029$	262416
12	22531	175546	195640	12	54938	26365	262433
13	$\begin{array}{llll}3 & 17 & 46\end{array}$	214542	$23 \quad 2045$	13	65036	254844	244816
14	41355	243934	$25 \quad 3952$	14	75112	$23 \quad 23 \quad 29$	213522
15.	$\begin{array}{llll}5 & 13 & 26\end{array}$	261930	263631	15	85013	192532	165612
16	$\begin{array}{llll}6 & 14 & 58\end{array}$	262925	25.5718	16	$\begin{array}{llll}9 & 47 & 12\end{array}$	14100	111957
17	$\begin{array}{llll}7 & 16 & 39\end{array}$	245955	$23 \quad 3750$	17	104222	$7 \quad 5919$	N. 44127
18	$8 \quad 1647$	215218	194516	18	113627	N. 11948	S. $22 \begin{array}{lll}17\end{array}$
19	$\begin{array}{llll}9 & 14 & 28\end{array}$	171911	143654	19	123020	S. 52130	83442
20	$\begin{array}{llll}10 & 9 & 35\end{array}$	114129	8367	20	132456	113858	143133
21	$11 \quad 247$	N. 52359	N. 28810	21	142050	17955	193151
22	1115459	S. $1 \begin{array}{lll}1 & 8 & 19\end{array}$	S. 42238	22	$\begin{array}{lll}15 & 18 & 13\end{array}$	213522	231851
23	$\begin{array}{llll}12 & 47 & 15\end{array}$	$\begin{array}{lll}7 & 32 & 5\end{array}$	10347	23	$\begin{array}{llll}16 & 16 & 37\end{array}$	$24+12$	25413
24	$\begin{array}{llll}13 & 40 & 32\end{array}$	132618	$16 \quad 622$	24	$17 \quad 15 \quad 2$	261831	263329
25	$1435 \quad 28$	183210	204141	25	$\begin{array}{lll}18 & 12 & 14\end{array}$	262624	$\begin{array}{llll}25 & 58 & 12\end{array}$
26	$\begin{array}{llll}15 & 32 & 11\end{array}$	$\begin{array}{llll}22 & 33 & 8\end{array}$	$24 \quad 456$	26	$\begin{array}{lll}19 & 7 & 6\end{array}$	$2510 \quad 5$	$24 \quad 3 \quad 34$
27	$\begin{array}{llll}16 & 30 & 10\end{array}$	$25 \quad 15 \quad 51$	$26 \quad 457$	27	$19 \quad 59 \quad 2$	224018	$21 \quad 24$
28	$\begin{array}{llll}17 & 28 & 20\end{array}$	$\begin{array}{llll}26 & 31 & 49\end{array}$	$\begin{array}{llll}26 & 36 & 24\end{array}$	28	204757	$1910 \quad 39$	$17 \quad 750$
29	$\begin{array}{llll}18 & 25 & 19\end{array}$	$\begin{array}{llll}26 & 19 & 12\end{array}$	25417	29	213412	145521	123452
30	$\begin{array}{llll}19 & 19 & 57\end{array}$	244325	232740	30	$22 \quad 18 \quad 24$	$10 \quad 755$	736
31	201135	S. 215540	S. $20 \quad 9 \quad 16$	31	$23 \quad 1 \begin{array}{lll} \\ 23\end{array}$	S. 50037	S. 2231

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
SEPTEMIBER, 1860.				OCTOBER, 1860.			
MEAN TIME.				mean time.			
right ascension.		decinvation.		Right ascension.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	$\begin{array}{cccc}\mathrm{h} . & \mathrm{m} . & \mathrm{s} . \\ 23 & 43 & 42\end{array}$	N. ${ }^{\circ} 0 c^{\prime} 15{ }^{\prime \prime}$		1	$\begin{array}{rr} \text { h. } \mathrm{m} . & \mathrm{s} . \\ 145 & 3 \end{array}$		N. $16{ }^{\circ} 14140$
2	02628	5307	$8 \quad 347$	2	23259	181816	201110
3	11024	103320	125728	3	32341	215142	231815
4	15617	151448	172357	4	$\begin{array}{lll}417 & 9\end{array}$	$\begin{array}{llll}24 & 29 & 11\end{array}$	$25 \quad 2255$
5	24449	192321	211127	5	5 5 1254	$\begin{array}{llll}25 & 58 & 3\end{array}$	26 26 1322
6	3 36 25	224632	$24 \quad 653$	6	6103	$\begin{array}{llll}26 & 7 & 58\end{array}$	254113
7	4317	251045	255624	7	$7 \quad 728$	245253	23439
8	52825	262217	26270	8	8	221234	$\begin{array}{llll}20 & 22 & 4\end{array}$
9	$6 \begin{array}{lll}6 & 2717\end{array}$	$\begin{array}{ll}26 & 9\end{array}$	25293	9	85948	181256	154647
10	$\begin{array}{lll}7 & 26 & 27\end{array}$	242531	22598	10	$\begin{array}{llll}9 & 5415\end{array}$	$\begin{array}{lll}13 & 5 & 28\end{array}$	101111
11	82451	211046	19141	11	10485	$\begin{array}{lll}7 & 6 & 21\end{array}$	N. $\begin{aligned} & \text { N }\end{aligned} 533136$
12	92152	163342	13492	12	$1142 \quad 7$	N. 03552	S. 24345
13	101733	$\begin{array}{llll}10 & 5017\end{array}$	74019	13	123717	S. 61157	$\begin{array}{llll}9 & 15 & 18\end{array}$
14	111226	N. 42220	N. 055940	14	$13 \quad 3420$	$12 \quad 2017$	$\begin{array}{llll}15 & 13 & 27\end{array}$
15	$12 \quad 720$	S. 22413	S. 54548	15	143338	175130	201120
16	$\begin{array}{llll}13 & 3 & 4\end{array}$	$\begin{array}{llll}9 & 1 & 35\end{array}$	$12 \quad 810$	16	153451	221022	234628
17	$14 \quad 0 \quad 16$	$15 \quad 221$	174111	17	163649	245813	254455
18	14596	$\begin{array}{lll}20 & 2 & 1\end{array}$	$22 \quad 241$	18	173753	$26 \quad 635$	$\begin{array}{llll}26 & 3 & 56\end{array}$
19	$15 \begin{array}{lll}159 & 4\end{array}$	234125	$\begin{array}{llll}24 & 57\end{array}$	19	183624	253816	245120
20	16594	254858	26176	20	193123	23458	$\begin{array}{llll}22 & 21 & 51 \\ 18 & 52\end{array}$
21	$17 \quad 5743$	262157	$26 \quad 430$	21	202236	204336	$\begin{array}{llll}18 & 52 & 30\end{array}$
22	$18 \quad 5348$	$25 \quad 265$	242822	22	211026	165029	$\begin{array}{llll}14 & 39 & 22\end{array}$
23	.19 4640	$\begin{array}{ll}2313 & 8\end{array}$	214217	23	215536	122044	9567
24	$\begin{array}{llll}20 & 36 & 16\end{array}$	195740	$\begin{array}{ll}18 & 1\end{array}$	24	22390	72651	S. 45411
25	212258	155421	13390	25	232134	S. 21920	N. 01632
26	$22 \quad 7 \quad 27$	111637	84837	26	$0 \quad 412$	N. 25217	52643
27	$22 \quad 5031$	61621	S. 3418	27	04746	$7 \quad 5836$	102640
28	23330	S. 14414	N. 1337	28	1335	124930	$\begin{array}{cccc}15 & 5 & 39 \\ 10 & 11 & 38\end{array}$
29	01544	N. 4.9840	6 6448	29	22046	171384	191133
30	05930	N. 91515	N. 114139	30 31	$\begin{array}{rrr} 3 & 11 & 15 \\ 4 & 4 & 30 \end{array}$	$\begin{array}{r}20 \\ \hline\end{array}$	$\begin{array}{rrrr}22 & 30 & 56 \\ \text { N. } 24 & 50 & 2\end{array}$

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
NOUEMESER, 1860.				DECEMEER, 1860.			
MEAN TIME.				mean time.			
RIGHT ASCENSton.		declination.		RIGHt ASCENSION.		DECLINATION.	
Day.	Midnight.	Noon	Midnight.	Day.	Midnight.	Noon.	Midnight.
123	$\begin{array}{rrrr}\text { h. } & \text { m. } & \text { s. } \\ 5 & 0 & 2\end{array}$		\circ N .25 56 $\prime \prime$ 12	1	h. m. s. 73654		
	55650	25 5941	254156	2	83154	195043	174352
	65344	$25 \quad 37$	$24 \quad 329$	3	92456	152218	12482
456	74942	224342	21445	\pm	101626	$10 \quad 311$	$\begin{array}{llll}7 & 9 & 52\end{array}$
	84411	$19 \quad 755$	$16 \quad 5442$	5	117812	N. 41016	N. 1638
	$9 \quad 3712$	$14 \quad 2649$	1146	6	115818	S. 1515846	S. $5 \quad 3 \quad 34$
9	$10 \quad 2917$	85439	N. $5 \quad 5431$	7	125048	$8 \quad 517$	11120
	112118	N. 2482	S. 02221	8	134539	13493	162535
	121417	S. 31340	$644 \quad 4$	9	144324	18488	205355
10	$\begin{array}{llll}13 & 9 & 12\end{array}$	94935	124722	10	154352	224018	$\begin{array}{llll}24 & 5 & 1\end{array}$
11	$\begin{array}{llll}14 & 6 & 47\end{array}$	153411	18646	11	$\begin{array}{llll}16 & 45 & 57\end{array}$	$\begin{array}{lll}25 & 6 & 17\end{array}$	$25 \quad 4256$
	$\begin{array}{lll}15 & 7 & 9\end{array}$	20220		12	174748	$25 \quad 5434$	254135
13	$\begin{array}{llll}16 & 9 & 31\end{array}$	$\begin{array}{llll}23 & 49 & 25\end{array}$	$\begin{array}{lll}24 & 57 & 27\end{array}$	13	184728	$\begin{array}{llll}25 & 5 & 4\end{array}$	$24 \quad 6 \quad 43$
14	$17 \quad 1214$	25406	$\begin{array}{llll}25 & 57 & 9\end{array}$	14	194337	224841	211322
15	$\begin{array}{llll}18 & 13 & 18\end{array}$	$25 \quad 4913$	$\begin{array}{llll}25 & 17 & 37\end{array}$	15	$20 \quad 3548$	$19 \quad 2314$	$17 \quad 2044$
16	19116	$24 \quad 2413$	$\begin{array}{llll}23 & 11 & 15\end{array}$	16	212421	$\begin{array}{llll}15 & 8 & 8\end{array}$	124734
17	$20 \quad 453$	21416	19 56 10	17	$\begin{array}{llll}22 & 9 & 59\end{array}$	102053	74947
	$20 \quad 5444$	175850	155111	18	22 53342	51543	S. 2401
19	214120	$\begin{array}{llll}13 & 3512\end{array}$	$\begin{array}{lll}11 & 12 & 37\end{array}$	19	$\begin{array}{llll}23 & 36 & 30\end{array}$	S. $0 \quad 3 \quad 52$	N. 23136
20	$22 \quad 2535$	84457	61336	20	01925	N. $5 \quad 521$	$\begin{array}{llll}7 & 36 & 18\end{array}$
21	$23 \quad 8 \quad 29$	S. $3 \quad 39 \quad 49$	S. 1445	21	1324	$10 \quad 321$	122522
22	23513	N. 133032	N. 4455	22	14923	14413	$\begin{array}{llll}16 & 49 & 4\end{array}$
23	$\begin{array}{llll}0 & 34 & 15\end{array}$	$\begin{array}{llll}6 & 37 & 19\end{array}$	$\begin{array}{llll}9 & 6 & 34\end{array}$	23	2387	184753	203551
	1190	113127	$\begin{array}{llll}13 & 50 & 37\end{array}$	24	3303	221110	$\begin{array}{llll}23 & 32 & 1\end{array}$
25	$2 \quad 6 \quad 5$	$16 \quad 236$	$18 \quad 549$	25	$425 \quad 8$	243630	$25 \quad 2249$
26	2564	195834	21391	26	52242	254921	$25 \quad 5448$
27	3498	$23 \quad 5 \quad 20$	241540	27	62126	253817	245925
28	44453	$\begin{array}{llll}25 & 8 & 18\end{array}$	254142	28	$7 \begin{array}{lll}7 & 19 & 50\end{array}$	$\begin{array}{llll}23 & 58 & 22\end{array}$	$\begin{array}{llll}22 & 35 & 54\end{array}$
2930	54220	$25 \quad 5439$	254621	29	81641	$\begin{array}{llll}20 & 53 & 17\end{array}$	185211
	$640 \quad 7$	N. 251626	N. 24254	30	91125	$\begin{array}{llll}16 & 34\end{array}$	$14 \quad 258$
30				31	$10 \quad 411$	N. 111930	N. 82645

JANUARY.				FEBRUARY.				MARCH.			
		THE MOON'S				THE MOON'S		Thar of the Week.	Day of the Month.	THE MOON'S	
		Age.	Meridian			Age.	Meridian			Age.	Meridian
		Noom.	- Passage.			Noon.	Passage.			Noom.	Passagr.
Sun.	1	d. 8.4	$\begin{array}{cc}\mathrm{h} . & \mathrm{m} . \\ 6 & 1.7\end{array}$	Wed.	1	d. $9 \cdot 5$	$\begin{array}{cc}\text { h. } & \text { m. } \\ 7 & 6.4\end{array}$	Thur.	1	$\stackrel{\text { d. }}{8 \cdot 7}$	$\begin{array}{cc}\mathrm{h} . \mathrm{m} \\ 6 & 50.5\end{array}$
Mon.	2	$9 \cdot 4$	$645 \cdot 3$	Thur.	2	$10 \cdot 5$	$\begin{array}{ll}8 & 4 \cdot 4\end{array}$	Fri.	2	$9 \cdot 7$	750.5
Tues.	3	$10 \cdot 4$	$732 \cdot 8$	Fri.	3	$11 \cdot 5$	$\begin{array}{lll}9 & 5 \cdot 8\end{array}$	Sat.	3	$10 \cdot 7$	$850 \cdot 4$
Wed.	4	$11 \cdot 4$	$825 \cdot 1$	Sat.	4	$12 \cdot 5$	$\begin{array}{ll}10 & 8.4\end{array}$	Sun.	4	$11 \cdot 7$	$948 \cdot 8$
Thur.	5	$12 \cdot 4$	$922 \cdot 5$	Sun.	5	$13 \cdot 5$	1189	Mon.	5	$12 \cdot 7$	$1044 \cdot 8$
Fri.	6	13.4	$1024 \cdot 2$	Mon.	6	$14 \cdot 5$	$12 \quad 8.0$	Tues.	6	$13 \cdot 7$	$1138 \cdot 6$
Sat.	7	$14 \cdot 4$	$1127 \cdot 9$	Tues.	7	$15 \cdot 5$	$18 \quad 3 \cdot 2$	Wed.	7	$14 \cdot 7$	$1231 \cdot 0$
Sun.	8	$15 \cdot 4$	$1230 \cdot 6$	Wed.	8	16.5	$\because 7$	Thur.	8	$15 \cdot 7$	$13 \quad 23 \cdot 1$
Mon.	9	16.4	13 30•1	Thur.	9	$17 \cdot 5$	$\cdots 6$	Fri.	9	$16 \cdot 7$	$1415 \cdot 8$
Tues.	10	$17 \cdot 4$	$1425 \cdot 6$	Fri.	10	$18 \cdot 5$	$15 \quad 37 \cdot 3$	Sat.	10	$17 \cdot 7$	$15 \quad 9 \cdot 9$
Wed.	11	$18 \cdot 4$	$15 \cdot 17 \cdot 6$	Sat.	11	$19 \cdot 5$	$1628 \cdot 6$	Sun.	11	$18 \cdot 7$	$16 \quad 5 \cdot 4$
Thur.	12	$19 \cdot 4$	$16 \quad 7 \cdot 2$	Sun.	12	$20 \cdot 5$	17 21.2	Mon.	12	$19 \cdot 7$	$17 \quad 1 \cdot 6$
Fri.	13	$20 \cdot 4$	$1655 \cdot 7$	Mon.	13	$21 \cdot 5$	$1815 \cdot 1$	Tues.	13	$20 \cdot 7$	$17 \quad 57.4$
Sat.	14	$21 \cdot 4$	$1744 \cdot 5$	Tues.	14	$22 \cdot 5$	$19 \quad 9 \cdot 7$	Wed.	14	$21 \cdot 7$	$18 \quad 51 \cdot 4$
Sun.	15	$22 \cdot 4$	$1834 \cdot 5$	Wed.	15	23.5	$20 \quad 3 \cdot 8$	Thur.	15	$22 \cdot 7$	$1942 \cdot 6$
Mon.	16	$23 \cdot 4$	1926.2	Thur.	16	$24 \cdot 5$	$2056 \cdot 3$	Fri.	16	$23 \cdot 7$	$2030 \cdot 4$
Tues.	17	$24 \cdot 4$	$2019 \cdot 6$	Fri.	17	$25 \cdot 5$	$2146 \cdot 1$	Sat.	17	$24 \cdot 7$	$2115 \cdot 1$
Wed.	18	$25 \cdot 4$	$2118 \cdot 9$	Sat.	18	26.5	$2232 \cdot 9$	Sun.	18	$25 \cdot 7$	$2157 \cdot 4$
Thur.	19	$26 \cdot 4$	$22 \quad 7 \cdot 7$	Sun.	19	27.5	$2316 \cdot 9$	Mon.	19	$26 \cdot 7$	$22 \quad 37 \cdot 9$
Fri.	20	$27 \cdot 4$	$2259 \cdot 8$	Mon.	20	$28 \cdot 5$	$2358 \cdot 5$	Tues.	20	$27 \cdot 7$	$2317 \cdot 5$
Sat.	21	28.4	$2349 \cdot 0$	Tues.	21	$29 \cdot 5$	\%	Wed.	21	$28 \cdot 7$	$23 \quad 57 \cdot 2$
Sun.	22	$29 \cdot 4$	¢	Wed.	22	$0 \cdot 7$	$038 \cdot 6$	Thur.	22	$29 \cdot 7$	¢
Mon.	23	0.5	$035 \cdot 2$	Thur.	23	$1 \cdot 7$	$118 \cdot 0$	Fri.	23	$0 \cdot 9$	0 07 1
Tues.	24	$1 \cdot 5$	118.5	Fri.	24	$2 \cdot 7$	$157 \cdot 6$	Sat.	24	$1 \cdot 9$	$120 \cdot 6$
Wed.	25	$2 \cdot 5$	159.5	Sat.	25	$3 \cdot 7$	$238 \cdot 5$	Sun.	25	$2 \cdot 9$	$26 \cdot 1$
Thur.	26	$3 \cdot 5$	$239 \cdot 2$	Sun.	26	$4 \cdot 7$	$321 \cdot 6$	Mon.	26	$3 \cdot 9$	$255 \cdot 1$
Fri.	27	$4 \cdot 5$	$\begin{array}{lll}3 & 18 \cdot 4\end{array}$	Mon.	27	$5 \cdot 7$	$48 \cdot 0$	Tues.	27	$4 \cdot 9$	$347 \cdot 7$
Sat.	28	$5 \cdot 5$	358.3	Tues.	28	$6 \cdot 7$	458.3	Wed.	28	$5 \cdot 9$	$443 \cdot 5$
Sun.	29	$6 \cdot 5$	$439 \cdot 9$	Wed.	29	$7 \cdot 7$	$552 \cdot 6$	Thur.	29	$6 \cdot 9$	5 5 $41 \cdot 2$
Mon.	30	$7 \cdot 5$	$5 \quad 24 \cdot 5$					Fri.	30	$7 \cdot 9$	6 $69 \cdot 2$
Tues.	31	$8 \cdot 5$	$613 \cdot 1$	Thur.	30	$8 \cdot 7$	$650 \cdot 5$	Sat.	31	$8 \cdot 9$	$736 \cdot 3$
Wed.	32	$9 \cdot 5$	$7 \quad 6.4$					Sun.	32	$9 \cdot 9$	$831 \cdot 1$

1860.			AT	GREENWICH			MEAN NOON.			1860.	
JULY.				AUGUsT.				SEPTEMBER.			
		THE MOON'S				THE MOON'S				THE MOON'S	
		Age. Noion.	Meridian Passage.			$\frac{\text { Age. }}{\text { Noogn. }}$	Meridian Passage.			$\frac{\text { Age. }}{\text { Noon. }}$	Meridian Passage.
		${ }_{12}^{\text {d. }} 3$	$\begin{array}{cc}\text { h. } & \text { m. } \\ 11 & 0 \cdot 1\end{array}$			$\underset{13 \cdot 9}{\mathrm{~d} .}$	h. m. $\begin{array}{ll}12 & 17 \cdot 4\end{array}$			$\begin{gathered} \text { d. } \\ 15 \cdot 6 \end{gathered}$	h. m. $12 \quad 59 \cdot 8$
Sun. Mon.	1	$12 \cdot 3$ $13 \cdot 3$	$\begin{array}{rrr}11 & 0 \cdot 1 \\ 11 & 55 \cdot 5\end{array}$	Wed.	1	$13 \cdot 9$ 14.9	$\begin{array}{rrr}12 & 17 \cdot 4 \\ 13 & 0 \cdot 6 \\ 13 & 4\end{array}$	Sat.	1	$15 \cdot 6$ 16.6	12 12 13 $19 \cdot 8$
Tues.	3	$14 \cdot 3$	$1247 \cdot 8$	Fri.	3	$15 \cdot 9$	$1341 \cdot 5$	Mon.		$17 \cdot 6$	$1421 \cdot 1$
Wed.	4	$15 \cdot 3$	$1336 \cdot 4$	Sat.	4	16.9	$1421 \cdot 3$	Tues.	4	$18 \cdot 6$	$\begin{array}{ll}15 & 4 \cdot 6\end{array}$
Thur.	5	$16 \cdot 3$	$1421 \cdot 5$	Sun.	5	$17 \cdot 9$	$15 \quad 0 \cdot 8$	Wed.	5	$19 \cdot 6$	$1551 \cdot 0$
Fri.	6	$17 \cdot 3$	$15 \quad 3 \cdot 8$	Mon.	-6	$18 \cdot 9$	$1541 \cdot 0$	Thur.	6	$20 \cdot 6$	$1640 \cdot 9$
Sat.	7	$18 \cdot 3$	$1544 \cdot 1$	Tues.	7	$19 \cdot 9$	$1623 \cdot 1$	Fri.	7	$21 \cdot 6$	$1734 \cdot 2$
Sun.	8	$19 \cdot 3$	$1623 \cdot 7$	Wed.	8	$20 \cdot 9$	$17 \quad 8 \cdot 0$	Sat.	8	$22 \cdot 6$	$1830 \cdot 1$
Mon.	9	20.3	$17 \quad 3 \cdot 4$	Thur.	9	$21 \cdot 9$	$17 \quad 56 \cdot 4$	Sun.	9	$23 \cdot 6$	19 27-4
Tues.	10	$21 \cdot 3$	$1744 \cdot 6$	Fri.	10	$22 \cdot 9$	$1848 \cdot 9$	Mon.	10	$24 \cdot 6$	$2024 \cdot 7$
Wed.	11	$22 \cdot 3$	$18 \quad 28 \cdot 2$	Sat.	11	$23 \cdot 9$	$1945 \cdot 0$	Tues.	11	$25 \cdot 6$	$2120 \cdot 8$
Thar.	12	$23 \cdot 3$	19 15•3	Sun.	12	$24 \cdot 9$	$2043 \cdot 7$	Wed.	12	$26 \cdot 6$	$2215 \cdot 3$
Fri.	13	$24 \cdot 3$	$20 \quad 6 \cdot 7$	Mon.	13	$25 \cdot 9$	$2143 \cdot 1$	Thur.	13	$27 \cdot 6$	$\begin{array}{ll}23 & 8.5\end{array}$
Sat,	14	$25 \cdot 3$	$21 \quad 2 \cdot 2$	Tues.	14	$26 \cdot 9$	$2241 \cdot 5$	Fri.	14	$28 \cdot 6$	¢
Sun.	15	$26 \cdot 3$	$22 \quad 1 \cdot 1$	Wed.	15	$27 \cdot 9$	$23 \quad 37 \cdot 7$	Sat.	15	$0 \cdot 2$	$0 \quad 1 \cdot 2$
Mon.	16	$27 \cdot 3$	$23 \quad 1 \cdot 4$	Thur.	16	28.9	ó	Sun.	16	$1 \cdot 2$	$054 \cdot 3$
Tues.	17	$28 \cdot 3$	'	Fri.	17	$0 \cdot 6$	$031 \cdot 7$	Mon.	17	$2 \cdot 2$	$148 \cdot 9$
Wed.	18	$29 \cdot 3$	$\begin{array}{ll}0 & 0.9\end{array}$	Sat.	18	$1 \cdot 6$	$124 \cdot 1$	Tues.	18	$3 \cdot 2$	$245 \cdot 3$
Thur.	19	0.9	058.1	Sun.	19	$2 \cdot 6$	$215 \cdot 8$	Wed.	19	$4 \cdot 2$	$343 \cdot 2$
Fri.	20	$1 \cdot 9$	$152 \cdot 3$	Mon.	20	$3 \cdot 6$		Thur.	20	$5 \cdot 2$	$441 \cdot 7$
Sat.	21	$2 \cdot 9$	$244 \cdot 0$	Tues.	21	$4^{\cdot 6}$	$\begin{array}{ll}4 & 1 \cdot 3\end{array}$	Fri.	21	$6 \cdot 2$	$539 \cdot 1$
Sun.	22	$3 \cdot 9$	$334 \cdot 2$	Wed.	22	$5 \cdot 6$	$456 \cdot 3$	Sat.	22	$7 \cdot 2$	$634 \cdot 0$
Mon.	23	$4 \cdot 9$	$424 \cdot 1$	Thur.	23	$6 \cdot 6$	$552 \cdot 7$	Sun.	23	$8 \cdot 2$	$725 \cdot 4$
Tues.	24	$5 \cdot 9$	$514 \cdot 8$	Fri.	24	$7 \cdot 6$	$649 \cdot 4$	Mon.	24	$9 \cdot 2$	$813 \cdot 1$
Wed.	25	$6 \cdot 9$	$67 \cdot 1$	Sat.	25	$8 \cdot 6$	$745 \cdot 1$	Tues.	25	$10 \cdot 2$	$857 \cdot 6$
Thur.	26	$7 \cdot 9$	$7 \quad 1.5$	Sun.	26	$9 \cdot 6$	$838 \cdot 3$	Wed.	26	11.2	9 $39 \cdot 6$
Fri.	27	$8 \cdot 9$	$757 \cdot 5$	Mon.	27	$10 \cdot 6$	828.4	Thur.	27	$12 \cdot 2$	$10 \quad 19 \cdot 9$
Sat.	28	$9 \cdot 9$	$853 \cdot 9$	Tues.	28	$11 \cdot 6$	$10 \quad 15 \cdot 1$	Fri.	28	$13 \cdot 2$	$10 \quad 59 \cdot 5$
Sun.	29	$10 \cdot 9$	949.2	Wed.	29	$12 \cdot 6$	$10 \quad 58 \cdot 8$	Sat.	29	$14 \cdot 2$	$1139 \cdot 3$
Mon.	30	$11 \cdot 9$	$1041 \cdot 9$	Thur.	30	$13 \cdot 6$	$1140 \cdot 3$	Sun.	30	$15 \cdot 2$	$1220 \cdot 3$
Tues.	31	$12 \cdot 9$	1131.4	Fri.			$1220 \cdot 3$	Mon.	31	16.2	13 3.2
Wed.	32	$13 \cdot 9$	$12 \quad 17 \cdot 4$	Sat.	32	$15 \cdot 6$	$1259 \cdot 8$				

1860.			AT GREENWIOH MEAN NOON.								1860.
OCTOBER.				NOVEMEER.				DECEMBER.			
		THE MOON'S				THE MOON'S				THE MOON'S	
		Age.	Meridian			Age.	Meridian			Age.	Meridian
		Noon.	Passage.			Noon.	Passig\%.			Noon.	Passage.
		${ }_{16.2}^{\text {d. }}$				$\xrightarrow[17.9]{\text { d. }}$	$\begin{array}{ccc}\mathrm{h} & \mathrm{m}, \\ 14 & 19.1\end{array}$			$\stackrel{\text { d. }}{18}$	$\begin{array}{cc}\mathrm{h} & \mathrm{m} . \\ 14 & \\ 59 \cdot 1\end{array}$
Mon. Tues.	1	$16 \cdot 2$ 17.2	$\begin{array}{rrr}13 & 3 \cdot 2 \\ 13 & 48 \cdot 7\end{array}$	Thur.	1	17.9 18.9	$\begin{array}{lll}14 & 19 \cdot 1 \\ 15 & 14 \cdot 1\end{array}$	Sit.	2	$18 \cdot 5$ 19.5	$\begin{array}{ll}14 & 59 \cdot 1 \\ 15 & 51 \cdot 7\end{array}$
Wed.	3	$18 \cdot 2$	14 37•3	Sat.	3	$19 \cdot 9$	$\begin{array}{lll}16 & 9 \cdot 0\end{array}$	Mon.	3	$20 \cdot 5$	$1642 \cdot 2$
Thar.	4	$19 \cdot 2$	$1529 \cdot 0$	Sun.	4	$20 \cdot 9$	$17 \quad 2 \cdot 7$	Tues.	4	$21 \cdot 5$	$1731 \cdot 1$
Fri.	5	$20 \cdot 2$	$1623 \cdot 0$	Mon.	5	$21 \cdot 9$	$1754 \cdot 7$	Wed.	5	$22 \cdot 5$	$1819 \cdot 5$
Sat.	6	$21 \cdot 2$	$1718 \cdot 4$	Tues.	6	$22 \cdot 9$	$1845 \cdot 1$	Thur.	6	$23 \cdot 5$	$\begin{array}{ll}19 & 8 \cdot 6\end{array}$
Sun.	7	$22 \cdot 2$	$18 \quad 13 \cdot 9$	Wed.	7	$23 \cdot 9$	$1934 \cdot 8$	Fri.	7	$24 \cdot 5$	1959.5
Mon.	8	$23 \cdot 2$	$19 \quad 8 \cdot 4$	Thur.	8	$24 \cdot 9$	$2024 \cdot 8$	Sat.	8	$25 \cdot 5$	$2053 \cdot 4$
Tues.	9	$24 \cdot 2$	$20 \quad 1 \cdot 5$	Fri.	9	$25 \cdot 9$	$2116 \cdot 2$	Sun.	9	$26 \cdot 5$	$2150 \cdot 5$
Wed.	10	$25 \cdot 2$	$2053 \cdot 5$	Sat.	10	$26 \cdot 9$	$2210 \cdot 1$	Mon.	10	$27 \cdot 5$	$2250 \cdot 3$
Thur.	11	$26 \cdot 2$	$2145 \cdot 2$	Sun.	11	$27 \cdot 9$	$23 \quad 7 \cdot 2$	Tues.	11	$28 \cdot 5$	2351.0
Fri.	12	$27 \cdot 2$	$2237 \cdot 5$	Mon.	12	$28 \cdot 9$	δ	Wed.	12	$29 \cdot 5$	δ
Sat.	13	28.2	23 31.5	Tues.	13	0.5	$\begin{array}{ll}0 & 7 \cdot 1\end{array}$	Thur.	13	1.0	$050 \cdot 4$
Sun.	14	$29 \cdot 2$	¢	Wed.	14	$1 \cdot 5$	$18 \cdot 5$	Fri.	14	$2 \cdot 0$	$146 \cdot 4$
Mon.	15	$0 \cdot 9$	$027 \cdot 8$	Thur.	15	$2 \cdot 5$	$2 \quad 9 \cdot 0$	Sat.	15	$3 \cdot 0$	$238 \cdot 0$
Tues.	16	$1 \cdot 9$	126.6	Fri.	16	$3 \cdot 5$	$3 \quad 6 \cdot 5$	Sun.	16	$4 \cdot 0$	$325 \cdot 4$
Wed.	17	$2 \cdot 9$	226.9	Sat.	17	$4 \cdot 5$	$359 \cdot 7$	Mon.	17	$5 \cdot 0$	$4 \quad 9 \cdot 3$
Thur.	18	$3 \cdot 9$	$327 \cdot 0$	Sun.	18	$5 \cdot 5$	448.4	Tues.	18	$6 \cdot 0$	$450 \cdot 7$
Fri.	19	$4 \cdot 9$	$424 \cdot 8$	Mon.	19	$6 \cdot 5$	533.2	Wed.	19	$7 \cdot 0$	$530 \cdot 8$
Sat.	20	$5 \cdot 9$	518.9	Tues.	20	$7 \cdot 5$	$615 \cdot 2$	Thur.	20	$8 \cdot 0$	$610 \cdot 8$
Sun.	21	$6 \cdot 9$	$6 \quad 8.8$	Wed.	21	$8 \cdot 5$	$655 \cdot 5$	Fri.	21	$9 \cdot 0$	$651 \cdot 6$
Mon.	22	$7 \cdot 9$	654.9	Thur.	22	$9 \cdot 5$	$735 \cdot 2$	Sat.	22	$10 \cdot 0$	$734 \cdot 4$
Tues.	23	$8 \cdot 9$	$737 \cdot 8$	Fri.	23	10.5	$815 \cdot 4$	Sun.	23	$11 \cdot 0$	$820 \cdot 1$
Wed.	24	$9 \cdot 9$	$818 \cdot 6$	Sat.	24	$11 \cdot 5$	$857 \cdot 1$	Mon.	24	$12 \cdot 0$	$\begin{array}{ll}9 & 9 \cdot 3\end{array}$
Thur.	25	$10 \cdot 9$	858.4	Sun.	25	$12 \cdot 5$	$941 \cdot 2$	Tues.	25	$13 \cdot 0$	$10 \quad 2 \cdot 0$
Fri.	26	$11 \cdot 9$	$938 \cdot 1$	Mon.	26	$13 \cdot 5$	$1028 \cdot 5$	Wed.	26	$14 \cdot 0$	$10 \quad 57 \cdot 5$
Sat.	27	$12 \cdot 9$	$1018 \cdot 7$	Tues.	27	14.5	$1119 \cdot 2$	Thur.	27	$15 \cdot 0$	1154.5
Sun.	28	13.9	$11 \quad 1.2$	Wed.	28	$15 \cdot 5$	$1212 \cdot 9$	Fri.	28	$16 \cdot 0$	$1251 \cdot 0$
Mon.	29	$14 \cdot 9$	$1146 \cdot 2$	Thur.	29	$16 \cdot 5$	1385	Sat.	29	$17 \cdot 0$	$1345 \cdot 9$
Tues.	30	$15 \cdot 9$	$1234 \cdot 3$	Fri.	30	$17 \cdot 5$	$14 \quad 4 \cdot 4$	Sun.	30	18.0	1438.3
Wed.	31	$16 \cdot 9$	$1325 \cdot 5$					Mon.	31	$19 \cdot 0$	1528.6
Thur.	32	$17 \cdot 9$	$1419 \cdot 1$	Sat.	31	$18 \cdot 5$		Tues.	32	$20 \cdot 0$	$1617 \cdot 5$

GREENWICH MEAN TLME.						
Lunar distances.						
Day of Month	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	$\mathrm{HI}^{\text {r }}$.	VIL.	IX ${ }^{\text {n }}$
1	Sun Venus Fomalhaut Aldebaran Jupiter	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 90 & 33 & 2 \prime \prime \\ 67 & 22 & 24 \\ 46 & 2 & 59 \\ 57 & 42 & 41 \\ 100 & 32 & 3 \end{array}$	91 57 7 68 44 27 47 20 13 56 13 24 98 59 45	98 21 $\prime \prime$ 70 6 44 48 38 18 54 43 56 97 27 12	90 45 8 71 29 16 49 57 12 53 4 17 95 54 25
2	Sun Venus Fomalhaut Aldebaran Pollux Jupiter	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rr} 101 & 49 \\ 78 & 54 \\ 58 & 4 \\ 56 & 42 \\ 45 & 25 \\ 45 & 43 \\ 87 & 38 \\ 88 & 32 \\ 88 & 6 \end{array}$	$\begin{array}{rrr} 103 & 15 & 45 \\ 79 & 50 & 19 \\ 58 & 5 & 27 \\ 44 & 13 & 1 \\ 85 & 55 & 19 \\ 86 & 31 & 47 \end{array}$	$\begin{array}{rrr} 104 & 41 & 54 \\ 81 & 14 & 53 \\ 59 & 29 & 5 \\ 42 & 42 & 17 \\ 84 & 21 & 47 \\ 84 & 56 & 58 \end{array}$	$\begin{array}{rrr} 106 & 8 & 23 \\ 82 & 39 & 46 \\ 60 & 53 & 19 \\ 41 & 11 & 26 \\ 82 & 47 & 55 \\ 83 & 21 & 49 \end{array}$
3	Sun Venus Fomalhaut a Pegasi Pollux Jupiter Saturn	W. W. W. W. E. E. E.	$\begin{array}{rrr} 113 & 25 & 59 \\ 89 & 49 & 22 \\ 68 & 3 & 1 \\ 45 & 28 & 32 \\ 74 & 53 & 30 \\ 75 & 20 & 53 \\ 109 & 15 & 15 \end{array}$	$\begin{array}{rrr} 114 & 54 & 36 \\ 91 & 16 & 23 \\ 69 & 30 & 35 \\ 46 & 57 & 36 \\ 73 & 17 & 33 \\ 73 & 43 & 37 \\ 107 & 38 & 41 \end{array}$	$\begin{array}{r} 11623 \\ 9243 \\ 70 \\ \hline 38 \\ 47 \\ 48 \\ 48 \\ 71 \\ 71 \end{array} 4113$	$\begin{array}{rrr} 117 & 5258 \\ 94 & 11 & 34 \\ 72 & 27 & 17 \\ 49 & 57 & 47 \\ 70 & 4 & 30 \\ 70 & 27 & 53 \\ 104 & 24 & 23 \end{array}$
4	Sun Venus Fomalhaut ${ }_{a}$ Pegasi Pollux Jupiter Saturn	W. W. W. W. E. E. E.	$\begin{array}{rrr} 125 & 25 & 51 \\ 101 & 36 & 28 \\ 79 & 57 & 42 \\ 57 & 39 & 34 \\ 61 & 55 & 6 \\ 62 & 11 & 38 \\ 96 & 11 & 34 \end{array}$	$\begin{array}{rrr} 126 & 57 & 40 \\ 103 & 6 & 41 \\ 81 & 29 & 12 \\ 59 & 13 & 45 \\ 60 & 16 & 1 \\ 60 & 31 & 8 \\ 94 & 31 & 45 \end{array}$	$\begin{array}{rrr} 128 & 29 & 54 \\ 104 & 37 & 19 \\ 83 & 1 & 10 \\ 60 & 48 & 32 \\ 58 & 36 & 32 \\ 58 & 50 & 13 \\ 92 & 51 & 31 \end{array}$	$\begin{array}{rrr} 130 & 2 & 33 \\ 106 & 8 & 23 \\ 84 & 33 & 35 \\ 62 & 23 & 53 \\ 56 & 56 & 38 \\ 57 & 8 & 53 \\ 91 & 10 & 51 \end{array}$
5	Fomalhaut a Pegasi a Arietis Pollux Jupiter Saturn Regulus	W. W. W. E. E. E. E.	$\begin{array}{rrr} 92 & 21 & 59 \\ 70 & 28 & 45 \\ 27 & 4 & 27 \\ 48 & 31 & 5 \\ 48 & 35 & 42 \\ 82 & 41 & 2 \\ 85 & 19 & 36 \end{array}$	93 56 51 72 7 17 28 45 49 46 48 46 46 51 48 80 57 46 83 36 40	95 32 5 73 46 19 30 27 46 45 6 4 45 7 28 79 14 4 81 53 19	97 7 40 75 25 50 32 10 17 43 22 59 43 22 42 77 29 57 80 9 32
6	a Pegasi a Arietis Jupiter Saturn Regulus	W. W. E. E. E.	$\begin{array}{lll} 83 & 50 & 22 \\ 40 & 50 & 42 \\ 34 & 32 & 37 \\ 68 & 43 & 1 \\ 71 & 24 & 16 \end{array}$	$\begin{array}{lll} 85 & 32 & 35 \\ 42 & 36 & 14 \\ 32 & 45 & 22 \\ 66 & 56 & 24 \\ 69 & 37 & 59 \end{array}$	$\begin{array}{rrr} 87 & 15 & 11 \\ 44 & 22 & 12 \\ 30 & 57 & 45 \\ 65 & 9 & 23 \\ 67 & 51 & 19 \end{array}$	$\begin{array}{rrr} 88 & 58 & 11 \\ 46 & 8 & 36 \\ 29 & 9 & 46 \\ 63 & 21 & 59 \\ 66 & 4 & 15 \end{array}$
7	a Arietis Aldebaran Saturn Regulus Spica	W. W. E. E. E.	$\begin{array}{rrr} 55 & 6 & 41 \\ 24 & 39 & 21 \\ 54 & 19 & 30 \\ 57 & 3 & 26 \\ 111 & 6 & 0 \end{array}$	$\begin{array}{rrr} 56 & 55 & 25 \\ 26 & 19 & 1 \\ 52 & 29 & 59 \\ 55 & 14 & 15 \\ 109 & 16 & 54 \end{array}$	$\begin{array}{rrr} 58 & 44 & 30 \\ 28 & 0 & 5 \\ 50 & 40 & 10 \\ 53 & 24 & 45 \\ 107 & 27 & 27 \end{array}$	$\begin{array}{rrr} 60 & 33 & 54 \\ 29 & 42 & 22 \\ 48 & 50 & 3 \\ 51 & 34 & 57 \\ 105 & 37 & 42 \end{array}$
8	a Arietis Aldebaran Saturn Regulus Spiea	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	69 45 8 38 27 16 39 35 37 42 22 2 96 24 55	71 36 7 40 14 16 37 44 4 40 30 46 94 33 39	73 27 18 42 1 47 35 52 21 38 39 19 92 42 11	$\begin{array}{rrr} 75 & 18 & 41 \\ 43 & 49 & 45 \\ 34 & 0 & 30 \\ 36 & 47 & 42 \\ 90 & 50 & 33 \\ \hline \end{array}$

GREENWICH MEAN TIME.						
Lunar distances.						
Day of Month.	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Positio } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	Vr ${ }^{\text {b }}$.	IX ${ }^{\text {b }}$
9	a Arietis	W.	$84^{\circ} 374{ }^{\prime \prime}$	$86^{\circ} 29{ }^{\prime \prime}$	$88{ }^{\circ} 2{ }^{\text {2 }}$	$90^{\circ} 141{ }^{\prime \prime}$
	Aldebaran	W.	525448	544434	563430	582436
	Spica	E.	813016	793755	774531	$\begin{array}{lll}75 & 53 & 5\end{array}$
	Mars	E.	1061218	104256	1023750	1005032
10	Aldebaran	W.	$\begin{array}{llll}67 & 36 & 14\end{array}$	$\begin{array}{llll}69 & 26 & 37\end{array}$	711657	$\begin{array}{rrr}73 & 715\end{array}$
	Jupiter	W.	$25 \quad 4 \quad 7$	265720	285030	304335
	Pollux	W.	$25 \quad 241$	265259	284328	$\begin{array}{llll}30 & 34 & 2\end{array}$
	Spica	E.	66314	643849	624640	$\begin{array}{llll}60 & 54 & 37\end{array}$
	Mars	E.	91544	$90 \quad 654$	881949	8632 50
11	Aldebaran	W.	82174	$84 \quad 635$	855554	87451
	Jupiter	W.	$40 \quad 7 \quad 4$	415916	435116	$4543 \quad 4$
	Pollux	W.	394657	413717	$43 \quad 2730$	$\begin{array}{llll}45 & 17 & 33\end{array}$
	Spica	E.	513636	494533	475444	$46 \quad 48$
	Mars	E.	77403	$75 \quad 54 \quad 2$	$74 \quad 814$	722240
	Sun	E.	1401612	1383241	1364921	135614
12	Jupiter					
	Pollux	W.	542449	561334	$58 \quad 2 \quad 3$	$\begin{array}{ll}59 & 5016\end{array}$
	Saturn	W.	20287	$\begin{array}{llll}22 & 17 & 4\end{array}$	$\begin{array}{llll}24 & 5 & 51\end{array}$	$\begin{array}{llll}25 & 54 & 26\end{array}$
	Spica	E.	$\begin{array}{llll}36 & 55 & 7\end{array}$	$\begin{array}{llll}35 & 6 & 12\end{array}$	$\begin{array}{llll}33 & 17 & 37\end{array}$	312922
	Mars	E.	633839	615443	60114	582744
	Antares	E.	823928	80508	79.156	771221
	Sun	E.	$\begin{array}{llll}12634 & 10\end{array}$	1245232	1231112	121309
13	Jupiter				$\begin{array}{llll}73 & 7 & 35\end{array}$	$\begin{array}{llll}74 & 54 & 45\end{array}$
	Pollux	W.	684659	703325	721931	$\begin{array}{llll}74 & 5 & 18\end{array}$
	Saturn	W.	345341	364041	382723	401346
	Regulus	W.	314559	333238	351858	$37 \quad 459$
	Mars	E.	49 9615	$4815 \quad 2$	463411	445344
	Antares	E.	681316	$\begin{array}{llll}66 & 26 & 24\end{array}$	643952	625340
	Sun	E.	$\begin{array}{ll}113 & 9\end{array}$	1113015	1095123	1081251
14		W.	83 15 154	853043	871532	$\begin{array}{llll}89 & 0 & 1\end{array}$
	Pollux	W.	824919	84338	861637	875946
	Saturn	W.	$\begin{array}{llll}49 & 1 & 1\end{array}$	504530	522940	541330
	Regulus	W.	$45 \quad 5015$	473420	$4918 \quad 5$	$\begin{array}{llll}51 & 1 & 30\end{array}$
	Mars	E.	363734	345938	332210	314511
	Antares	E.	$\begin{array}{ll}54 & 742\end{array}$	522330	503938	48567
	Sun	E.	$\begin{array}{llll}100 & 5 & 9\end{array}$	$98 \quad 2837$	965224	951632
15	Jupiter	W.	973733	99206	$\begin{array}{llll}101 & 219\end{array}$	1024414
	Pollux	W.	963039	981152	995245	1013320
	Saturn	W.	624754	$64 \quad 2950$	661128	675247
	Regulus	W.	593346	611516	$\begin{array}{llll}62 & 56 & 27\end{array}$	$\begin{array}{llll}64 & 37 & 20\end{array}$
	Antares	E.	$40 \quad 23 \quad 25$	384151	$37 \quad 0 \quad 35$	$\begin{array}{llll}35 & 19 & 38\end{array}$
	Sun	E.	$87 \quad 22 \quad 3$	85487	841429	824110
16	Jupiter	W.			$\begin{array}{llll}114 & 29 & 17\end{array}$	116852
	Saturn	W.	$\begin{array}{llll}76 & 14 & 56\end{array}$	775430	793347	811248
	Regulus	W.	72 5716	7436 1	761514	
	Spica	W.	19 4	20 42 72 19	$22 \quad 20 \quad 12$	$\begin{array}{llll}23 & 57 & 57\end{array}$
	Sun	E.	$74 \quad 59 \quad 5$	$73 \quad 27 \quad 32$	715616	702516

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na, } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV'.	XVIIT ${ }^{\text {b }}$	XXIt.
9	a Arietis Aldebaran Spica Mars	W. E. E.	92 6 26 60 14 48 74 0 38 99 3 13	93 58 $3 \prime$ 62 5 6 72 8 12 97 15 54	95 50 511 63 55 27 70 15 47 95 28 35	97 43 11 65 45 50 68 23 24 93 41 18
10	Aldebaran Jupiter Pollux Spica Mars	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	74 57 27 32 36 33 32 24 40 59 2 42 84 45 58	$\begin{array}{lll} 76 & 47 & 33 \\ 34 & 29 & 24 \\ 34 & 15 & 19 \\ 57 & 10 & 55 \\ 82 & 59 & 14 \end{array}$	78 37 32 36 22 7 36 5 56 55 19 18 81 12 40	$\begin{array}{lll} 80 & 27 & 23 \\ 38 & 14 & 41 \\ 37 & 56 & 30 \\ 53 & 27 & 51 \\ 79 & 26 & 16 \end{array}$
11	Aldebaran Jupiter Pollux Spica Mars Sun	W. W. W. E. E. E.	$\begin{array}{rrr} 89 & 33 & 55 \\ 47 & 34 & 38 \\ 47 & 7 & 25 \\ 44 & 13 & 47 \\ 70 & 37 & 20 \\ 133 & 23 & 20 \end{array}$	$\begin{array}{rrr} 91 & 22 & 34 \\ 49 & 25 & 58 \\ 48 & 57 & 6 \\ 42 & 23 & 42 \\ 68 & 52 & 15 \\ 131 & 40 & 40 \end{array}$	$\begin{array}{rrr} 93 & 10 & 58 \\ 51 & 17 & 3 \\ 50 & 46 & 34 \\ 40 & 33 & 53 \\ 67 & 7 & 26 \\ 129 & 58 & 14 \end{array}$	$\begin{array}{rrr} 94 & 59 & 7 \\ 53 & 7 & 52 \\ 52 & 35 & 49 \\ 38 & 44 & 21 \\ 65 & 22 & 54 \\ 128 & 16 & 4 \end{array}$
12	Jupiter Pollux Saturn Spica Mars Antares Sun	W. W. W. E. E. E. E.	$\begin{array}{rrr} 6217 & 17 \\ 6138 & 12 \\ 27 & 42 & 48 \\ 2941 & 29 \\ 56 & 44 & 45 \\ 75 & 23 & 55 \\ 119 & 49 & 23 \end{array}$	$\begin{array}{rrr} 64 & 6 & 53 \\ 63 & 25 & 51 \\ 29 & 30 & 55 \\ 27 & 53 & 58 \\ 55 & 2 & 6 \\ 73 & 35 & 47 \\ 118 & 8 & 56 \end{array}$	$\begin{array}{rrr} 65 & 55 & 40 \\ 65 & 13 & 12 \\ 31 & 18 & 47 \\ 26 & 6 & 50 \\ 53 & 19 & 48 \\ 71 & 47 & 57 \\ 116 & 28 & 47 \end{array}$	$\begin{array}{rrr} 67 & 44 & 8 \\ 67 & 0 & 15 \\ 33 & 6 & 23 \\ 24 & 20 & 7 \\ 51 & 37 & 51 \\ 70 & 0 & 27 \\ 114 & 48 & 57 \end{array}$
13	Jupiter Pollux Saturn Regulus Mars Antares Sun	W. W. W. W. E. E. E.	$\begin{array}{rrr} 76 & 41 & 35 \\ 75 & 50 & 46 \\ 41 & 59 & 51 \\ 38 & 50 & 41 \\ 43 & 13 & 40 \\ 61 & 7 & 48 \\ 106 & 34 & 39 \end{array}$	$\begin{array}{rrr} 78 & 28 & 5 \\ 77 & 35 & 54 \\ 43 & 45 & 38 \\ 40 & 36 & 4 \\ 41 & 34 & 0 \\ 59 & 22 & 16 \\ 104 & 56 & 47 \end{array}$	$\begin{array}{rrr} 80 & 14 & 15 \\ 79 & 20 & 42 \\ 45 & 31 & 5 \\ 42 & 21 & 7 \\ 39 & 54 & 46 \\ 57 & 37 & 5 \\ 103 & 19 & 15 \end{array}$	$\begin{array}{rrr} 82 & 0 & 4 \\ 81 & 5 & 11 \\ 47 & 16 & 12 \\ 44 & 5 & 51 \\ 38 & 15 & 57 \\ 55 & 52 & 13 \\ 101 & 42 & 2 \end{array}$
14	Jupiter Pollux Saturn Regulus Mars Antares Sun	W. W. W. W. E. E. E.	90 44 10 89 42 36 55 57 1 52 44 36 30 8 43 47 12 55 93 40 59	92 28 0 91 25 6 57 40 13 54 27 22 28 32 47 45 30 4 92 5 46	94 11 31 93 7 16 59 23 5 56 9 49 26 57 24 43 47 31 90 30 52	95 54 41 94 49 7 61 5 39 57 51 57 25 22 38 42 5 18 88 56 18
15	Jupiter Pollux Saturn Regulus Antares Sun	W. W. W. W. E. E.	$\begin{array}{rrr} 104 & 25 & 50 \\ 103 & 13 & 37 \\ 69 & 33 & 48 \\ 66 & 17 & 55 \\ 33 & 38 & 58 \\ 81 & 8 & 9 \end{array}$	$\begin{array}{rrr} 106 & 7 & 8 \\ 104 & 53 & 35 \\ 71 & 14 & 31 \\ 67 & 58 & 12 \\ 31 & 58 & 36 \\ 79 & 35 & 27 \end{array}$	$\begin{array}{rrr} 107 & 48 & 8 \\ 106 & 33 & 15 \\ 72 & 54 & 57 \\ 69 & 38 & 11 \\ 30 & 18 & 32 \\ 78 & 3 & 2 \end{array}$	$\begin{array}{rrr} 109 & 28 & 51 \\ 108 & 12 & 37 \\ 74 & 35 & 5 \\ 71 & 17 & 52 \\ 28 & 38 & 44 \\ 76 & 30 & 55 \end{array}$
16	Jupiter Saturn Regulus Spica SUN	W. W. W. E. E.	$\begin{array}{rrr} 117 & 48 & 10 \\ 82 & 51 & 33 \\ 79 & 32 & 6 \\ 25 & 35 & 33 \\ 68 & 54 & 33 \end{array}$	$\begin{array}{rrr} 119 & 27 & 12 \\ 84 & 30 & 2 \\ 81 & 10 & 7 \\ 27 & 12 & 58 \\ 67 & 24 & 5 \\ \hline \end{array}$	121 5 58 86 8 16 82 47 53 28 50 12 65 53 53	$\begin{array}{rrr} 122 & 44 & 28 \\ 87 & 46 & 14 \\ 84 & 25 & 24 \\ 30 & 27 & 15 \\ 64 & 23 & 57 \end{array}$

GREENWIOH MEAN TIME.						
ldnar distances. - \% .						
	Star's Na Position.		Noon.	IIIL.	Vr.	IX ${ }^{\text {b }}$
17	Saturn Regulus Spica Sun	$\begin{aligned} & W . \\ & \stackrel{W}{N} . \\ & W . \\ & \underset{N .}{ } \end{aligned}$	$\begin{array}{rrrr}89 & 23 & 57 \\ 86 & 2 & 40 \\ 32 & 4 & 6 \\ 62 & 54 & 15\end{array}$	$\begin{array}{lll} & 1 & \prime \prime \\ 91^{\circ} & 1 & 25 \\ 87 & 39 & 41 \\ 33 & 40 & 45 \\ 61 & 24 & 49 \end{array}$	$\begin{array}{llll} 92 & 38 & 40^{\prime \prime} \\ 89 & 16 & 28 \\ 35 & 17 & 11 \\ 59 & 55 & 36 \end{array}$	$\begin{array}{rrr} 94 & 15 & 40 \\ 90 & 53 & 0 \\ 36 & 53 & 25 \\ 58 & 26 & 38 \end{array}$
18	Saturn Spica Mars Sun	W. W. W. E.	$\begin{array}{rrrr}102 & 17 & 18 \\ 44 & 51 & 31 \\ 15 & 36 & 32 \\ 51 & 5 & 11\end{array}$	$\begin{array}{rrr} 103 & 52 & 59 \\ 46 & 26 & 33 \\ 17 & 0 & 33 \\ 49 & 37 & 33 \end{array}$	$\begin{array}{rrr} 105 & 28 & 27 \\ 48 & 1 & 23 \\ 18 & 25 & 24 \\ 48 & 10 & 6 \end{array}$	$\begin{array}{rrr} 107 & 3 & 43 \\ 49 & 36 & 2 \\ 19 & 50 & 51 \\ 46 & 42 & 52 \end{array}$
19	$\begin{aligned} & \text { Spica } \\ & \text { Mars } \\ & \text { Sun } \end{aligned}$	W. W. E.	$\begin{array}{rrr} 57 & 26 & 31 \\ 27 & 2 & 52 \\ 39 & 29 & 33 \end{array}$	$\begin{array}{rrr} 59 & 0 & 6 \\ 28 & 29 & 41 \\ 38 & 3 & 26 \end{array}$	$\begin{array}{lll} 60 & 33 & 30 \\ 29 & 56 & 34 \\ 36 & 37 & 30 \end{array}$	$\begin{array}{lll} 62 & 6 & 45 \\ 31 & 23 & 27 \\ 35 & 11 & 43 \end{array}$
25	Sun a Arietis Aldebaran	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 27 & 1 & 32 \\ 64 & 0 & 51 \\ 96 & 13 & 2 \end{array}$	$\begin{array}{lll} 28 & 22 & 35 \\ 62 & 32 & 33 \\ 94 & 45 & 47 \end{array}$	$\begin{array}{rrr} 29 & 43 & 37 \\ 61 & 4 & 17 \\ 93 & 18 & 33 \end{array}$	$\begin{array}{rrr} 31 & 4 & 37 \\ 59 & 36 & 3 \\ 91 & 51 & 19 \end{array}$
26	Sun a Arictis Aldebaran	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 37 & 49 & 33 \\ 52 & 15 & 13 \\ 84 & 35 & 21 \end{array}$	$\begin{array}{rrr} 39 & 10 & 33 \\ 50 & 47 & 5 \\ 83 & 8 & 10 \end{array}$	$\begin{array}{lll} 40 & 31 & 35 \\ 49 & 18 & 58 \\ 81 & 40 & 58 \end{array}$	$\begin{array}{lll} 41 \quad 52 & 38 \\ 47 & 50 & 50 \\ 80 & 13 & 45 \end{array}$
27	Sun Venus a Arietis Aldebaran Jupiter	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rr} 4838 & 38 \\ 19 & 59 \\ 40 & 30 \\ 72 & 57 \\ 112 & 21 \\ 11 \end{array}$	$\begin{array}{rrr} 49 & 59 & 48 \\ 21 & 18 & 3 \\ 39 & 1 & 53 \\ 71 & 29 & 58 \\ 111 & 9 & 9 \end{array}$	$\begin{array}{rrr} 51 & 21 & 13 \\ 22 & 36 & 41 \\ 37 & 33 & 40 \\ 70 & 2 & 33 \\ 109 & 39 & 18 \end{array}$	$\begin{array}{rrr} 52 & 42 & 42 \\ 23 & 55 & 30 \\ 36 & 5 & 25 \\ 68 & 35 & 5 \\ 108 & 9 & 22 \end{array}$
28	Sun Venus Aldebaran Jupiter Pollux	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{r} 593136 \\ 3032 \\ 6116 \\ 100 \\ 10038 \\ 103 \\ 10 \end{array} 249$	$\begin{array}{rrr} 60 & 53 & 44 \\ 31 & 52 & 8 \\ 59 & 49 & 2 \\ 99 & 7 & 38 \\ 101 & 51 & 26 \end{array}$	$\begin{array}{rrr} 62 & 16 & 0 \\ 33 & 12 & 11 \\ 58 & 21 & 7 \\ 97 & 36 & 56 \\ 100 & 21 & 55 \end{array}$	$\begin{array}{rrr} 63 & 38 & 24 \\ 34 & 32 & 24 \\ 56 & 53 & 7 \\ 96 & 6 & 6 \\ 98 & 52 & 15 \end{array}$
29	Sun Veaus Aldebaran Jupiter Pollax	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	70 32 56 41 16 25 49 31 55 88 29 25 91 21 25	$\begin{array}{rrr} 71 & 56 & 24 \\ 42 & 37 & 50 \\ 48 & 3 & 26 \\ 86 & 57 & 31 \\ 89 & 50 & 42 \end{array}$	73 20 4 43 59 29 46 34 52 85 25 25 88 19 46	$\begin{array}{rrrr} 74 & 43 & 57 \\ 45 & 21 & 21 \\ 45 & 6 & 14 \\ 83 & 53 & 7 \\ 86 & 48 & 37 \end{array}$
30	Sun Venus a Pegasi Aldebaran Jupiter Pollux Saturn	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 81 & 46 & 59 \\ 52 & 14 & 29 \\ 41 & 31 & 7 \\ 37 & 42 & 17 \\ 76 & 8 & 3 \\ 79 & 9 & 22 \\ 111 & 47 & 16 \end{array}$	$\begin{array}{rrr} 83 & 12 & 22 \\ 53 & 37 & 55 \\ 42 & 55 & 58 \\ 36 & 13 & 25 \\ 74 & 34 & 15 \\ 77 & 36 & 45 \\ 110 & 13 & 49 \end{array}$	$\begin{array}{rrrr} 84 & 38 & 2 \\ 55 & 1 & 38 \\ 44 & 21 & 31 \\ 34 & 44 & 36 \\ 73 & 0 & 11 \\ 76 & 3 & 51 \\ 108 & 40 & 5 \end{array}$	$\begin{array}{rrr} 86 & 4 & 0 \\ 56 & 25 & 39 \\ 45 & 47 & 46 \\ 33 & 15 & 51 \\ 71 & 25 & 51 \\ 74 & 30 & 40 \\ 107 & 6 & 4 \end{array}$
81	Sun Venus a Pegasi Jupiter Pollux Saturn	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 93 & 18 & 28 \\ 63 & 30 & 30 \\ 53 & 8 & 7 \\ 63 & 29 & 26 \\ 66 & 40 & 12 \\ 99 & 11 & 15 \end{array}$	$\begin{array}{llr} 94 & 46 & 22 \\ 64 & 56 & 29 \\ 54 & 37 & 55 \\ 61 & 53 & 9 \\ 65 & 5 & 8 \\ 97 & 35 & 17 \end{array}$	$\begin{array}{rrr} 96 & 14 & 38 \\ 66 & 22 & 50 \\ 56 & 8 & 16 \\ 60 & 16 & 32 \\ 63 & 29 & 43 \\ 95 & 58 & 58 \end{array}$	$\begin{array}{lll} 97 & 43 & 15 \\ 67 & 49 & 33 \\ 57 & 39 & 10 \\ 58 & 39 & 33 \\ 61 & 53 & 58 \\ 94 & 22 & 17 \end{array}$

GREENWICH MEAN TIME.

GREENWICH MEAN TIME.						
Day of the Mouth	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$X{ }^{\text {¢ }}$.	xvilib	XX
17	Saturn Regulus Spica Sun	W.	$9552{ }^{\circ} \mathrm{F}$ ¢ ${ }^{\prime \prime}$	$972{ }^{\circ} 8^{\prime} 5{ }^{\prime \prime}$		$10{ }^{\circ} 418$
		W.	922919	$94 \quad 524$	$95-4115$	971653
		W.	382926	$40 \quad 5 \quad 15$	414052	431617
		E.	$56 \quad 5754$	552924	$54 \cdot 16$	$5233 \quad 2$
18	Saturn Spica Mars	W.	1083847	$\begin{array}{ll}110 & 13 \\ 39\end{array}$	1114820	$113 \quad 2252$
		W.	511029	524446	54 3<8 52	555247
		W.	211646	22430	$24 \quad 929$	$2536 \quad 7$
		E.	$\begin{array}{llll}45 & 15 & 50\end{array}$	434859	$42 \quad 22 \quad 19$	405551
19	$\begin{aligned} & \text { Spica } \\ & \text { Mars } \\ & \text { Sun } \end{aligned}$	W.	633950	651245	664531	$6818 \quad 8$
		W.	325019	341710	354359	371045
		E.	33467	322041	305524	293017
25	Sun a Arietis Aldebaran	W.	322537	334636	$\begin{array}{llll}35 & 7 & 35\end{array}$	362834
		E.	$58 \quad 751$	563940	551130	534321
		E.	$90 \quad 24 \quad 7$	885655	872943	$86 \quad 232$
26	Sun a Arictis Aldebaran	W.	431343	443450	455559	471712
		E.	462243	445435	432626	415816
		E.	784631	771916	755159	742441
27	Sun W. Venus W. a Arietis E. Aldebaran E. Jupiter E.		$\begin{array}{ll}54 & 4 \\ 16\end{array}$	$55 \quad 2556$	564742	$58 \quad 935$
			251430	263341	27533	291234
			$\begin{array}{lll}34 & 37 & 8\end{array}$	$33 \quad 849$	314030	301210
			$\begin{array}{llll}67 \quad 7 & 34\end{array}$	653959	641221	624439
			1063920	$\begin{array}{lll}105 & 9 & 13\end{array}$	103390	102840
28	Sun Venus Aldebaran Jupiter Pollux	W.	$\begin{array}{lll}65 & 0 & 58\end{array}$	$66 \quad 2342$	674636	69 9 40 0
		W.	355249	371325	$38 \quad 3412$	395512
		E.	$55 \quad 25 \quad 3$	535653	522838	$51 \quad 019$
		E.	$9435 \quad 6$	$\begin{array}{llll}93 & 3 & 56\end{array}$	913236	$\begin{array}{llll}90 & 1 & 6\end{array}$
		E.	972226	$95 \quad 5226$	942216	925156
29	Sun Venus Aldebaran Jupiter Pollux	W.	$76 \quad 8 \quad 4$	$77 \quad 32 \quad 25$	$78 \quad 571$	802152
		W.	464328	$48 \quad 5 \quad 50$	492827	505120
		E.	433732	$\begin{array}{llll}42 & 8 & 47\end{array}$	403958	
		E.	822036	804750	$\begin{array}{ll}79 & 1449\end{array}$	774134
		E.	851715	834539	821349	804143
30	Sun Venus a Pegasi Aldebaran Jupiter Pollux Saturn	W.	873015	885649	$90 \quad 23 \quad 42$	915055
		W.	574958	$\begin{array}{lll}59 & 1437\end{array}$	603935	$62 \quad 452$
		W.	471438	48427	501012	513853
		E.	314714	301847	285033	272233
		E.	695112	$68 \quad 1614$	664058	$\begin{array}{llll}65 & 5 & 22\end{array}$
		E.	$\begin{array}{llll}72 & 5712\end{array}$	712326	694921	681456
		E.	1053145	103577	102229	1004652
31	Sun W. Venus W. a Pegasi W. Jupiter E. Polux E. Saturn E.		991214	1004136	1021122	1034131
			691638	70446	$\begin{array}{llll}72 & 1157\end{array}$	$\begin{array}{ll}73 & 40 \\ 12\end{array}$
			591035	604231	621459	634759
			$\begin{array}{llll}57 & 2 & 12\end{array}$	$55 \quad 24 \quad 29$	53 46 23 57	$\begin{array}{llll}52 & 7 & 53\end{array}$
			$60 \quad 1751$	584122	57431	$55 \quad 2718$
			924513	$91 \quad 747$	892957	875144

GREENWICH MEAN TTME.						
lunar distances.						
Day of the Month.	$\begin{gathered} \text { Star's Nain } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VIr.	IX ${ }^{\text {b }}$
1	Sun	W.	$10512{ }^{\circ} 1$	$106^{\circ} 43{ }_{2}^{\prime \prime}$	$108^{\circ} 14{ }^{\prime \prime}{ }^{\prime \prime}$	$109{ }^{\circ} 46^{\prime \prime} 13$
	Venus	W.	$75 \quad 8 \quad 52$	$\begin{array}{llll}76 & 37 & 57\end{array}$	$78 \quad 726$	793720
	a Pegasi	W.	652127	665528	682958	$70 \quad 458$
	a Arietis	W.	214930	232550	$25 \quad 249$	264026
	Jupiter	E.	502859	484941	$47 \quad 9 \begin{array}{ll}47\end{array}$	$45 \quad 2952$
	Pollux	E.	534942	521143	503320	485435
	Saturn	E.	86137	84345	825438	811446
	Regulus	E.	904017	$89 \quad 147$	872254	854335
2	Sun	W.	1173146	$\begin{array}{lll}119 & 612\end{array}$	120416	1221627
	Venus	W.	871320	884553	901852	915219
	a Pegasi	W.	$78 \quad 723$	794520	812345	$\begin{array}{llll}83 & 2 & 39\end{array}$
	a Arietis	W.	$\begin{array}{llll}34 & 5715\end{array}$	$36 \quad 3817$	381949	$\begin{array}{llll}40 & 1 & 53\end{array}$
	Jupiter	E.	$37 \quad 253$	$35 \quad 2011$	3337	315329
	Pollux	E.	403451	385343	371215	353020
	Saturn	E.	724855	$71 \quad 625$	692327	$6740 \quad 2$
	Regulus	E.	772030	$75 \quad 3832$	73569	721317
3	Sun	W.	130206	1315813	1333647	1351548
	Venus	W.	994619	1012229	102596	104369
	a Pegasi	W.	$\begin{array}{llll}91 & 24 & 4\end{array}$	$93 \quad 541$	944743	$\begin{array}{llll}96 & 30 & 10\end{array}$
	a Arietis	W.	483948	502453	521025	535626
	Aldebaran	W.	18598	20294	$22 \quad 140$	233627
	Pollux	E.	265557	251215	232822	214424
	Saturn	E.	585611	57103	552328	53 56 6
	Regulus	E.	63327	614631	$60 \quad 028$	581359
4	Venus	W.	1124752	$\begin{array}{llll}114 & 27 & 27\end{array}$	116 7 106	1174747
	a Pegasi	W.	$\begin{array}{llll}105 & 8 & 6\end{array}$	1065244	1083739	1102250
	a Arietis	W.	625325	64428	663115	$\begin{array}{lll}68 & 2047\end{array}$
	Aldebaran	W.	315424	333732	$35 \quad 2137$	$\begin{array}{llll}37 & 6 & 32\end{array}$
	Saturn	E.	443453	424520	405524	$\begin{array}{lll}39 & 5 & 6\end{array}$
	Regulus	E.	$49 \quad 150$	472557	453631	434642
	Spica	E.	1031754	1012854	993929	974940
5	a Arietis	W.	$\begin{array}{ll}77 & 34 \\ 3\end{array}$	792544	811743	83100
	Aldebaran	W.	$\begin{array}{llll}46 & 1 & 28\end{array}$	475012	493924	51293
	Saturn	E.	294827	275614	$\begin{array}{llll}26 & 3 & 47\end{array}$	$\begin{array}{ll}24 & 11 \\ 7\end{array}$
	Regulus	E.	343214	324023	304815	$28 \quad 5552$
	Spiea	E.	$88 \quad 35 \quad 6$	864311	845057	825827
6	a Arietis	W.	92351	942837	962222	$\begin{array}{llllll}98 & 16 & 15\end{array}$
	Aldebaran	W.	604250	623429	642622	661827
	Jupiter	W.	212347	23 18	251242	$27 \quad 726$
	Pollux	W.	181239	$\begin{array}{ll}20 & 247\end{array}$	215340	234511
	Spica	E.	733220	713831	694433	$\begin{array}{r}675027 \\ \hline 10951\end{array}$
	Mars	E.	1151834	$\begin{array}{ll}113 & 2944\end{array}$	1114044	1095134
7	Aldebaran	W.	754056	773339	792623	81197
	Jupiter	W.	364247	38380	403313	422824
	Pollux	W.	$\begin{array}{llll}33 & 8 & 28\end{array}$	$\begin{array}{lll}35 & 1 & 48\end{array}$	$\begin{array}{llll}36 & 55 & 14\end{array}$	384843
	Spica	E.	$\begin{array}{llll}58 & 18 & 46\end{array}$	562421	$\begin{array}{lll}54 & 29 & 57\end{array}$	523536
	Mars	E.	1004417	$\begin{array}{llll}98 & 54 & 42\end{array}$	$97 \quad 5 \quad 7$	$\begin{array}{llll}95 & 15 & 34\end{array}$
	Antares	E.	$104 \quad 616$	1021139	10017	$98 \quad 22 \quad 27$

GREENWICH MEAN TTME.						
lunar distances.						
Day of the Month.	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Positior } \end{gathered}$		Midnight.	XV.	XVIII.	XXIT.
1	Sun	W.	$111^{\circ} 18^{\prime} 27$	11251	$11424^{\circ} 13$	$115{ }^{\circ} 574{ }^{\prime \prime}$
	Venus	W.	81739	823825	$84 \quad 937$	854115
	a Pegasi	W.	714027	731627	745257	762955
	a Arietis	W.	281839	295727	313649	331646
	Jupiter	E.	434920	$42 \quad 822$	$40 \quad 2658$	$\begin{array}{llll}38 & 45 & 9\end{array}$
	Pollux	E.	471525	453552	435555	421535
	Saturn	E.	793428	775344	761234	743058
	Regulus	E.	84350	822340	8043 3	$79 \quad 20$
2	Sun	W.	1235216	$125 \quad 2832$	${ }^{-127} 516$	1284227
	Venus	W.	$\begin{array}{llll}93 & 2612\end{array}$	$95 \quad 033$	963521	981037
	a Pegasi	W.	84421	862151	$88 \quad 29$	894253
	a Arietis	W.	414428	432733	45118	465513
	Jupiter	E.	$\begin{array}{lll}30 & 9 & 28\end{array}$	$\begin{array}{llll}28 & 25 & 2\end{array}$	264010	245452
	Pollux	E.	33 48 6	$\begin{array}{llll}32 & 5 & 31\end{array}$	302237	$28 \quad 3925$
	Saturn	E.	$\begin{array}{llll}65 & 56 & 10\end{array}$	641151	$62 \begin{array}{lll}67 & 5\end{array}$	604152
	Regulus	E.	$70 \quad 2957$		$67 \quad 156$	$65 \quad 17 \quad 15$
3	Sun	W.	1365515	138358	1401528	1415613
	Venus	W.	1061338	1075133	1092954	111841
	$a \mathrm{Pegasi}$	W.	98131	995615	1013951	1032348
	${ }^{\text {a }}$ Arietis	W.	554255	572952	$\begin{array}{llll}59 & 1717\end{array}$	$\begin{array}{llll}61 & 5\end{array}$
	Aldebaran	W.	251310	265129	283115	301215
	Pollux	E.	$\begin{array}{lll}20 & 0 & 27\end{array}$	181641	163318	145028
	Saturn	E.	514859	$50 \quad 15$	481246	46242
	Regulus	E.	$\begin{array}{llll}56 & 27 & 3\end{array}$	543941	525153	$\begin{array}{llll}51 & 3 & 39\end{array}$
4	Venus	W.	$\begin{array}{ll}119 & 28 \\ 112\end{array}$	$121 \quad 936$	12251	1243246
	a Pegasi	W.	$\begin{array}{ll}112 & 817\end{array}$	1135358	$\begin{array}{llll}115 & 39 & 50\end{array}$	1172552
	a Arietis	W.	$70 \quad 1042$	7210	735140	754241
	Aldebaran	W.	385213	403836	422538	441316
	Saturn	E.	371425	352324	33324	314024
	Regulus	E.	415629	$40 \quad 555$	$3815 \quad 1$	362347
	Spica	E.	955928	$94 \quad 854$	921758	902642
5			$85 \quad 232$	865520	884821	904135
	Aldebaran	W.	$5319 \quad 7$	$\begin{array}{llll}55 & 9 & 33\end{array}$	$\begin{array}{llll}57 & 0 & 20\end{array}$	$\begin{array}{llll}58 & 51 & 27\end{array}$
	Saturn	E.	221816	202519	183217	163914
	Regulus	E.	$27 \quad 315$	251026	231726	212417
	Spica	E.	$81 \quad 541$	791240	771925	752558
6	a Arietis	W.	1001015	$\begin{array}{ll}102 & 419\end{array}$	1035828	1055239
	Aldebaran	W.	681043	$\begin{array}{llll}70 & 3 & 7\end{array}$	715538	734815
	Jupiter	W.	$29 \quad 219$	305719	325225	34 47 15
	Pollux	W.	253712	272937	292220	$\begin{array}{llll}31 & 15 & 18\end{array}$
	Spica	E.	$65 \quad 5614$	$\begin{array}{lll}64 & 1 & 57\end{array}$	$62 \quad 736$	$\begin{array}{llll}60 & 13 & 11\end{array}$
	Mars	E.	108216	1061252	1042323	1023351
7	Aldebaran	W.	831148	$\begin{array}{llll}85 & 4 & 25\end{array}$	865657	
	Jupiter	W.	442332	461836	$4813 \quad 34$	$50 \quad 825$
	Pollux	W.	404213	423544	442912	$46 \quad 2237$
		E.	$\begin{array}{llll}50 & 41 & 20 \\ 93\end{array}$	$4847 \begin{aligned} & 48\end{aligned}$	$\begin{array}{llll}46 & 53 & 4\end{array}$	44 49 1
	Mars	E.	$\begin{array}{llll}93 & 26 & 3\end{array}$	913637	894717	87585
	Antares	E.	962756	943329	$9239 \quad 9$	90 1445

GREENWICH MEAN TIME.						
LUNAR DIStances.						
Day of Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$	IXb.
8	Aldebaran	W.	$90^{\circ} 41{ }^{\prime \prime}{ }^{\prime \prime}$	$920{ }^{\circ} 3{ }^{\prime \prime \prime}$	$94^{\circ} 25^{\prime} 4{ }^{\prime \prime}$	$96^{\circ} 17^{\prime} 26^{\prime \prime}$
	Jupiter	W.	$\begin{array}{llll}52 & 3 & 8\end{array}$	$\begin{array}{llll}53 & 57 & 41\end{array}$	55524	574615
	Pollux	W.	$\begin{array}{llll}48 & 15 & 57\end{array}$	$50 \quad 910$	$\begin{array}{llll}52 & 2 & 14\end{array}$	$5355 \quad 9$
	Saturn	W.	161711	181031	$\begin{array}{llll}20 & 3 & 51\end{array}$	215710
	Spica	E.	$\begin{array}{lll}43 & 5 & 23\end{array}$	411148	391825	372516
	Mars	E.	$\begin{array}{llll}86 & 9 & 1\end{array}$	84206	823122	804249
	Antares	E.	885050	865655	$\begin{array}{llll}85 & 3 & 10\end{array}$	$83 \quad 937$
9	Jupiter	W.	671336	$\begin{array}{llll}69 & 6 & 15\end{array}$	705835	725036
	Pollux	W.	631632	$65 \quad 8 \quad 3$	665916	685011
	Saturn	W.	312140	331354	$35 \quad 5 \quad 52$	365733
	Regulus	W.	261451	$28 \quad 632$	295757	31494
	Spica	E.	$28 \quad 343$	261226	242133	22317
	Mars	E.	714343	695645	68106	662346
	Antares	E.	$\begin{array}{llll}73 & 45 & 27\end{array}$	$\begin{array}{llll}71 & 53 & 27\end{array}$	$70 \quad 145$	681023
10	Jupiter	W.	$82 \quad 5 \quad 23$	835513	854440	873342
	Pollux	W.	$\begin{array}{llll}77 & 59 & 39\end{array}$	794827	813652	832453
	Saturn	W.	46111	$48 \quad 039$	494954	513846
	Regulus	W.	$40 \quad 5944$	424847	443727	462544
	Mars	E.	$\begin{array}{llll}57 & 37 & 35\end{array}$	$55 \quad 5332$	$54 \quad 953$	522639
	Antares	E.	585844	$57 \quad 932$	$\begin{array}{llll}55 & 20 & 43\end{array}$	$\begin{array}{llll}53 & 3218\end{array}$
	Sun	E.	1321424	1303245	1285130	1271039
11	Jupiter	W.	$\begin{array}{llll}96 & 3240\end{array}$	$\begin{array}{llll}98 & 19 & 12\end{array}$	$100 \quad 518$	1015058
	Saturn	W.	$\begin{array}{llll}60 & 36 & 58\end{array}$	622324	$64 \quad 921$	655455
	Regulus	W.	$55 \quad 217$	$\begin{array}{llll}57 & 6 & 57\end{array}$	$58 \quad 52 \quad 22$	603722
	Mars	E.	43 57 12	421641	403640	38 87
	Antares	E.	443625	425030	4150	391955
	Sun	E.	1185234	1171412	1153616	1135846
12		W.	743627	761930	$\begin{array}{lll}78 & 2 & 8\end{array}$	794422
	Regulus	W.	6916 15	$\begin{array}{llll}70 & 58 & 29\end{array}$	724033	$74 \quad 2212$
	Spica	W.	$\begin{array}{llll}15 & 26 & 6\end{array}$	$17 \quad 654$	184736	20287
	Antares	E.	304054	28.5822	271614	253431
	Mars	E.	30474	291040	273452	$25 \quad 5940$
	Sun	E.	10557.33	1042234	102480	1011351
13	Saturn	W.	$88 \quad 933$	894926	912856	$\begin{array}{rrrr}93 & 8 & 3\end{array}$
	Regulus	W.	824430	842348	86	874118
	Spica	W.	284647	$\begin{array}{llll}30 & 25 & 36\end{array}$	$\begin{array}{llll}32 & 4 & 6\end{array}$	$\begin{array}{llll}33 & 42 & 17\end{array}$
	Sun	E.	$\begin{array}{llll}93 & 29 & 3\end{array}$	915716	902551	885448
14	Saturn	W.	1011827	1025531	1043216	106841
	Regulus	W.	954848	$\begin{array}{lllll}97 & 25 & 18\end{array}$	$\begin{array}{llll}99 & 1 & 28\end{array}$	100 37
	Spica	W.	414821	$\begin{array}{llll}43 & 24 & 37\end{array}$	$45 \quad 0 \quad 35$	$46 \quad 36 \quad 16$
	Sun	E.	812449	795550	782310	765849
15	Saturn	W.	114630	1154114	1171542	
	Spica	W.	$5430 \quad 25$	$\begin{array}{lll}56 & 4 & 27\end{array}$	573814	$\begin{array}{llll}59 & 11 & 46\end{array}$
	Sun	E.	694127	681448	664825	$65 \quad 2217$
16	Spica	W.	$66 \quad 564$	$68 \quad 2817$	$70 \quad 0 \quad 19$	71329
	Antares	W.	$\begin{array}{ll}21 & 3 \\ 10\end{array}$	$\begin{array}{llll}22 & 36 & 13\end{array}$	24 8	254022
	Mars	W.	194036	21525	223025	235533

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's N and Position		Midnight.	XVb.	XVIII.	XXI'.
8	Aldebaran	W.	$98^{\circ} 8857$	$100^{\circ} 0^{\prime} 13^{\prime \prime}$	$101^{\circ} 51^{\prime \prime} 12$	$103^{\circ} 41^{1} 54$
	Jupiter	W.	$59 \quad 4013$	613357	$63 \quad 2726$	652040
	Pollux	W.	554753	574024	$59 \quad 3242$	612445
	Saturn	W.	235024	254330	$\begin{array}{ll}27 & 36\end{array}$	$29 \quad 2910$
	Spica	E.	$35 \quad 3222$	3313944	$\begin{array}{llll}31 & 47 & 24\end{array}$	295523
	Mars	E.	$78 \quad 5429$	77623	$\begin{array}{llll}75 & 18 & 33\end{array}$	$73 \quad 3059$
	Antares	E.	811617	792311	$77 \quad 3020$	$\begin{array}{lllll}75 & 37 & 45\end{array}$
9	Jupiter	W.	74 2 16	$\begin{array}{llll}76 & 33 & 35\end{array}$	$\begin{array}{llll}78 & 24 & 34\end{array}$	$\begin{array}{llll}80 & 15 & 10\end{array}$
	Pollux	W.	704046	72311	$74 \quad 2055$	$\begin{array}{ll}7610 & 10\end{array}$
	Saturn	W.	384855	$\begin{array}{llll}40 & 39 & 57\end{array}$	423039	4421
	Regulus	W.	$33 \quad 3952$	353021	372030	$\begin{array}{llll}39 & 10 & 18\end{array}$
	Spica	E.	204110	185146	17258	$\begin{array}{llll}15 & 14 & 54\end{array}$
	Mars	E.	64 37	625210	$\begin{array}{ll}61 & 655\end{array}$	59223
	Antares	E.	661920	642838	623818	6048.20
10	Jupiter	W.	$89 \quad 2219$	$\begin{array}{llll}91 & 10 & 32\end{array}$	$\begin{array}{llll}92 & 58 & 20\end{array}$	944543
	Pollux	W.	851230	865942	884630	$90 \quad 3254$
	Saturn	W.	$\begin{array}{llll}53 & 27 & 13\end{array}$	$\begin{array}{llll}55 & 1515\end{array}$	$57 \quad 254$	$58 \quad 50 \quad 9$
	Regulus	W.	$48 \quad 13 \quad 38$	$\begin{array}{lll}50 & 1 & 7\end{array}$	514812	$\begin{array}{llll}53 & 34 & 52\end{array}$
	Mars	E.	504352	$49 \quad 131$	471936	$\begin{array}{llll}45 & 38 & 10\end{array}$
	Antares	E.	$\begin{array}{llll}51 & 4418\end{array}$	$49 \quad 5642$	$48 \quad 9 \quad 32$	$46 \quad 2246$
	Sun	E.	$\begin{array}{lllll}125 & 30 & 13\end{array}$	1235011	$122 \quad 1034$	1203121
11	Jupiter	W.	1033613	105212	107526	1084925
	Saturn	W.	$\begin{array}{llll}67 & 40 & 4\end{array}$	692447	$71 \quad 9 \quad 5$	$\begin{array}{llll}72 & 52 & 59\end{array}$
	Regulus	W.	622156	$\begin{array}{llll}64 & 6 & 4\end{array}$	$\begin{array}{llll}65 & 49 & 48\end{array}$	$67 \quad 33 \quad 7$
	Mars	E.	37184	$\begin{array}{llll}35 & 39 & 32\end{array}$	$\begin{array}{lll}34 & 1 & 31\end{array}$	$\begin{array}{llll}32 & 24 & 1\end{array}$
	Antares	E.	$37 \quad 3516$	35512	$34 \quad 714$	322352
	Sun	E.	1122141	$11045 \quad 1$	109846	1073257
12	Saturn	W.	812612	$\begin{array}{llll}83 & 7 & 38\end{array}$	844840	862918
	Regulus	W.	$76 \quad 3 \quad 27$	774418	$79 \quad 24 \quad 45$	$81 \quad 449$
	Spica	W.	$\begin{array}{llll}22 & 8 & 25\end{array}$	$\begin{array}{llll}23 & 48 & 27\end{array}$	$25 \quad 2812$	$27 \quad 739$
	Antares	E.	$\begin{array}{llll}23 & 53 & 12\end{array}$	$\begin{array}{llll}22 & 12 & 18\end{array}$	203147	185140
	Mars	E.	$\begin{array}{llll}24 & 25 & 6\end{array}$	$\begin{array}{llll}22 & 51 & 14\end{array}$	$2118 \quad 6$	194547
	Sun	E.	$9940 \quad 6$	$98 \quad 645$	$\begin{array}{lllll}96 & 33 & 48\end{array}$	$\begin{array}{llll}95 & 1 & 14\end{array}$
13	Saturn	W.	944650	$\begin{array}{llll}96 & 25 & 15\end{array}$	$\begin{array}{llll}98 & 3 & 19\end{array}$	99413
	Regulus	W.	$89 \quad 1930$	905720	92 3449	9411159
*	Spica	W.	$35 \quad 208$	$\begin{array}{llll}36 & 57 & 39\end{array}$	$\begin{array}{llll}38 & 34 & 52\end{array}$	401146
	Sun	E.	$87 \quad 24 \quad 6$	855346	842347	82548
14	Saturn	W.	1074449	1092040	$\begin{array}{llll}110 & 5614\end{array}$	1123130
	Regulus	W.	1021254	1034810	105238	106.5750
	Spica	W.	$\begin{array}{llll}48 & 11 & 39\end{array}$	494645	512134	52568
	Sun	E.	$75 \quad 30 \quad 46$	74	723533	$71 \quad 822$
15	Saturn	W.	1202352	1215735	123315	125421
	Spica	W.	$6045 \quad 5$	621810	$\begin{array}{llll}63 & 51 & 1\end{array}$	$65 \quad 2339$
	Sun	E.	$63 \quad 5624$	623045	61520	$\begin{array}{llll}59 & 40 & 8\end{array}$
16	Spica	W.	$\begin{array}{llll}73 & 3 & 49\end{array}$	$\begin{array}{llll}74 & 35 & 19\end{array}$	$\begin{array}{lll}76 & 6 & 39\end{array}$	$77 \quad 3748$
	Antares	W.	$27 \quad 12 \quad 10$	284347	$\begin{array}{llll}30 & 15 & 14\end{array}$	314631
	Mars	W.	$25 \quad 2046$	$2646 \quad 1$	281118	$29 \quad 3634$

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star’s Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
1617	Sun E.		$58{ }^{1} 15$ ' ${ }^{\prime \prime}$	$56^{\circ} 50$ 211	$55^{\circ} 25^{\prime} 46$	$54{ }^{\circ} 1{ }^{1} 2 \ddot{3}$
	Spica W.		$\begin{array}{llll}79 & 8 & 48\end{array}$	$80 \quad 3939$	821021	834055
	Antares	W.	331738	344839	361927	37508
	Mars	W.	$\begin{array}{lll}31 & 1 & 49\end{array}$	$32 \quad 27 \quad 2$	335213	351721
	Sun	'E.	$47 \quad 28$	453846	441533	425229
18	Spica		911155	924147	941133	954113
	Antares W.		$45 \quad 2143$	465142	482134	495121
	Mars	W.	$\begin{array}{llll}42 & 22 & 10 \\ 35 & 59\end{array}$	43 43 34 6647	451114133	$\begin{array}{llll}46 & 36 & 21 \\ 31 & 52 & 28\end{array}$
	Sun	E.	35596			
23	Sun Aldebaran Jupiter	W.	$\begin{array}{r} 182959 \\ 75 \quad 5642 \\ 113 \\ 1444 \end{array}$	$\begin{array}{r} 195111 \\ 742910 \\ 1114523 \end{array}$	$\begin{array}{rrr} 21 & 12 & 24 \\ 73 & 1 & 36 \\ 110 & 15 & 58 \end{array}$	$\begin{array}{rrr} 22 & 33 & 41 \\ 71 & 34 & 0 \\ 108 & 46 & 30 \end{array}$
		E.				
		E.				
24	Sun Aldebaran Jupiter Pollux	W.	$\begin{array}{rrr} 29 & 21 & 15 \\ 64 & 15 & 35 \\ 101 & 18 & 15 \\ 106 & 23 & 21 \end{array}$	$\begin{array}{rrr} 30 & 43 & 5 \\ 62 & 47 & 48 \\ 99 & 48 & 23 \\ 104 & 54 & 9 \end{array}$	$\begin{array}{rrr} 32 & 5 & 0 \\ 61 & 19 & 59 \\ 98 & 18 & 27 \\ 103 & 24 & 54 \end{array}$	$\begin{array}{rrr} 33 & 27 & 1 \\ 59 & 52 & 8 \\ 96 & 48 & 26 \\ 101 & 55 & 33 \end{array}$
		E.				
		E.				
		E.				
25	Sun Aldebaran Jupiter Pollux Saturn	W.	$\begin{array}{rrr} 40 & 18 & 42 \\ 52 & 32 & 23 \\ 89 & 16 & 52 \\ 94 & 27 & 13 \\ 125 & 3 & 15 \end{array}$	$\begin{array}{rrr} 41 & 41 & 23 \\ 51 & 4 & 21 \\ 87 & 46 & 13 \\ 92 & 57 & 13 \\ 123 & 32 & 27 \end{array}$	$\begin{array}{rrr} 43 & 4 & 13 \\ 49 & 36 & 17 \\ 86 & 15 & 28 \\ 91 & 27 & 5 \\ 122 & 1 & 32 \end{array}$	$\begin{array}{rrr} 44 & 27 & 11 \\ 48 & 8 & 13 \\ 84 & 44 & 36 \\ 89 & 56 & 50 \\ 120 & 30 & 29 \end{array}$
		E.				
		E.				
		E.				
		E.				
26	Sun Venus Aldebaran Jupiter Pollux Saturn	W.	$\begin{array}{rrr} 51 & 24 & 13 \\ 16 & 34 & 18 \\ 40 & 47 & 47 \\ 77 & 8 & 3 \\ 82 & 23 & 23 \\ 112 & 53 & 1 \end{array}$	$\begin{array}{rrr} 52 & 48 & 7 \\ 17 & 53 & 9 \\ 39 & 19 & 46 \\ 75 & 36 & 16 \\ 80 & 52 & 13 \\ 111 & 21 & 1 \end{array}$	$\begin{array}{rrr} 54 & 12 & 11 \\ 19 & 12 & 39 \\ 37 & 51 & 48 \\ 74 & 4 & 19 \\ 79 & 20 & 53 \\ 109 & 48 & 52 \end{array}$	$\begin{array}{rrr} 55 & 36 & 27 \\ 20 & 32 & 43 \\ 36 & 23 & 56 \\ 72 & 32 & 11 \\ 77 & 49 & 23 \\ 108 & 16 & 32 \end{array}$
		W.				
		E.				
		E.				
		E.				
		E.				
27	Sun Venus Jupiter Pollux Saturn Regulus	W.	$\begin{array}{rrr} 62 & 40 & 44 \\ 27 & 19 & 52 \\ 64 & 48 & 37 \\ 70 & 8 & 57 \\ 100 & 31 & 50 \\ 107 & 3 & 22 \end{array}$	$\begin{array}{rrr} 64 & 6 & 15 \\ 28 & 42 & 28 \\ 63 & 15 & 16 \\ 68 & 36 & 14 \\ 98 & 58 & 15 \\ 105 & 30 & 19 \end{array}$	$\begin{array}{rrr} 65 & 31 & 59 \\ 30 & 5 & 25 \\ 61 & 41 & 42 \\ 67 & 3 & 18 \\ 97 & 24 & 26 \\ 103 & 57 & 3 \end{array}$	$\begin{array}{rrr} 66 & 57 & 58 \\ 31 & 28 & 42 \\ 60 & 7 & 54 \\ 65 & 30 & 8 \\ 95 & 50 & 23 \\ 102 & 23 & 32 \end{array}$
		W.				
		E.				
		E.				
		E.				
		E.				
28	Run W. Venus W. Jupiter E. Pollux E. Saturn E. Regulus E.		$\begin{array}{llr} 74 & 11 & 47 \\ 38 & 30 & 13 \\ 52 & 15 & 2 \\ 57 & 40 & 37 \\ 87 & 56 & 13 \\ 94 & 32 & 4 \end{array}$	75 39 23 39 55 31 50 39 38 56 5 56 86 20 32 92 56 56	77 7 16 41 21 11 49 3 58 54 30 59 84 44 35 91 21 31	78 35 27 42 47 10 47 28 1 52 55 45 83 8 20 89 45 48
29	Sun W. Venus W. a Arietis W. Jupiter E. Pollux E. Saturn E. Regulus E.		86 1 11 50 2 25 30 39 17 39 23 33 44 55 12 75 2 17 81 42 24	87 31 21 51 30 34 32 15 48 37 45 40 43 18 12 73 24 4 80 4 42	89 1 51 52 59 5 33 52 46 36 7 27 41 40 53 71 45 30 78 26 40	90 32 43 54 27 59 35 30 11 34 28 53 40 3 16 70 6 34 76 48 16

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month.	Star's Name and Position.		Midnight.	XVh.	XVIII ${ }^{\text {b }}$	XXI',
16	Sun	E.	5238111	$51^{\circ} 13110$	$49^{\circ} 499^{\prime \prime} 19$	$48^{\circ} 25^{\prime} 39$
17	Spica	W.	851121	864141	881153	894157
	Antares	W.	$39 \quad 2042$	$\begin{array}{llll}40 & 51 & 8\end{array}$	422127	435138
	Mars	W.	364226	$\begin{array}{lll}38 & 7 & 27\end{array}$	$\begin{array}{ll}39 & 3225\end{array}$	$\begin{array}{llll}40 & 57 & 19\end{array}$
	Sun	E.	412933	$40 \quad 6 \quad 45$	$\begin{array}{llll}38 & 44 & 5\end{array}$	372132
18	Spica	W.	$\begin{array}{llll}97 & 10 & 47\end{array}$	$98 \quad 4016$	100941	101391
	Antares	W.	51213	$52 \quad 5039$	54: 2011	554938
	Mars	W.	$48 \quad 0 \quad 58$	$\begin{array}{llll}49 & 25 & 32\end{array}$	$5050 \quad 3$	$\begin{array}{llll}52 & 14 & 30\end{array}$
	Sun	E.	$\begin{array}{llll}30 & 30 & 29\end{array}$	$29 \quad 8 \quad 35$	274647	$\begin{array}{llll}26 & 25 & 4\end{array}$
23	Sun	W.	$\begin{array}{llll}23 & 55 & 1\end{array}$	251626	$\begin{array}{llll}26 & 37 & 56\end{array}$	$27 \quad 5932$
	Aldebaran	E.	$70 \quad 623$	$68 \quad 3844$	67113	$\begin{array}{lll} 65 \quad 43 \quad 20 \end{array}$
	Jupiter	E.	1071658	1054723	1041744	102481
24	Sun	W.	$3449 \quad 8$	$\begin{array}{llll}36 & 11 & 21\end{array}$	373341	$\begin{array}{llll}38 & 56 & 8\end{array}$
	Aldebaran	E.	$58 \quad 2415$	$56 \quad 5620$	552823	$54 \quad 024$
	Jupiter	E.	$\begin{array}{r}95 \\ \hline 18\end{array} 18$	$\begin{array}{llll}93 & 48 & 7\end{array}$	92 17 8	904723
	Pollux	E.	$10026 \quad 5$	$\begin{array}{lllll}98 & 56 & 31\end{array}$	$\begin{array}{llll}97 & 26 & 52\end{array}$	$95 \quad 576$
25	Sun	W.	$\begin{array}{llll}45 & 50 & 17\end{array}$	$47 \quad 1332$	$48 \quad 3656$	$50 \quad 0 \quad 29$
	Aldebaran	E.	$4640 \quad 7$	45120	$43 \quad 4354$	$\begin{array}{llll}42 & 15 & 50\end{array}$
	Jupiter	E.	$\begin{array}{llll}83 & 13 & 35\end{array}$	814225	80117	783940
	Pollux	E.	$88 \quad 2620$	865554	$\begin{array}{llll}85 & 25 & 13\end{array}$	835423
	Satura	E.	1185918	1172758	1155629	1142450
26	Sun	W.	$\begin{array}{lll}57 & 0 & 54\end{array}$	$58 \quad 2533$	$\begin{array}{llll}59 & 50 & 24\end{array}$	611527
	Venus	W.	215317	$\begin{array}{ll}23 & 1419\end{array}$	$\begin{array}{llll}24 & 35 & 47\end{array}$	$25 \quad 5738$
	Aldebaran	E.	$34 \quad 5611$	$\begin{array}{llll}33 & 28 & 34\end{array}$	$\begin{array}{llll}32 & 1 & 8\end{array}$	$\begin{array}{lllll}30 & 33 & 57\end{array}$
	Jupiter	E.	$\begin{array}{llll}70 & 59 & 52\end{array}$	$69 \quad 2722$	$\begin{array}{llll}67 & 54 & 40\end{array}$	662145
	Pollux	E.	$\begin{array}{lllll}76 & 17 & 42\end{array}$	744548	$\begin{array}{llll}73 & 13 & 43\end{array}$	714126
	Saturn	E.	106440	1051117	1033821	$\begin{array}{llll}102 & 512\end{array}$
27	Sun	W.	$\begin{array}{llll}68 & 24 & 12\end{array}$	$69 \quad 5042$	$\begin{array}{llll}71 & 17 & 27\end{array}$	724428
	Venus	W.	$\begin{array}{llll}32 & 52 & 20\end{array}$	$\begin{array}{llll}34 & 1618\end{array}$	354036	$37 \quad 515$
	Jupiter	E.	$\begin{array}{llll}58 & 33 & 51\end{array}$	$\begin{array}{llll}56 & 59 & 32\end{array}$	$55 \quad 2458$	$53 \quad 50 \quad 8$
	Pollux	E.	$\begin{array}{llll}63 & 56 & 44\end{array}$	$62 \quad 23 \quad 5$	604911	$\begin{array}{llll}59 & 15 & 2\end{array}$
	Saturn	E.	$9416 \quad 4$	924130	$91 \quad 641$	893136
	Regulus	E.	1004946	$\begin{array}{llll}99 & 15 & 45\end{array}$	974128	96 655
28	Sun	W.	$\begin{array}{rrrr}80 & 3 & 57\end{array}$	813246	$\begin{array}{llll}83 & 1 & 54\end{array}$	843122
	Venus	W.	$44 \begin{array}{lll}44 & 13 & 30\end{array}$	454011	$\begin{array}{llll}47 & 7 & 14\end{array}$	483439
	Jupiter	E.	4515145	441511	$\begin{array}{llll}42 & 38 & 18\end{array}$	$\begin{array}{llll}41 & 1 & 5\end{array}$
	Pollinx	E.	$\begin{array}{llll}51 & 20 & 14\end{array}$	$49 \quad 4425$	$\begin{array}{llll}48 & 8 & 18\end{array}$	$\begin{array}{llll}46 & 31 & 54\end{array}$
	Saturn	E.	813147	$\begin{array}{llll}79 & 54 & 53\end{array}$	$\begin{array}{llll}78 & 17 & 41\end{array}$	$76 \quad 40 \quad 9$
	Regulus	E.	$\begin{array}{llll}88 & 9 & 47\end{array}$	$86 \quad 33 \quad 26$	845645	$83 \quad 1945$
29	Sun	W.		$\begin{array}{llll}93 & 35 & 34\end{array}$	$\begin{array}{lll}95 & 733\end{array}$	$\begin{array}{llll}96 & 39 & 55\end{array}$
	Venus	W.	$\begin{array}{llll}55 & 57 & 16\end{array}$	$57 \quad 2657$	$\begin{array}{llll}58 & 57 & 1\end{array}$	$60 \quad 2730$
	a Arietis	W.	3788	$3846 \quad 20$	$40 \quad 25 \quad 5$	$\begin{array}{lrl} 42 \quad 4 \quad 16 \end{array}$
	Jupiter	E.	$\begin{array}{llll}32 & 49 & 59\end{array}$	$\begin{array}{llll}31 & 10 & 43\end{array}$	29316	$27 \quad 51 \quad 7$
	Pollux	E.	$\begin{array}{llll}38 & 25 & 20\end{array}$	$\begin{array}{lllll}36 & 47 & 6\end{array}$	$35 \quad 835$	332946
	Saturn	E.	$\begin{array}{llll}68 & 27 & 17\end{array}$	$\begin{array}{llll}66 & 47 & 37\end{array}$	$\begin{array}{lll}65 & 7 & 35\end{array}$	$\begin{array}{llll}63 & 27 & 9\end{array}$
	Regulus	E.	$75 \quad 9 \quad 30$	$73 \quad 30 \quad 21$	715049	$70 \quad 1055$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Na and Position		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$.
1	Sun	W.	$98^{\circ} 12^{2} 40$	$99^{\circ} 45^{\prime} \quad 4919$	$101^{\circ} 19^{\prime} 23^{\prime \prime}$	$102^{\circ} 533^{\prime \prime}$
	Venus	W.	615823	632940	$\begin{array}{lll}65 & 122\end{array}$	663330
	a Arietis	W.	$43 \quad 4353$	$\begin{array}{llll}45 & 23 & 56\end{array}$	$47 \quad 4 \quad 26$	484522
	Jupiter	E.	261045	$2430 \quad 3$	224859	$21 \quad 734$
	Saturn	E.	614622	60 $5 \quad 9$	$58 \quad 2333$	564133
	Regulus	E.	$68 \quad 30 \quad 37$	$66 \quad 49 \quad 56$	$65 \quad 8 \quad 51$	$63 \quad 2722$
2	Sun	W.	1104919	1122547	114240	1153958
	Venus	W.	742027	75 55	$77 \quad 3014$	$\begin{array}{lll}79 & 5 & 47\end{array}$
	a Arietis	W.	571640	$59 \quad 0 \quad 16$	604418	622846
	Aldebaran	W.	$\begin{array}{lllll}26 & 37 & 15\end{array}$	281327	295051	312921
	Saturn	E.	$\begin{array}{llll}48 & 5 & 27\end{array}$	$46 \quad 2059$	4436	425048
	Regulus	E.	$54 \quad 5342$	$53 \quad 943$	512518	494028
3	Sun	W.	1235243	1253230	1271241	$\begin{array}{llll}128 & 5316\end{array}$
	Venus	W.	87956	$8848 \quad 2$	$\begin{array}{llll}90 & 26 & 33\end{array}$	$92 \quad 529$
	a Arietis	W.	711740	$73 \quad 444$	$74 \quad 5214$	$\begin{array}{llll}76 & 40 & 9\end{array}$
	Aldebaran	W.	395526	413857	$\begin{array}{lll}43 & 23 & 8\end{array}$	$\begin{array}{llll}45 & 7 & 56\end{array}$
	Saturn	E.	335811	$32 \quad 1028$	302223	$28 \quad 3356$
	Regulus	E.	$40 \quad 50 \quad 2$	$\begin{array}{ll}39 & 243\end{array}$	371459	$35 \quad 26 \quad 52$
4	Venus	W.	100260	102713	1034847	1053041
	a Arietis	W.	854536	$87 \quad 3548$	892622	911717
	Aldebaran	W.	$54 \quad 0 \quad 27$	554828	573657	592551
	Jupiter	W.	$\begin{array}{llll}16 & 17 & 2\end{array}$	$\begin{array}{llll}18 & 7 & 8\end{array}$	195742	214841
	Spica	E.	802311	783243	764155	$\begin{array}{ll}74 & 50\end{array} 47$
5	Aldebaran	W.	$\begin{array}{llll}68 & 36 & 5\end{array}$	$\begin{array}{llll}70 & 27 & 8\end{array}$	$\begin{array}{llll}72 & 18 & 27\end{array}$	$\begin{array}{llll}74 & 10 & 2\end{array}$
	Jupiter	W.	3199	$\begin{array}{llll}33 & 1 & 58\end{array}$	3455511	$\begin{array}{llll}36 & 48 \\ 38\end{array}$
	Pollux	W.	$26 \quad 3 \quad 4$	$27 \quad 54$	294533	313726
	Spica	E.	$65 \quad 3031$	$\begin{array}{llll}63 & 37 & 39\end{array}$	614433	$\begin{array}{lll} 59 \quad 51 \quad 14 \end{array}$
	Antares	E.	1111843	1092540	1073223	1053853
6	Aldebaran	W.	$83 \quad 3059$	$\begin{array}{llll}85 & 23 & 37\end{array}$	871621	$\begin{array}{llll}89 & 9 & 8\end{array}$
	Jupiter	W.	$\begin{array}{llll}46 & 18 & 44\end{array}$	48139	$50 \quad 739$	$\begin{array}{llll}52 & 2 & 13\end{array}$
	Pollux	W.	$41 \quad 131$	425459	444837	$4642 \quad 22$
	Spica	E.	$\begin{array}{llll}50 & 22 & 9\end{array}$	482758	463344	$\begin{array}{llll}44 & 39 & 27\end{array}$
	Antares	E.	$\begin{array}{rrrr}96 & 8 & 45\end{array}$	$\begin{array}{llll}94 & 14 & 20\end{array}$	$\begin{array}{llll}92 & 19 & 49\end{array}$	$\begin{array}{llll}90 & 25 & 15\end{array}$
	Mars	E.	1091238	1072250	1053257.	103430
7	Jupiter	W.	$\begin{array}{llll}61 & 35 & 19\end{array}$	$\begin{array}{llll}63 & 29 & 50\end{array}$	$\begin{array}{llll}65 & 24 & 16\end{array}$	$\begin{array}{llll}67 & 18 & 35\end{array}$
	Pollux	W.	$\begin{array}{llll}56 & 11 & 56\end{array}$	$58 \quad 5 \quad 51$	5959541	$\begin{array}{llll}61 & 53 & 27\end{array}$
	Saturn	W.	26200	281433	30984	$\begin{array}{llll}32 & 3 & 32\end{array}$
	Spica	E.	$35 \quad 8 \quad 10$	$\begin{array}{lll}33 & 14 & 7\end{array}$	$\begin{array}{llll}31 & 20 & 12\end{array}$	292627
	Antares	E.	805211	785741	$\begin{array}{rrr}77 & 3 & 16\end{array}$	758858
	Mars	E.	943251	924254	$\begin{array}{lllll}90 & 53 & 3\end{array}$	$\begin{array}{llll}89 & 3 & 18\end{array}$
8	Jupiter	W.	$\begin{array}{llll}76 & 47 & 51\end{array}$	$7841 \begin{array}{lll}78\end{array}$	$\begin{array}{llll}80 & 34 & 6\end{array}$	$82 \quad 2651$
	Pollux	W.	$71 \quad 2011$	$\begin{array}{llll}73 & 1258\end{array}$	$\begin{array}{llll}75 & 5 & 31\end{array}$	765749
	Saturn	W.	413357	$43 \quad 2729$	$45 \quad 2048$	471352
	Regulus	W.	$\begin{array}{llll}34 & 19 & 20\end{array}$	$\begin{array}{llll}36 & 12 & 23\end{array}$	$\begin{array}{llll}38 & 5 & 12\end{array}$	$\begin{array}{llll}39 & 57 & 46\end{array}$
	Antares	E.	65 59	634628	$\begin{array}{llll}61 & 53 & 28\end{array}$	$60 \quad 044$
	Mars	E.	$\begin{array}{llll}79 & 56 & 47\end{array}$	$\begin{array}{llll}78 & 8 & 5\end{array}$	$\begin{array}{llll}76 & 19 & 37\end{array}$	743125
9	Jupiter	W.	$9146 \quad 0$	$93 \quad 3649$	$\begin{array}{llll}95 & 27 & 17\end{array}$	$97 \quad 17 \quad 22$

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { hone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Positio } \end{gathered}$		Midnight.	$\mathrm{XV}^{\text {b }}$.	xVIIr.	XXIr.
1	Sun	W.	$100^{\circ} 27^{\prime} 4{ }^{\prime \prime}$	$100^{\circ} \quad 2{ }^{\prime \prime}$	$1078{ }^{\circ} 8{ }^{\prime \prime}$	10981317
	Venus	W.	68 6	$6939 \quad 0$	711223	724612
	a Arietis	W.	502644	$52 \quad 833$	535049	553331
	Jupiter	E.	192549	174345	$\begin{array}{ll}16 & 1\end{array} 23$	141844
	Saturn	E.	54-59 10	531621	51338	494930
	Regulus	E.	614528	$\begin{array}{llll}60 & 3 & 9\end{array}$	582025	
2	Sun	W.	1171740	1185549	1203422	1221320
	Venus	W.	804145	821810	83550	853215
	a Arietis	W.	641340	$\begin{array}{llll}65 & 59 & 1\end{array}$	674449	69312
	Aldebaran	W.	$33 \quad 852$	344918	363034	381238
	Saturn	E.	415	391857	373226	354531
	Regulus	E.	475513	$46 \quad 9 \quad 32$	442326	423656
3			1303414	1321535	1335719	
	Venus	W.	934449	952432	97 8	98458
	a Arietis	W.	782828	801710	$\begin{array}{llll}82 & 616\end{array}$	835545
	Aldebaran	W.	465320	$\begin{array}{llll}48 & 39 & 19\end{array}$	$5025 \quad 51$	521254
	Saturn	E.	$2645 \quad 7$	245558	$\begin{array}{ll}23 & 631\end{array}$	211646
	Regulus	E.	333822	314930	$\begin{array}{llll}30 & 0 & 16\end{array}$	281040
4	Venus	W.	1071254	1085526	1103815	1122121
	a Arietis	W.	$\begin{array}{llll}93 & 8 & 31\end{array}$	$95 \quad 0 \quad 4$	965155	$9844 \quad 2$
	Aldebaran	W.	611510	$\begin{array}{llll}63 & 4 & 53\end{array}$	$64 \quad 5457$	664521
	Jupiter	W.	23404	253149	272354	291618
	Spica	E.	725919	$71 \quad 733$	691529	67238
5	Aldebaran	W.	$\begin{array}{llll}76 & 1 & 51\end{array}$	775353	79466	813829
	Jupiter	W.	384218	403610	423013	442425
	Pollux	W.	$\begin{array}{ll}33 & 2941\end{array}$	352216	37157	$\begin{array}{llll}39 & 813\end{array}$
	Spica	E.	575744	$\begin{array}{lll}56 & 4 & 3\end{array}$	541013	521614
	Antares	E.	1034511	1015118	995715	$\begin{array}{llll}98 & 3 & 4\end{array}$
6	Aldebaran	W.	$\begin{array}{llll}91 & 1 & 58\end{array}$	925450	944741	964029
	Jupiter	W.	535650	555129	$5746 \quad 7$	594044
	Pollux	W.	483612	50306	52243	54180
	Spica	E.	42458	405049	385632	$\begin{array}{lll}37 & 219\end{array}$
	Antares	E.	883038	86360	844122	824645
	Mars	E.	10152.59	$100 \quad 256$	981253	$\begin{array}{llll}96 & 2251\end{array}$
7	Jupiter	W.	691247	$71 \quad 650$	$73 \quad 042$	745423
	Pollux	W.	63457	654037	673359	692711
	Saturn	W.	335754	35529	374615	394012
	Spica	E.	273254	253935	234632	215348
	Antares	E.	731447	712045	692653	$67 \quad 3312$
	Mars	E.	871340	852410	833451	814543
8	Jupiter	W.	841918	861128	$88 \quad 3 \quad 19$	895449
	Pollux	W.	784950	804134	82330	84247
	Saturn	W.	$\begin{array}{llll}49 & 639\end{array}$	50599	525121	$\begin{array}{llllll}54 & 43 & 14\end{array}$
	Regulus	W.	4150	43426	453349	472513
	Antares	E.	$\begin{array}{lll}58 & 816\end{array}$	56166	542415	523243
	Mars	E.	724329	$\begin{array}{llll}70 & 55 & 52\end{array}$	$69 \quad 833$	672135
9	Jupiter	W.	$\begin{array}{llll}99 & 7 & 3\end{array}$	1005620	1024512	1043339

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
9	Pollux	W.	$86^{\circ} 144^{\prime \prime} 4^{\prime \prime}$	$88^{\circ} \quad 1519$	$89^{\circ} 555^{\prime} 23^{\prime \prime}$	$91^{\circ} 45^{\prime} \quad 31$
	Saturn	W.	$\begin{array}{llll}56 & 34 & 47\end{array}$	$58 \quad 25 \quad 59$	601650	$62 \quad 718$
	Regulus	W.	$\begin{array}{llll}49 & 1617\end{array}$	$\begin{array}{lll}51 & 7 & 1\end{array}$	525723	544723
	Antares	E.	504131	485040	$47 \quad 0 \quad 11$	$\begin{array}{llll}45 & 10 & 5\end{array}$
	Mars	E.	$\begin{array}{llll}65 & 34 & 56\end{array}$	634839	$62 \quad 245$	$\begin{array}{llll}60 & 17 & 14\end{array}$
	a Aquilæ	E.	1033135	1015633	1002139	984654
10	Jupiter	W.	1062140	$\begin{array}{llll}108 & 9 & 15\end{array}$	1095624	$11143 \quad 7$
	Pollux	W.	1004730	1023443	1042130	106750
	Saturn	W.	$\begin{array}{llll}71 & 13 & 41\end{array}$	$\begin{array}{llll}73 & 1 & 42\end{array}$	744918	$\begin{array}{llll}76 & 36 & 27\end{array}$
	Regulus	W.	635125	$\begin{array}{llll}65 & 38 & 59\end{array}$	67266	691247
	Antares	E.	$\begin{array}{llll}36 & 5 & 38\end{array}$	$\begin{array}{llll}34 & 18 & 1\end{array}$	$\begin{array}{llll}32 & 30 & 49\end{array}$	3044
	Mars	E.	$\begin{array}{llll}51 & 3544\end{array}$	495243	481010	$46 \quad 28 \quad 4$
	a Aquilæ	E.	$\begin{array}{llll}90 & 56 & 43\end{array}$	$\begin{array}{llll}89 & 23 & 37\end{array}$	$87 \quad 5055$	$\begin{array}{llll}86 & 18 & 37\end{array}$
11	Saturn	W.	$85 \quad 25 \quad 28$	$87 \quad 955$	$88 \quad 5354$	$\begin{array}{llll}90 & 37 & 26\end{array}$
	Regulus	W.	7759531	79 4331	8127	$\begin{array}{llll}83 & 10 & 8\end{array}$
	Spica	W.	$24 \quad 241$	$\begin{array}{llll}25 & 46 & 7\end{array}$	$27 \quad 29 \quad 4$	291138
	Mars	E.	$\begin{array}{llll}38 & 4 & 40\end{array}$	$\begin{array}{llll}36 & 25 & 27\end{array}$	344643	$\begin{array}{llll}33 & 8 & 30\end{array}$
	a Aquilæ	E.	$78 \quad 4412$	$\begin{array}{llll}77 & 14 & 53\end{array}$	75469	$\begin{array}{llll}74 & 18 & 1\end{array}$
	Sun	E.	1251237	$\begin{array}{llll}123 & 3616\end{array}$	$122 \quad 022$	1202454
12	Saturn	W.	$99 \quad 821$	1004912	1022937	$\begin{array}{lll}104 & 9 & 37\end{array}$
	Regulus	W.	913849	$\begin{array}{llll}93 & 19 & 13\end{array}$	$94 \quad 5912$	963846
	Spica	W.	373830	$\begin{array}{llll}39 & 18 & 39\end{array}$	405823	$\begin{array}{llll}42 & 37 & 42\end{array}$
	a Aquilæ	E.	$67 \quad 7 \quad 6$	$\begin{array}{llll}65 & 43 & 1\end{array}$	641941	$\begin{array}{llll}62 & 57 & 9\end{array}$
	Sun	E.	1123414	111125	109291	107572
13	Regulus	W.	1045019	1062726	108411	1094033
	Spica	W.	504825	522524	$\begin{array}{llll}54 & 2 & 1\end{array}$	$\begin{array}{llll}55 & 38 & 16\end{array}$
	a Aquilæ	E.	$\begin{array}{llll}56 & 17 & 16\end{array}$	$\begin{array}{rrr}55 & 0 & 6\end{array}$	$\begin{array}{llll}53 & 43 & 57\end{array}$	522852
	Sun	E.	1002321	$\begin{array}{lllll}98 & 53 & 48\end{array}$	$97 \quad 24 \quad 38$	$95 \quad 5550$
14	Spica	W.	$\begin{array}{llll}63 & 34 & 18\end{array}$	$\begin{array}{lll}65 & 8 & 31\end{array}$	$\begin{array}{llll}66 & 42 & 26\end{array}$	$\begin{array}{llll}68 & 16 & 3\end{array}$
	Antares	W.	$\begin{array}{llll}17 & 42 & 8\end{array}$	$\begin{array}{lll}19 & 16 & 30\end{array}$	205033	222418
	Sun	E.	88 37 10	$87 \quad 1026$	$\begin{array}{llll}85 & 44 & 1\end{array}$	$84 \quad 1754$
15	Spica	W.		775155		
	Antares	W.	$30 \quad 8 \quad 48$	314055	$\begin{array}{llll}33 & 12 & 48\end{array}$	344426
	Sun	E.	$\begin{array}{llll}77 & 11 & 37\end{array}$	$\begin{array}{llll}75 & 47 & 9\end{array}$	$742256{ }^{\circ}$	$72 \quad 5856$
16	Spica	W.	$88 \quad 943$	$8940 \quad 4$	911015	
	Antares	W.	$\begin{array}{llll}42 & 19 & 32\end{array}$	4350	$\begin{array}{llll}45 & 20 & 17\end{array}$	$46 \quad 5025$
	Mars	W.	$\begin{array}{llll}23 & 50 & 47\end{array}$	$\begin{array}{llll}25 & 15 & 59\end{array}$	$\begin{array}{llll}26 & 41 & 9\end{array}$	$28 \quad 615$
	Sun	E.	$\begin{array}{llll}66 & 210\end{array}$	$64 \quad 3924$	631648	615422
17	Spica	W.	$\begin{array}{lll}100 & 8 & 16\end{array}$	1013730	$\begin{array}{rrr}103 & 6 & 38\end{array}$	1043541
	Antares	W.	$\begin{array}{llll}54 & 18 & 59\end{array}$	554820	$\begin{array}{llll}57 & 17 & 35\end{array}$	584645
	Mars	W.	$\begin{array}{llll}35 & 10 & 43\end{array}$	$36 \quad 35 \quad 24$	$38 \quad 0 \quad 1$	392435
	Sun	E.	$55 \quad 423$	534246	522116	505953
18	Antares	W.	$\begin{array}{llll}66 & 11 & 26\end{array}$	$\begin{array}{llll}67 & 40 & 11\end{array}$	$\begin{array}{rrr}69 & 8 & 54\end{array}$	$\begin{array}{llll}70 & 37 & 35\end{array}$
	Mars	W.	$\begin{array}{llll}46 & 26 & 39\end{array}$	475057	$\begin{array}{llll}49 & 15 & 14\end{array}$	503930
	Sun	E.	$\begin{array}{llll}44 & 14 & 16\end{array}$	$42 \quad 53 \quad 24$	$41 \quad 3234$	$\begin{array}{llll}40 & 11 & 48\end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANGES.

Day of the Month	Star's and Positi		Midnight.	XYb.	XVIII'.	XXI'.
9	Pollux	W.	9383418	95×2317	97 11 47	$98595{ }^{\circ} 5$
	Saturn	W.	635723	65474	$67 \quad 3621$	$69 \quad 2514$
	Regulus	W.	$\begin{array}{llll}56 & 37\end{array}$	$58 \quad 2613$	$\begin{array}{llll}60 & 15 & 2\end{array}$	$62 \quad 326$
	Antares	E.	$43 \quad 2022$	41314	394210	375341
	Mars	E.	$58 \quad 32 \quad 6$	$\begin{array}{llll}56 & 47 & 23\end{array}$	55	$\begin{array}{llll}53 & 19 & 10\end{array}$
	a Aquilæ	E.	$97 \quad 12 \quad 20$	$95 \quad 38 \quad 0$	$94 \quad 356$	923010
10	Jupiter	W.	1132923	1151512	$117 \quad 033$	1184527
	Pollux	W.	1075343	109399	111247	113838
	Saturn	W.	$\begin{array}{llll}78 & 23 & 9\end{array}$	$\begin{array}{llll}80 & 9 & 24\end{array}$	815513	$\begin{array}{llll}83 & 40 & 34\end{array}$
	Regulus	W.	$7059 \quad 2$	72 4450	$\begin{array}{llll}74 & 30 & 11\end{array}$	$\begin{array}{llll}76 & 15 & 4\end{array}$
	Antares	E.	28 57	271149	$\begin{array}{llll}25 & 26 & 20\end{array}$	234117
	Mars	E.	444626	$\begin{array}{llll}43 & 5 & 17\end{array}$	412435	394423
	a Aquilæ	E.	844646	$8315 \quad 22$	814428	$80 \quad 14 \quad 4$
11	Saturn	W.	$\begin{array}{llll}92 & 20 & 31\end{array}$	$\begin{array}{llll}94 & 3 & 9\end{array}$	$\begin{array}{llll}95 & 45 & 20\end{array}$	$\begin{array}{llll}97 & 27 & 4\end{array}$
	Regulus	W.	845246	863456	881640	895758
	Spica	W.	305349	32 35	$\begin{array}{llll}34 & 1658\end{array}$	$35 \quad 5756$
	Mars	E.	313046	295335	281654	264046
	a Aquilæ	E.	$72 \quad 50 \quad 30$	$\begin{array}{llll}71 & 23 & 38\end{array}$	$69 \quad 57 \quad 25$	683155
	Sun	E.	1184953	1171519	1154111	$114 \quad 729$
12	Saturn	W.	1054911	1072820	$109 \quad 7 \quad 4$	1104524
	Regulus	W.	$\begin{array}{llll}98 & 17 & 54\end{array}$	995636	1013454	1031248
	Spica	W.	441638	$45 \quad 5510$	$47 \quad 3318$	491113
	a Aquilæ	E.	613525	$\begin{array}{llll}60 & 14 & 32\end{array}$	$58 \quad 5431$	573525
	Sun	E.	1062529	1045421	1032337	1015317
13	Regulus	W.	1111633	1125212	1142729	$116 \quad 225$
	Spica	W.	$\begin{array}{llll}57 & 14 & 9\end{array}$	584942	602454	615946
	a Aquilæ	E.	$\begin{array}{llll}51 & 14 & 53\end{array}$	$\begin{array}{lll}50 & 2 & 3\end{array}$	485026	47408
	Sun	E.	942724	925920	913137	$\begin{array}{llll}90 & 4 & 13\end{array}$
14	Spica	W.	69 4922	$\begin{array}{llll}71 & 22 & 24\end{array}$	$\begin{array}{llll}73 & 55 & 11\end{array}$	$\begin{array}{llll}74 & 27 & 40\end{array}$
	Antares	W.	$\begin{array}{llll}23 & 57 & 45\end{array}$	253055	$27 \quad 348$	283626
	Sun	E.	$82 \quad 52 \quad 5$	812634	$\begin{array}{lll}80 & 1 & 19\end{array}$	783620
15	Spica	W.	$82 \quad 6 \quad 30$	833736	$85 \quad 8 \quad 30$	$\begin{array}{llll}86 & 39 & 12\end{array}$
	Antares	W.	$\begin{array}{llll}36 & 15 & 52\end{array}$	37475	$\begin{array}{llll}39 & 18 & 5\end{array}$	404854
	Sun	E.	713510	7011137	684816	67258
16	Spica	W.		$\begin{array}{llll}95 & 39 & 52\end{array}$		
	Antares	W.	482024	$49 \quad 5014$	511956	524931
	Mars	W.	293117	$\begin{array}{lllllllllll}30 & 56 & 15\end{array}$	32218	334558
	Sun	E.	60325	$\begin{array}{llll}59 & 9 & 57\end{array}$	$57 \quad 47 \quad 58$	$\begin{array}{llll}56 & 26 & 7\end{array}$
17	Spica	W.	$106 \quad 438$	1073331	109219	$\begin{array}{lll}110 & 31\end{array}$
	Antares	W.	601550	614450	$\begin{array}{lll}63 & 1346\end{array}$	644238
	Mars	W.	40495	$\begin{array}{llll}42 & 13 & 32\end{array}$	433757	$\begin{array}{llll}45 & 2 & 19\end{array}$
	Sun	E.	493835	$4817 \quad 24$	$\begin{array}{llll}46 & 56 & 17\end{array}$	$\begin{array}{llll}45 & 35 & 14\end{array}$
18	Antares	W.	$\begin{array}{lll}72 & 6 & 13\end{array}$	$\begin{array}{llll}73 & 34 & 50\end{array}$	$75 \quad 326$	$\begin{array}{llll}76 & 32 & 1\end{array}$
	Mars	W.	$\begin{array}{llll}52 & 3 & 44\end{array}$	$\begin{array}{llll}53 & 27 & 57\end{array}$	$54 \quad 52 \quad 10$	$\begin{array}{llll}56 & 16 & 24\end{array}$
	Sun	E.	38515	373026	$36 \quad 950$	344917

GREENWICH MEAN TIME.						
lunar distances.						
Day of the Month	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	IIT ${ }^{\text {b }}$	VI ${ }^{\text {h }}$.	IX ${ }^{\text {b }}$
19	Antares Mars Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{ccc} 78 & 0 & 36 \\ 57 & 40 & 37 \\ 33 & 28 & 47 \end{array}$		$\begin{array}{lrr} 80 & 57^{\prime \prime} & 46 \\ 60 & 29 & 5 \\ 30 & 47 & 55 \end{array}$	$\begin{array}{lll} 82 & 26 & 2{ }^{\prime \prime} \\ 61 & 53 & 22 \\ 29 & 27 & 34 \end{array}$
24	Sun Aldebaran Jupiter Pollux	W. E. E. E.	21 54 17 43 35 1 80 2 13 85 18 21	$\begin{array}{rrr} 23 & 17 & 8 \\ 42 & 6 & 18 \\ 78 & 30 & 52 \\ 83 & 47 & 0 \end{array}$	24 40 16 40 37 39 76 59 23 82 15 31	$\begin{array}{rrr} 26 & 3 & 40 \\ 39 & 9 & 3 \\ 75 & 27 & 46 \\ 80 & 43 & 54 \end{array}$
25	Sun Aldebaran Jupiter Pollux Saturn Regulas	W. E. E. E. E. E.	$\begin{array}{rrr} 33 & 4 & 17 \\ 31 & 48 & 1 \\ 67 & 47 & 25 \\ 73 & 3 & 33 \\ 101 & 46 & 46 \\ 109 & 58 & 11 \end{array}$	$\begin{array}{rrr} 34 & 29 & 4 \\ 30 & 20 & 28 \\ 66 & 14 & 53 \\ 71 & 31 & 1 \\ 100 & 13 & 36 \\ 108 & 25 & 19 \end{array}$	$\begin{array}{rrr} 35 & 54 & 4 \\ 28 & 53 & 15 \\ 64 & 42 & 11 \\ 69 & 58 & 20 \\ 98 & 40 & 16 \\ 106 & 52 & 18 \end{array}$	$\begin{array}{rrr} 37 & 19 & 17 \\ 27 & 26 & 27 \\ 63 & 9 & 19 \\ 68 & 25 & 30 \\ 97 & 6 & 45 \end{array}$
26	Sun Jupiter Pollux Saturn Regulus	$\begin{aligned} & \text { W. } \\ & \text { E. } \end{aligned}$	44 28 32 55 22 22 60 38 45 89 16 31 97 30 25	$\begin{array}{rrr} 45 & 55 & 2 \\ 53 & 48 & 25 \\ 59 & 4 & 53 \\ 87 & 41 & 55 \\ 95 & 56 & 6 \end{array}$	$\begin{array}{rrrr} 47 & 21 & 44 \\ 52 & 14 & 17 \\ 57 & 30 & 50 \\ 86 & 7 & 7 \\ 94 & 21 & 36 \end{array}$	$\begin{array}{rrr} 48 & 48 & 40 \\ 50 & 39 & 57 \\ 55 & 56 & 37 \\ 84 & 32 & 6 \\ 92 & 46 & 54 \end{array}$
27	Sun Jupiter Pollux Saturn Regulus	$\begin{aligned} & \text { W. } \\ & \text { E. } \end{aligned}$	56 6 41 42 45 12 48 2 37 76 33 56 84 50 12	$\begin{array}{rrr} 57 & 35 & 0 \\ 41 & 9 & 35 \\ 46 & 27 & 14 \\ 74 & 57 & 38 \\ 83 & 14 & 11 \end{array}$	59 3 33 39 33 45 44 51 40 73 21 6 81 37 56	$\begin{array}{rrr} 60 & 32 & 21 \\ 37 & 57 & 42 \\ 43 & 15 & 54 \\ 71 & 44 & 20 \\ 80 & 1 & 28 \end{array}$
28	Sun Venus Jupiter Pollux Saturn Regulus	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	68 0 15 26 46 58 29 53 49 35 14 14 63 36 48 71 55 17	$\begin{array}{lll} 69 & 30 & 38 \\ 28 & 15 & 35 \\ 28 & 16 & 18 \\ 33 & 37 & 21 \\ 61 & 58 & 31 \\ 70 & 17 & 15 \end{array}$	71 1 17 29 44 33 26 38 32 32 0 19 60 19 58 68 38 58	$\begin{array}{rrr} 72 & 32 & 13 \\ 31 & 13 & 53 \\ 25 & 0 & 30 \\ 30 & 23 & 8 \\ 58 & 41 & 8 \\ 67 & 0 & 24 \end{array}$
29	Sun Venus Aldebaran Saturn Regulus Spica	W. W. W. E. E. E.	$\begin{array}{rrr} 80 & 11 & 17 \\ 38 & 45 & 39 \\ 23 & 3 & 50 \\ 50 & 22 & 47 \\ 58 & 43 & 16 \\ 112 & 46 & 19 \end{array}$	$\begin{array}{rrr} 81 & 43 & 59 \\ 40 & 17 & 1 \\ 24 & 34 & 37 \\ 48 & 42 & 14 \\ 57 & 2 & 57 \\ 111 & 6 & 4 \end{array}$	$\begin{array}{rrr} 83 & 17 & 0 \\ 41 & 48 & 43 \\ 26 & 6 & 46 \\ 47 & 1 & 23 \\ 55 & 22 & 20 \\ 109 & 25 & 29 \end{array}$	$\begin{array}{rrr} 84 & 50 & 20 \\ 43 & 20 & 45 \\ 27 & 40 & 9 \\ 45 & 20 & 15 \\ 53 & 41 & 24 \\ 107 & 44 & 36 \end{array}$
30	Sun Venus Aldebaran Saturn Regulus Spica	W. W. W. E. E. E.	92 41 49 51 6 7 35 41 18 36 49 54 45 12 1 99 15 16	94 17 6 52 40 14 37 19 51 35 6 54 43 29 11 97 32 25	95 52 42 54 14 41 38 59 3 33 23 35 41 46 1 95 49 14	97 28 38 55 49 30 40 38 52 31 39 57 40 2 32 94 5 43
31	Sun Venus Aldebaran Regulus Spica	W. W. W. E. E.	$\begin{array}{rrr} 105 & 33 & 22 \\ 63 & 48 & 50 \\ 49 & 6 & 9 \\ 31 & 20 & 17 \\ 85 & 23 & 2 \end{array}$	$\begin{array}{rrr} 107 & 11 & 19 \\ 65 & 25 & 46 \\ 50 & 49 & 7 \\ 29 & 34 & 53 \\ 83 & 37 & 29 \end{array}$	$\begin{array}{rrr} 108 & 49 & 35 \\ 67 & 3 & 2 \\ 52 & 32 & 32 \\ 27 & 49 & 11 \\ 81 & 51 & 35 \end{array}$	$\begin{array}{rrr} 110 & 28 & 10 \\ 68 & 40 & 38 \\ 54 & 16 & 24 \\ 26 & 3 & 10 \\ 80 & 5 & 22 \end{array}$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.	$\begin{gathered} \text { Star's Na } \begin{array}{c} \text { and } \\ \text { Position } \end{array} \end{gathered}$		Midnight.	XV.	XVIIr.	XXIb.
19	Antares	W.	$8354{ }^{4} 58$	$8523{ }^{\circ} 3$	$865{ }^{\circ} 1{ }^{\prime \prime}$	$8820{ }^{\circ} \mathrm{5}$
	Mars	W.	631739	644157	$66 \quad 618$	673042
	Sun	E.	$\begin{array}{ll}28 & 717\end{array}$	$2647 \quad 2$	$25 \quad 2652$	$24 \quad 646$
24	Sun	W.	272720	285114	301522	313943
	Aldebaran	E.	374033	361210	344356	331552
	Jupiter	E.	7356	72245	70521	691948
	Pollux	E.	79127	774011	7688	743556
25	Sun	W.	384443	401021	413611	$43 \quad 215$
	Aldebaran	E.	26-0 10	243432	$23 \quad 942$	214552
	Jupiter	E.	$\begin{array}{llll}61 & 36 & 17\end{array}$	$\begin{array}{llll}60 & 3 & 4\end{array}$	582941	56 56 6
	Pollux	E.	665229	$\begin{array}{llll}65 & 19 & 18\end{array}$	$\begin{array}{llll}63 & 45 & 57\end{array}$	$62 \quad 12 \quad 26$
	Saturn	E.	$95 \quad 334$	935912	92259	905056
	Regulus	E.	1034544	1021212	100.3828	99 432
26	Sun	W.	501549	514311	531046	543836
	Jupiter	E.	$49 \quad 525$	473041	455544	442035
	Pollux	E.	542211	524734	511246	493748
	Saturn	E.	825654	812129	794551	78100
	Regulus	E.	91120	893652	$88 \quad 131$	862558
27	Sun	W.	$\begin{array}{lll}62 & 1 & 25\end{array}$	$\begin{array}{llll}63 & 3044\end{array}$	$\begin{array}{lll}65 & 0 & 18\end{array}$	66308
	Jupiter	E.	$\begin{array}{llll}36 & 21 & 24\end{array}$	344452	33 8	31315
	Pollux	E.	413957	$40 \quad 348$	382727	365056
	Saturn	E.	$70 \quad 720$	$\begin{array}{llll}68 & 30 & 5\end{array}$	$66 \quad 52 \quad 35$	651449
	Regulus	E.	782444	764745	751031	$\begin{array}{llll}73 & 33 & 2\end{array}$
28	Sun	W.	$74 \quad 3 \quad 26$	$75 \quad 3457$	$77 \quad 646$	783853
	Venus	W.	324334	341335	354356	371437
	Jupiter	E.	232213	214341	$20 \quad 455$	182554
	Pollux	E.	284549	$27 \quad 823$	253053	235323
	Saturn	E.	$57 \quad 2 \quad 2$	552239	534259	52 3
	Regulus	E.	$65 \quad 2133$	634225	6230	$\begin{array}{lll}60 & 23 & 17\end{array}$
29	Sun	W.	86240	875758	893215	$91 \quad 652$
	Venus	W.	44538	462551	475855	493221
	Aldebaran	W.	291436	$3050 \quad 2$	322620	$\begin{array}{llll}34 & 3 & 27\end{array}$
	Saturn	E.	433848	$4157 \quad 2$	401458	383235
	Regulus	E.	$52 \quad 0 \quad 10$	501836	$48 \quad 3644$	465432
	Spica	E.	$\begin{array}{lll}106 & 3 & 23\end{array}$	1042151	1023959	1005747
30	Sun	W.	$99 \quad 455$	1004132	1021828	1035545
	Venus	W.	572440	$59 \quad 0 \quad 10$	60 66	621215
	Aldebaran	W.	421915	$44 \quad 0 \quad 12$	454141	472340
	Saturn	E.	$2956 \quad 2$	281149	$\begin{array}{lll}26 & 27 & 18\end{array}$	244230
	Regulus	E.	381844	363436	$3450 \quad 9$	$33 \quad 522$
	Spica	E.	922152	903740	88538	$87 \quad 815$
31	Sun	W.	$\begin{array}{llll}112 & 7 & 5\end{array}$	1134620	1152554	$117 \quad 545$
	Venus	W.	701835	715653	733531	751427
	Aldebaran	W.	$56 \quad 041$	574524	593031	$6116 \quad 2$
	Regulus	E.	24 76 163	223020	204332	185630
	Spica	E.	781849	763156	744443	725711

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { hone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star'a Naro } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	IIIr.	VI'.	IX
1	Sun	W.	$118^{\circ} 45^{\prime} 54$	$120^{\circ} 26^{\prime \prime} 2 \underline{ }$	$122^{\circ} \quad 7 \quad 18$	$123^{\circ} 48^{\prime \prime} 10$
	Venus	W.	$76 \quad 5345$	783322	801317	815331
	Aldebaran	W.	$63 \quad 20$	644818	663457	682158
	Jupiter	W.	244940	263715	282510	301325
	Pollux	W.	203450	221953	$24 \quad 542$	255211
	Spica	E.	$71 \quad 921$	692112	673245	654359
2	Venus	W.	$\begin{array}{llll}90 & 19 & 1\end{array}$	92055	93434	$\begin{array}{llll}95 & 25 & 27\end{array}$
	Aldebaran	W.	772147	791037	805943	82493
	Jupiter	W.	$\begin{array}{ll}39 & 19 \\ 3\end{array}$	41859	425910	444935
	Pollux	W.	345219	364135	383113	40219
	Spica	E.	563558	544535	525459	51410
	Antares	E.	1022257	1003223	984135	965033
3	Venus	W.	104025	1054355	1072733	1091118
	Jupiter	W.	54442	555613	574752	593939
	Pollux	W.	493449	512611	531744	$55 \quad 926$
	Saturn	W.	$\begin{array}{ll}21 & 2 \\ 4\end{array}$. 22543	244558	26384
	Spica	E.	414719	39 595 30	$\begin{array}{lll}38 & 3 & 35\end{array}$	361134
	Antares	E.	873225	854017	$8348 \quad 2$	815539
	Mars	E.	1155349	114541	1121725	110291
4	Jupiter	W.	685941	705147	724354	74.3558
	Pollux	W.	642928	662139	681350	70 - 60
	Saturn	W.	$36 \quad 026$	37536	394546	413826
	Regulus	W.	272745	29208	311232	$\begin{array}{llll}33 & 4 & 57\end{array}$
	Antares	E.	723236	703953	684711	665430
	Mars	E.	1012544	993657	974811	955925
5	Jupiter	W.	835523	854656	873820	892933
	Pollux	W.	79266	811749	$83 \quad 924$	$85 \quad 049$
	Saturn	W.	$\begin{array}{lll}51 & 1 & 2\end{array}$	525315	544520	$\begin{array}{llll}56 & 37 & 15\end{array}$
	Regulus	W.	$42 \quad 2626$	441826	461019	
	Antares	E.	57320	553950	534748	$\begin{array}{llll}51 & 55 & 57\end{array}$
	Mars	E.	865628	85811	$83 \quad 20 \quad 3$	81325
6	Jupiter	W.	984236	1003229	$\begin{array}{llll}102 & 22\end{array}$	1041122
	Saturn	W.	$65 \quad 5347$	674422	693441	712442
	Regulus	W.	$\begin{array}{lll}57 & 17 & 39\end{array}$	$\begin{array}{llll}59 & 8 & 4\end{array}$	605812	62483
	Antares	E.	423944	404913	38.5859	$\begin{array}{lll}37 & 9 & 2\end{array}$
	Mars	E.	723516	704837	$69 \quad 215$	671611
	a Aquilæ	E.	963440	94594	$\begin{array}{lll}93 & 23 & 38\end{array}$	914824
7	Satarn	W.	$80 \quad 2959$	82180	84 539	$\begin{array}{llll}85 & 52 & 54 \\ 77\end{array}$
	Regulus	W.	715232	734024	752753	771459
	Mars	E.	583036	564632	$\begin{array}{lll}55 & 2 & 49\end{array}$	$\begin{array}{llll}53 & 19 & 29\end{array}$
	a Aquilæ	E.	835629	822311	805018	791753
	Fomalhaut	E.	1083950	$\begin{array}{lll}107 & 127\end{array}$	1052314	1034513
8	Saturn	W.	944313	$\begin{array}{llll}96 & 28 & 2 \\ 87 & 48\end{array}$	981226	995625
	Regulus	W.	$\begin{array}{lll}86 & 4 & 33\end{array}$	874914	893330	$\begin{array}{llll}91 & 17 & 20\end{array}$
	Spica	W.	$\begin{array}{ll}32 & 4 \\ 45\end{array}$	33 48 55 43 7	$\begin{array}{llll}35 & 32 & 52 \\ 41 & 27 & 27\end{array}$	3716165
	Mars	E.	444849	$43 \quad 755$	$4127 \quad 27$	39 47 64
	a Aquilæ	E.	$\begin{array}{llll}71 & 43 & 53 \\ 95 & 38\end{array}$	701454	684635	671859
	Fomalhaut	E.	953858	$94 \quad 239$	922641	90516

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV.	XVIII ${ }^{\text {b }}$	XXT.
1	Sun	W.	$125{ }^{\circ} 2989$	127114	$1288^{\circ} 5{ }^{\prime} 54$	$130{ }^{\circ} 3489$
	Venus	W.	83 343	85 8 14	1865558	18837
	Aldebaran	W.	$70 \quad 918$	715657	734457	753313
	Jupiter	W.	$32 \quad 158$	335049	353957	372922
	Pollux	W.	273915	292651	311454	$33 \quad 324$
	Spica		635455	$62 \quad 5 \quad 34$	601558	58266
2	Venus	W.	$97 \quad 8{ }^{97}$	985052	1003352	102174
	Aldebaran	W.	843837	862823	881822	90831
	Jupiter	W.	464014	48314	$5022 \quad 6$	$\begin{array}{llll}52 & 13 & 19\end{array}$
	Pollux	W.	421123	$44 \quad 153$	455238	$\begin{array}{llll}47 & 43 & 37\end{array}$
	Spica	E.	49139	472156	453033	43390
	Antares	E.	945918	93 7 1	911612	892424
3	Venus	W.	1105510	112396	$11423 \quad 7$	$\begin{array}{ll}116 & 710\end{array}$
	Jupiter	W.	613132	$\begin{array}{ll}63 & 23 \\ 29\end{array}$	651530	$67 \quad 735$
	Pollux	W.	$57 \quad 116$	585312	604514	623719
	Saturn	W.	283020	$30 \quad 2243$	321513	$34 \quad 748$
	Spica	E.	341930	$32 \quad 2723$	303515	28438
	Antares	E.	$80 \quad 310$	$\begin{array}{llll}78 & 10 & 37\end{array}$	761759	$74 \quad 2519$
	Mars	E.	1084030	1065154	$105 \quad 314$	1031431
4	Jupiter	W.	$\begin{array}{lll}76 & 28 & 1\end{array}$	78200	801154	
	Pollux	W.	715810	735016	754219	773416
	Saturn	W.	43316	452342	471614	49841
	Regulus	W.	$\begin{array}{llll}34 & 57 & 22\end{array}$	364944	$3842 \begin{array}{ll}38\end{array}$	$\begin{array}{lllll}40 & 34 & 17\end{array}$
	Antares	E.	65150	$63 \quad 915$	611644.	592418
	Mars	E.	941040	92220	903324	
5	Jupiter	W.	912036	$\begin{array}{ll}93 & 11\end{array} 27$		
	Pollux	W.	86523	88435	903355	922430
	Saturn	W.	582859	602031	621151	$64 \quad 257$
	Regulus	W.	495335	514456	$\begin{array}{llll}53 & 36 & 4\end{array}$	552659
	Antares	E.	$50 \quad 417$	481248	462133	443031
	Mars	E.	794418	775642	$\begin{array}{llll}76 & 9 & 19\end{array}$	742210
6			$106 \quad 022$	107492	1093723	1112522
	Saturn	W.	731425	$75 \quad 349$	765253	784136
	Regulus	W.	643736	662651	681545	$70 \quad 419$
	Antares	E.	351924	33304	31415	$2952 \quad 27$
	Mars	E.	653025	634457	615949	$60 \quad 15$
	a Aquilæ	E.	901326	883842	$87 \quad 416$	853011
7	Saturn	W.	873946	892615	911219	925758
	Regulus	W.	79141	$8048 \quad 1$	823357	841927
	Mars	E.	513633	49540	481152	46308
	a Aquilæ	E.	774559	761435	744345	731330
	Fomalhaut	E.	102725	1002952	985236	$97 \quad 1538$
8	Saturn	W.	1013957	103234	$105 \quad 544$	1064759
	Regulus	W.	93045	944344	$\begin{array}{lll}96 & 2617\end{array}$	98 8
	Spica	W.	385935	404220	422440	$44 \quad 636$
	- Mars	E.	$\begin{array}{ll}38 & 748\end{array}$	302837	344953	331134
	a Aquilæ	E.	65528	64263	63046	613619
	Fomalhaut	E.	891553	$8741 \quad 5$	$86 \quad 642$	843244

GREENWIOH MEAN.TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$.	1X ${ }^{\text {h }}$
9	Saturn	W.	$108^{\circ} 29^{\prime} 48^{\prime \prime}$	$110^{\circ} 111^{\prime \prime} 11$	$111^{\circ} 5210^{\prime \prime}$	$113^{\circ} 322^{\prime \prime}$
	Regulus	W.	$9950 \quad 5$	1013121	1031211	1045235
	Spica	W.	45488	$47 \quad 2914$	$49 \quad 955$	$\begin{array}{llll}50 & 50 & 12\end{array}$
	Mars	E.	313344	$\begin{array}{ll}29 & 5619\end{array}$	281920	264247
	a Aquilæ	E.	601246	$5850 \quad 7$	572826	$56 \quad 744$
	Fomalhaut	E.	825912	$8126 \quad 8$	79 53	782124
	Sun	E.	1315823	130250	128521	1271925
10	Spica	W.	$\begin{array}{lll}59 & 5 & 28\end{array}$	604319	$62 \quad 2046$	$\begin{array}{llll}63 & 57 & 50\end{array}$
	Antares	W.	$\begin{array}{lll}13 & 13 & 34\end{array}$	145135	$\begin{array}{llll}16 & 29 & 12\end{array}$	18626
	a Aquilæ	E.	494059	482721	$47 \begin{array}{lll}47 & 15\end{array}$	$\begin{array}{llll}46 & 4 & 20\end{array}$
	Fomalhaut	E.	704814	691911	675040	$66 \quad 2241$
	a Pegasi	E.	914110	90655	$88 \quad 33 \quad 3$	$\begin{array}{llll}86 & 59 & 34\end{array}$
	Sun	E.	1194226	1181213	1164224	1151257
11	Spica	W.	715733	$\begin{array}{llll}73 & 32 & 25\end{array}$	$\begin{array}{llll}75 & 6 & 57\end{array}$	$\begin{array}{llll}76 & 41 & 10\end{array}$
	Antares	W.	$26 \quad 652$	274151	291630	305049
	Fomalhaut	E.	591140	574719	$\begin{array}{llll}56 & 23 & 37\end{array}$	550036
	a Pegasi	E.	$\begin{array}{llll}79 & 17 & 48\end{array}$	77 7635	$\begin{array}{llll}76 & 15 & 44\end{array}$	$\begin{array}{llll}74 & 45 & 15\end{array}$
	Sun	E.	1075111	1062354	$\begin{array}{llll}104 & 5657\end{array}$	$\begin{array}{lll}103 & 3019\end{array}$
12	Spica	W.	$\begin{array}{llll}84 & 27 & 32\end{array}$	$85 \quad 5956$	$87 \quad 32 \quad 3$	$89 \quad 356$
	Antares	W.	383741	401011	414226	431425
	Fomalhaut	E.	481633	$\begin{array}{llll}46 & 58 & 10\end{array}$	454041	$4424 \quad 7$
	a Pegasi	E.	$\begin{array}{llll}67 & 18 & 19\end{array}$	$6550 \quad 0$	$64 \quad 22 \quad 4$	62 24 29
	Sun	E.	$96 \quad 2149$	94 56	$\begin{array}{llll}93 & 32 & 24\end{array}$	$\begin{array}{llll}92 & 8 & 6\end{array}$
13	Spica	W.	$\begin{array}{llll}96 & 39 & 43\end{array}$	$\begin{array}{llll}98 & 10 & 14\end{array}$	$\begin{array}{llll}99 & 40 & 38\end{array}$	
	Antares	W.	505045	522122	$\begin{array}{llll}53 & 51 & 47\end{array}$	$\begin{array}{llll}55 & 22 & 2\end{array}$
	Mars	W.	$17 \begin{array}{lll}17 & 32\end{array}$	185841	$\begin{array}{llll}20 & 25 & 8\end{array}$	215127
	a Pegasi	E.	$\begin{array}{llll}55 & 41 & 55\end{array}$	$\begin{array}{llll}54 & 16 & 30\end{array}$	525127	512648
	Sun	E.	$8510 \begin{array}{lll}85 & 7\end{array}$	$83 \quad 4710$	822425	$81 \quad 151$
14	Antares	W.	625053	$\begin{array}{llll}64 & 20 & 14\end{array}$	$\begin{array}{llll}65 & 49 & 29\end{array}$	$\begin{array}{llll}67 & 18 & 38\end{array}$
	Mars	W.	$\begin{array}{llll}29 & 1 & 18\end{array}$	$\begin{array}{llll}30 & 26 & 53\end{array}$	315213	$\begin{array}{llll}33 & 17 & 38\end{array}$
	a Pegasi	E.	442940	$43 \quad 7 \quad 35$	41461	402458
	Sun	E.	741126	724946	$\begin{array}{llll}71 & 28 & 13\end{array}$	$\begin{array}{llll}70 & 6 & 47\end{array}$
15	Antares		$7443 \quad 4$	$\begin{array}{llll}76 & 11 & 47\end{array}$	774026	$\begin{array}{llll}79 & 9 & 5\end{array}$
	Mars	W.	$\begin{array}{llll}40 & 23 & 37\end{array}$	414839	$\begin{array}{llll}43 & 13 & 39\end{array}$	443839
	Sun	E.	$63 \quad 2056$	615959	$60 \quad 394$	591811
16	Antares	W.	86323	$88 \quad 0 \quad 39$	$89 \quad 29 \quad 17$	$\begin{array}{llll}90 & 57 & 57\end{array}$
	Mars	W.	514330	$53 \quad 830$	543332	$\begin{array}{llll}55 & 58 & 36\end{array}$
	\boldsymbol{a} Aquilæ	W.	422357	$\begin{array}{llll}43 & 2418\end{array}$	442557	$45 \quad 2846$
	Sun	E.	$\begin{array}{ll}52 & 3415\end{array}$	$\begin{array}{llll}51 & 13 & 29\end{array}$	$49 \quad 5243$	483157
17	Antares	W.	$\begin{array}{llll}98 & 22 & 1\end{array}$	$\begin{array}{llll}99 & 51 & 1\end{array}$	101206	1024916
	Mars	W.	$63 \quad 448$	$64 \quad 30 \quad 15$	655546	672123
	a Aquilæ	W.	505841	52781	$\begin{array}{llll}53 & 16 & 47\end{array}$	$54 \quad 2658$
	Sun	E.	414744	$\begin{array}{llll}40 & 26 & 49\end{array}$	39551	374450
18			74 31	$\begin{array}{llll}75 & 57 & 17\end{array}$	$77 \quad 2341$	$\begin{array}{llll}78 & 50 & 12\end{array}$
	a Aquilæ	W.	602736	614126	62 55	$64 \quad 1036$
	Sun	E.	305911	293759	$28 \quad 1645$	$26 \quad 55 \quad 32$

-		GREENWICH MEAN TIME.				
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXIL.
9	Saturn	W.	$115^{\circ} 12{ }^{\prime \prime}$	$116^{\circ} 52^{\prime} 411$	$118{ }^{18} 32^{\prime \prime}$	$120^{\circ} 11^{\prime} 7$
	Regulus	W.	1063234	108127	1095116	1112959
	Spica	W.	$5230 \quad 4$	$54 \quad 931$	554834	572713
	Mars	E.	$25 \quad 641$	23312	215550	20215
	a Aquilæ	E.	$5448 \quad 5$	532933	52129	505555
	Fomalhaut	E.	764945	751836	734758	721750
	Sun	E.	1254713	1241526	122443	12113 3
10	Spica		653431	671049	684645	702220
	Antares	W.	194317	211944	225549	243132
	a Aquilæ	E.	44557	434728	424133	413731
	Fomalhaut	E.	645518	632829	$\begin{array}{llll}62 & 216\end{array}$	603639
	${ }^{\text {a Pegasi }}$	E.	$85 \quad 2627$	835344	$82 \quad 2123$	804924
	Sun	E.	1134352	112159	1104649	1091850
11	Spica	W.	$7815 \quad 3$	794837	812153	825451
	Antares	W.	322448	335827	353150	$37 \quad 455$
	Fomalhaut	E.	533817	521642	505551	493547
	${ }_{\text {a Pegasi }}$	E.	73158	714523	70160	684659
	Sun	E.	$\begin{array}{llll}102 & 4 & 0\end{array}$	100381	991220	974656
12	Spica	W.	903533	$\begin{array}{llll}92 & 6 & 56\end{array}$	93 98	$\begin{array}{lll}95 & 9 & 0\end{array}$
	Antares	W.	44469	461738	474853	491956
	Fomalhaut	E.	$43 \quad 834$	41545	404042	392831
	${ }_{\text {a Pegasi }}$	E.	612714	$\begin{array}{lll}60 & 0 & 22\end{array}$	583352	$57 \quad 742$
	Sun	E.	$9044 \quad 2$	892013	875638	863316
13	Spica	W.	1024039	1041027	$10540 \quad 5$	$107 \quad 935$
	Antares	W.	56527	58221	595147	612124
	Mars	W.	231738	244341	$\begin{array}{llll}26 & 9 & 37\end{array}$	273526
	a Pegasi	E.	$50 \quad 232$	483840	471514	455214
	Sun	E.	793927	781713	7655	753313
14	Antares	W.	684740	$\begin{array}{llll}70 & 16 & 37\end{array}$	714530	$\begin{array}{llll}73 & 14 & 19\end{array}$
	Mars	W.	344258	$\begin{array}{llll}36 & 8 & 14\end{array}$	373325	385832
	${ }_{\text {a }}$ Pegasi	E.	$\begin{array}{ll}39 & 430\end{array}$	374439	362526	$\begin{array}{llll}35 & 6 & 58\end{array}$
	Sun	E.	684527	$67 \quad 2412$	$\begin{array}{llll}66 & 3 & 2\end{array}$	644157
15	Antares	W.	803741	$82 \quad 617$	$83 \quad 3452$	$85 \quad 3 \quad 27$
	Mars	W.	$\begin{array}{llll}46 & 3 & 37\end{array}$	472834	485332	501831
	Sun	E.	575722	563634	$\begin{array}{llll}55 & 1547\end{array}$	53551
16	Antares	W.	922639	935524	952413	96535
	Mars	W.	572344	584854	60148	613926
,	a Aquilæ	W.	463248	473751	$48 \quad 4353$	495050
	Sun	E.	47119	455020	442930	43838
17	Antares		1041832	1054753	1071720	1084653
	Mars	W.	68476	701255	713850	$\begin{array}{ll}73 & 4 \\ 52\end{array}$
	a Aquilæ	W.	$55 \quad 3751$	564922	$58 \quad 132$	$\begin{array}{llll}59 & 14 & 17\end{array}$
	Sun	E.	$\begin{array}{ll}36 & 23 \\ 47\end{array}$	$35 \quad 241$	334133	322023
18	Mars	W.	801652	814340	$\begin{array}{llll}83 & 10 & 37\end{array}$	843743
	a Aquilæ	W.	65 25 54 8 34	$\begin{array}{llllll}66 & 41 & 38\end{array}$	$\begin{array}{llll}67 & 57 & 47\end{array}$	$\begin{array}{llll}69 & 14 & 19\end{array}$
	Sun	E.	253418	$2413 \quad 8$	22521	2131

GREENWICH MEAN TIME.						
Lunar distances.						
Day of the Month	$\begin{gathered} \text { Star's NaI } \\ \text { and } \\ \text { Position } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI'.	$\mathrm{IX}^{\text {b }}$.
23	Sun	W.	$26^{\circ} 500^{\prime \prime} 4$	$28^{\circ} 18^{\prime} 33^{\prime \prime}$	$29^{\circ} 46^{\prime} 36$	$31^{\circ} 15{ }^{\prime \prime}$
	Jupiter	E.	48926	463344	$\begin{array}{llll}44 & 57 & 51\end{array}$	432147
	Pollux	E.	51335	492738	475131	$46 \quad 1516$
	Saturn	E.	$\begin{array}{lll}79 & 6 & 1\end{array}$	772929	755248	741555
	Regulus	E.	875132	861457	843810	$83 \quad 112$
24	Sun	W.	384110	$40 \quad 11 \quad 12$	414128	431159
	Jupiter	E.	351835	334123	32 3 59	302624
	Pollux	E.	381150	363447	345738	332023
	Saturn	E.	$66 \quad 836$	643033	625219	611354
	Regulus	E.	745329	731521	$\begin{array}{ll}71 & 37\end{array}$	695830
25	Sun	W.	$\begin{array}{lll}50 & 48 & 6\end{array}$	$\begin{array}{llll}52 & 20 & 1\end{array}$	$\begin{array}{llll}53 & 52 & 9\end{array}$	$\begin{array}{llll}55 & 24 & 31\end{array}$
	Aldebaran	W.	201838	214638	231618	244726
	Saturn	E.	525852	511916	$\begin{array}{llll}49 & 39 & 29\end{array}$	475930
	Regulus	E.	614257	$\begin{array}{lll}60 & 3 & 14\end{array}$	$\begin{array}{llll}58 & 23 & 19\end{array}$	$\begin{array}{r}56 \\ \hline 1313\end{array}$
	Spica	E.	115469	114628	1122636	1104631
26	Sun	W.	$\begin{array}{lll}63 & 9 & 42\end{array}$	654325	$\begin{array}{ll}67 & 17 \\ 21\end{array}$	685129
	Aldebaran	W.	323835	$\begin{array}{llll}34 & 15 & 8\end{array}$	$\begin{array}{llll}35 & 52 & 17\end{array}$	37300
	Venus	W.	181631	19507	212357	2258 0
	Saturn	E.	393641	375532	361413	343242
	Regulus	E.	481937	463818	445646	$4315 \quad 2$
	Spica	E.	1022258	1004137	$\begin{array}{llll}99 & 0 & 4\end{array}$	971818
27	Sun	W.	754535	$77 \quad 21$	785646	803242
	Aldebaran	W.	454534	472554	$49 \quad 6 \quad 36$	504740
	Venus	W.	305134	322658	$\begin{array}{ll}34 & 235\end{array}$	353825
	Saturn	E.	$26 \quad 2 \quad 25$	241952	223711	205423
	Regulus	E.	344323	33028	311722	29344
	Spica	E.	884612	$87 \quad 3 \quad 9$	$85 \quad 1952$	833622
28	Sun	W.	883537	901252	915019	$\begin{array}{llll}93 & 27 & 59\end{array}$
	Aldebaran	W.	591741	61035	624346	642712
	Venus	W.	434059	$45 \quad 189$	$46 \quad 5532$	483310
	Jupiter	W.	18187	$\begin{array}{lll}20 & 1 & 52\end{array}$	214550	$23 \quad 30 \quad 2$
	Spica	E.	745541	$\begin{array}{llll}73 & 10 & 54\end{array}$	712554	694041
	Antares	E.	1204333	1185837	1171330	115289
29			1013926	1031819	1045723	1063639
	Aldebaran	W.	$\begin{array}{lll}73 & 814\end{array}$	74539	$\begin{array}{llll}76 & 38 & 17\end{array}$	$\begin{array}{ll}78 \quad 23 & 39\end{array}$
	Venus	W.	$\begin{array}{llll}56 & 44 & 29\end{array}$	582322	$\begin{array}{lll}60 & 2 & 28\end{array}$	614146
	Jupiter	W.	$\begin{array}{llll}32 & 14 & 24\end{array}$	335954	$\begin{array}{llll}35 & 45 & 37\end{array}$	373131
	Pollux	W.	$\begin{array}{llll}30 & 43 & 7\end{array}$	$\begin{array}{llll}32 & 28 & 0 \\ 50\end{array}$	$\begin{array}{llll}34 & 13 & 15 \\ 57 & 18\end{array}$	355849
	Spica	E.	605136	59511	$\begin{array}{r}571834 \\ \hline 1035\end{array}$	55 15147
	Antares	E.	1063817	1045142	103455	1011756
30	Sun	W.	1145537	1163554	$\begin{array}{llll}118 & 1619\end{array}$	$\begin{array}{llll}119 & 5652\end{array}$
	Venus	W.	$\begin{array}{lll}70 & 1 & 4\end{array}$	714128	$\begin{array}{llll}73 & 22 & 2\end{array}$	$\begin{array}{lll}75 & 2 & 45\end{array}$
	Jupiter	W.	$\begin{array}{llll}46 & 23 & 49\end{array}$	481048	$\begin{array}{llll}49 & 57 & 56\end{array}$	$\begin{array}{llll}51 & 45 & 14\end{array}$
	Pollux	W.	445050	$\begin{array}{llll}46 & 37 & 57\end{array}$	$\begin{array}{llll}48 & 25 & 17\end{array}$	$\begin{array}{ll}50 & 1249\end{array}$
	Saturn	W.	$\begin{array}{ll}16 & 27 \\ 42\end{array}$	181426	$\begin{array}{llll}20 & 1 & 32\end{array}$	214856
	Spica	E.	$\begin{array}{llll}46 & 35 & 12\end{array}$	444725	425930	411126°
	Antares	E.	$92 \quad 2017$	$90 \quad 3214$	$8844 \quad 2$	865540

GREENWIOH MEAN TIME.						
lunar distances.						
Day of Month.	$\begin{gathered} \text { Star’s Nal } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	$\mathrm{XV}^{\text {b }}$.	xvillb.	XXI ${ }^{\text {b }}$
23	Sun	W.	$32^{\circ} 43{ }^{\prime \prime} 42$	$3412{ }^{\circ}{ }^{\prime \prime}$		$3711{ }^{1}{ }^{\text {a }}$
	Jupiter	E.	414532	40	383226	365536
	Pollux	E.	443851	$43 \quad 218$	412537	394847
	Saturn	E.	723850	$\begin{array}{llll}71 & 1 & 33\end{array}$	69246	674627
	Regulus	E.	81242	794641	$\begin{array}{llll}78 & 9 & 9\end{array}$	763125
24	Sun	W.	444244	461344	474457	491625
	Jupiter	E.	284836	271038	253229	23548
	Pollux	E.	31434	$30 \quad 541$	282817	265055
	Saturn	E.	593517	575628	$\begin{array}{llll}56 & 17 & 27\end{array}$	543815
	Regulus	E.	681947	664052	$65 \quad 145$	$63 \quad 2227$
25	Sun	W.	$\begin{array}{llll}56 & 57 & 7\end{array}$	$58 \quad 2956$	$\begin{array}{llll}60 & 2 & 57\end{array}$	613613
	Aldebaran	W.	261947	275312	292732	$\begin{array}{llll}31 & 2 & 42\end{array}$
	Saturn	E.	461920	443858	425823	$\begin{array}{llll}41 & 17 & 38\end{array}$
	Regulus	E.	$\begin{array}{r}55 \\ \hline\end{array} 254$	532223	514140	50 50
	Spica	E.	109614	1072544	105451	10446
26	Sun	W.	692552	71028	723517	741020
	Aldebaran	W.	$39 \quad 813$	404655	$42 \quad 26$	$\begin{array}{llll}44 & 5 & 37\end{array}$
	Venus	W.	243215	$26 \quad 645$	274128	291625
	Saturn	E.	32510	$\begin{array}{llll}31 & 9 & 7\end{array}$	$2927 \quad 3$	274449
	Regulus	E.	41336	395058	$38 \quad 837$	36266
	Spica	E.	953618	93546	921141	$90 \quad 293$
27	Sun	W.				865836
	Aldebaran	W.	52293	541045	555246	5735
	Venus	W.	371429	385047	402718	$\begin{array}{llll}42 & 4 & 2\end{array}$
	Saturn	E.	191130	172835	154540	$\begin{array}{llll}14 & 2 & 48\end{array}$
	Regulus	E.	275036	${ }_{26}^{26} 6657$	24239	223911
	Spica	E.	815240	$80 \quad 844$	782436	
28	Sun	W.	$\begin{array}{llll}95 & 5 & 52\end{array}$	964357	982214	$\begin{array}{lll}100 & 0 & 44\end{array}$
	Aldebaran	W.	661054	675452	69395	712833
	Venus	W.	50110	51494	$\begin{array}{llll}53 & 27 & 20\end{array}$	$\begin{array}{llll}55 & 5 & 48\end{array}$
	Jupiter	W.	251428	26598	28441	30297
	Spica	E.	675517	$\begin{array}{llll}66 & 9 & 40\end{array}$	642350	623749
	Antares	E.	1134236	1115650	1101051	1082440
29	Sun	W.	108166	1095545	1113533	
	Aldebaran	W.	$80 \quad 913$	815458	834056	85274
	Venus	W.	$63 \quad 2115$	$65 \quad 0 \quad 56$	664048	$68 \quad 2051$
	Jupiter	W.	$\begin{array}{llll}39 & 17 & 37\end{array}$	$41 \quad 354$	425022	44371
	Pollux	W.	374441	393050	411715	$43 \quad 355$
	Spica	E.	534448	515739	501020	482251
	Antares	E.	993046	974325	955553	$94 \quad 810$
30	Sus	W.	1213733	1231821	1245916	1264017
	Venus	W.	764338	782438	$\begin{array}{llll}80 & 5 & 47\end{array}$	81474
	Jupiter	W.	533240	552014	$\begin{array}{llll}57 & 7 & 56\end{array}$	585546
	Pollux	W.	$\begin{array}{lll}52 & 0 & 32\end{array}$	534826	$\begin{array}{lllll}55 & 36 & 29\end{array}$	572442
	Saturn	W.	233635	252428	271233	$\begin{array}{llll}29 & 0 & 50\end{array}$
	Spica	E.	$\begin{array}{llll}39 & 23 & 14 \\ 85 & 7\end{array}$	373456	354633	$\begin{array}{llll}33 & 58 & 3 \\ 79\end{array}$
	Antares	E.	$85 \quad 7.10$	831832	812946	794052

GREENWICH MEAN TIME.						
lunar distances.						
Day of Month.			Noon.	IIIr.	VI'.	IX ${ }^{\text {b }}$.
1	Venus	W.	832888	$85^{\circ} 99^{\prime} 58$	$8651{ }^{1} 34$	$88^{\circ} 33^{\prime \prime} 16^{\prime \prime}$
	Jupiter	W.	604342	623144	641953	$66 \quad 8 \quad 6$
	Pollux	W.	5913 3	$\begin{array}{llll}61 \quad 1 & 32\end{array}$	62508	643849
	Saturn	W.	304917	$\begin{array}{llll}32 & 37 & 51\end{array}$	342634	361515
	Spica	E.	$\begin{array}{llll}32 & 9 & 29\end{array}$	$30 \quad 2051$	283211	264331
	Antares	E.	775152	$\begin{array}{lll}76 & 245\end{array}$	741332	722415
	Mars	E.	1191954	1173351	1154742	$\begin{array}{lll}114 & 127\end{array}$
2	Venus	W.	$97 \quad 246$	984447	1002650	$102 \quad 852$
	Jupiter	W.	$75 \quad 107$	765837	$7847 \quad 9$	803539
	Pollux	W.	734330	753234	772140	791045
	Saturn	W.	452046	$\begin{array}{llll}47 & 9 & 59\end{array}$	$48 \quad 5913$	504828
	Regulus	W.	364246	$38 \quad 327$	402129	421053
	Antares	E.	631652	612717	$\begin{array}{llll}59 & 37 & 41\end{array}$	57486
	Mars	E.	$105 \quad 913$	1032240	101366	994930
3	Jupiter	W.	893743	912556	$\begin{array}{llll}93 & 14 & 3 \\ 91 & 58\end{array}$	$\begin{array}{llll}95 & 2 & 4\end{array}$
	Pollux	W.	881548	90.437	915321	934159
	Saturn	W.	595419	614319	633213	65211
	Regulus	W.	511730	$\begin{array}{llll}53 & 6 & 40\end{array}$	545545	564444
	Antares	E.	484036	465118	$45 \quad 24$	431258
	Mars	E.	905659	891040	872425	853817
4	Jupiter	W.	$\begin{array}{llll}104 & 0 & 4\end{array}$	1054711	$\begin{array}{r}107 \\ \hline\end{array} 34$6 7	1092048
	Saturn	W.	$7423 \quad 2$	761056	775838	79469
	Regulus	W.	654742	673548	692342	711125
	Antares	E.	$\begin{array}{llll}34 & 9 & 26\end{array}$	322112	$\begin{array}{lll}30 & 33 & 9 \\ 78\end{array}$	$\begin{array}{llll}284519 \\ 71 & 15\end{array}$
	Mars	E.	764930	$75 \quad 414$	$\begin{array}{llll}73 & 19 & 10\end{array}$	713417
	a Aquilæ	E.	891222	873823	86436	84313
5		W.	884013	902615	92120	935728
	Regulus	W.	80631	815246		852424
	Spica	W.	$\begin{array}{llll}26 & 7 & 41\end{array}$	275324	293854	312410
	Mars	E.	$\begin{array}{llll}62 & 53 & 17\end{array}$	$\begin{array}{llll}61 & 9 & 51 \\ 75 & 16\end{array}$	592641	57 57 7 1349
	a Aquilæ	E.	$\begin{array}{llll}76 & 47 & 59\end{array}$	75 16 162	73 15 8	$\begin{array}{llll}72 & 15 & 4\end{array}$
	Fomalhaut	E.	$101 \quad 954$	993231	975518	$\begin{array}{llll}96 & 18 & 17\end{array}$
6	Saturn	W.			$106 \quad 648$	1074938
	Regulus	W.	$\begin{array}{llll}94 & 8 & 8\end{array}$	955154	$97 \quad 35 \quad 21$	$99 \quad 18 \quad 27$
	Spica	W.	$40 \quad 6 \quad 29$	4150	433318	$45 \quad 1613$
	Mars	E.	491358	$47 \quad 3258$	455218	44 11 58 60 15
	${ }_{\text {a Aquilæ }}$	E.	645122	$63 \quad 2438$	615840	$\begin{array}{llll}60 & 33 & 30 \\ 80\end{array}$
	Fomalhaut	E.	881654	864131	$85 \quad 628$	$\begin{array}{llll}83 & 3147\end{array}$
7	Spica	W.	53 45 35 58	55 26 27 4 17		
	Mars	E.	$\begin{array}{llll}35 & 55 & 41 \\ 53 & 41\end{array}$	$\begin{array}{lllr}34 & 17 & 30 \\ 52 & 22 & 5\end{array}$	32 39 40 51 3 57	$\begin{array}{lrrr}31 & 2 & 12 \\ 49 & 47 & 3\end{array}$
	${ }_{n} \text { Aquilæ }$	E.	53 41 24 75 44	$\begin{array}{lrrr}52 & 22 & 5 \\ 74 & 12 & 15\end{array}$	$\begin{array}{rrrr}51 & 3 & 57 \\ 72 & 40 & 35\end{array}$	$\begin{array}{rrrr} 49 & 47 & 3 \\ 71 & 9 & 24 \end{array}$
	Fomalhaut	E.	$7544 \quad 25$	$\begin{array}{rrr} 74 & 12 & 15 \\ 95 & 8 & 37 \end{array}$	72 40 93 31	$\begin{array}{lrr} 71 & 9 & 24 \\ 91 & 55 & 15 \end{array}$
	a Pegasi	E.	964549	$\begin{array}{lll}95 & 8 & 37\end{array}$	933146	915515
8				$\begin{array}{llll}68 & 40 & 1\end{array}$	70 17 36 24 27	
	Antares	W.	$\begin{array}{llll}21 & 11 & 37\end{array}$	224941	24 60 60 27624	26 4 9 44 59 19
	${ }_{a}^{\text {Fomalhaut }}$	E.	$\begin{array}{llll}63 & 41 & 31 \\ 83 & 58 & 1\end{array}$	$\begin{array}{llll}62 & 13 & 39 \\ 82 & 23 & 40\end{array}$	6046 80 80 4941	$\begin{array}{llll}59 & 19 & 49 \\ 79 & 16 & 5\end{array}$
	${ }_{\text {Sun }}{ }^{\text {Pegasi }}$	E.	1385829	1372826	1355843	1342918

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Hon } \\ & \text { Month. } \end{aligned}$	$\begin{aligned} & \text { Star's Name } \\ & \text { and } \end{aligned}$ Position.		Midnight.	XV.	XVIII ${ }^{\text {b }}$	Xxp.
1	Venus	W.	$90^{\circ} 15^{\prime}$	$91^{\circ} 56{ }^{\prime \prime}$	$93^{\circ} 3848$	$950{ }^{\circ} 20^{\prime \prime}$
	Jupiter	W.	675624	694446	713310	732138
	Pollux	W.	662737	681630	$70 \quad 5 \quad 27$	715427
	Saturn	W.	$\begin{array}{ll}38 & 420\end{array}$	395321	414226	433135
	Spica	E.	245451	$\begin{array}{ll}23 & 613\end{array}$	$\begin{array}{llll}21 & 17 & 40\end{array}$	192914
	Antares	E.	$70 \quad 3453$	$6845 \quad 27$	$66 \quad 5558$	$65 \quad 626$
	Mars	E.	112157	1102844	1084217	1065546
2	Venus	W.	1035054	1053254	1071452	1085647
	Jupiter	W.	82249	841237	86	874924
	Pollux	W.	805951	824854	843755	862654
	Saturn	W.	523743	542656	$\begin{array}{llll}56 & 16 & 7\end{array}$	$\begin{array}{llll}58 & 515\end{array}$
	Regulus	W.	$44 \quad 016$	454938	$47 \quad 3858$	492816
	Antares	E.	555830	$54 \quad 858$	$52 \quad 1927$	5030
	Mars	E.	$98 \quad 255$	961622	942952	924323
3	Jupiter	W.	964958	983743	1002520	1021247
	Pollux	W.	953030	971852	$\begin{array}{lll}99 & 7 & 6\end{array}$	1005510
	Saturn	W.	$67 \quad 943$	685816	704640	723456
	Regulus	W.	583336	602221	621057	635924
	Antares	E.	412358	39357	374623	$35 \quad 5750$
	Mars	E.	835214	$82 \quad 620$	802034	783457
4	Jupiter	W.	$\begin{array}{ll}111 & 78\end{array}$	1125333	1143933	1162518
	Saturn	W.	813328	832031	$85 \quad 720$	865355
	Regulus	W.	725855	744611	$76 \quad 3312$	781959
	Antares	E.	265743	251022	232316	213626
	Mars	E.	694936	$\begin{array}{llll}68 & 510\end{array}$	$66 \quad 2058$ 8	643659
	a Aquilæ	E.	825746	812447	79528	781952
5	Saturn	W.	954237	972728	99120	1005612
	Regulus	W.	$87 \quad 947$	885451	$\begin{array}{llll}90 & 39 & 37\end{array}$	9224
	Spica	W.	$\begin{array}{llll}33 & 9 & 11\end{array}$	345356	363825	382236
	Mars	E.	$\begin{array}{llll}56 & 1 & 13\end{array}$	541856	523658	505518
	a Aquilæ	E.	70456	691543	674656	661849
	Fomalhaut	E.	944128	93455	912837	895236
6	Saturn	W.	109327	1111414	112560	1143724
	Regulus	W.	$\begin{array}{ll}101 & 112\end{array}$	1024335	1042536	106715
	Spica	W.	465847	48411	502255	$\begin{array}{ll}52 & 4 \\ 27\end{array}$
	Mars	E.	42321	405223	$\begin{array}{llll}39 & 13 & 8\end{array}$	373413
	a Aquilæ	E.	$59 \quad 911$	574546	$\begin{array}{llll}56 & 23 & 17\end{array}$	$\begin{array}{llll}55 & 149\end{array}$
	Fomalhant	E.	8157,29	802335	$78 \quad 50 \quad 5$	$\begin{array}{llll}77 & 17 & 2\end{array}$
7	Spica	W.	$60 \quad 2646$	$62 \quad 6 \quad 9$	$\begin{array}{llll}63 & 45 & 10\end{array}$. $65 \quad 2349$
	Mars	E.	$2925 \quad 6$	274823	$\begin{array}{llll}26 & 12 & 1\end{array}$	24361
	a Aquilæ	E.	483128	471717	$\begin{array}{llll}46 & 4 & 35\end{array}$	445326
	Fomalhaut	E.	693844	$\begin{array}{llll}68 & 8 & 35\end{array}$	$\begin{array}{llll}66 & 38 & 59\end{array}$	$\begin{array}{llll}65 & 9 & 57\end{array}$
	a Pegasi	E.	$9019 \quad 5$	884317	$87 \quad 750$	$85 \quad 3244$
8	Spica	W.	733141	$75 \quad 8 \quad 12$	764422	782013
	Antares.	W.	274144	291824	305440	323037
	Fomalhant	E.	575354	562839	$\begin{array}{llll}55 & 4 & 7\end{array}$	534019
	${ }^{\text {a P Pegasi }}$	E.	774253	$7610 \quad 3$	743736	$\begin{array}{llll}73 & 5 & 33\end{array}$
	Sun	E.	$133 \quad 0 \quad 14$	1313128	$130 \quad 31$	1283452

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month.	Star's Name and Position.		Noon.	III'.	VI'b.	IX ${ }^{\text {b }}$
$\dot{9}$	Spica	W.	$79^{\circ} 5554{ }^{\prime \prime}$	$8130{ }^{\circ}$	$83^{\circ} \quad 54{ }^{\prime \prime}$	$84^{\circ} 400^{\prime \prime} 1{ }^{\prime \prime}$
	Antares	W.	$34 \quad 614$	354131	371628	38516
	Fomalhaut	E.	$\begin{array}{llll}52 & 17 & 17\end{array}$	$50 \quad 55 \quad 4$	493340	$4813 \quad 9$
	a Pegasi	E.	713352	$70 \quad 2 \quad 35$	683142	$\begin{array}{lll}67 & 1 & 12\end{array}$
	Sun	E.	$127 \quad 7 \quad 3$	1253933	1241220	1224525
10	Spica	W.	$92 \quad 2813$	$\begin{array}{llll}94 & 0 & 57\end{array}$	$95 \quad 3325$	$\begin{array}{llll}97 & 5 & 37\end{array}$
	Antares	W.	463941^{\prime}	481231	$4945 \quad 7$	511726
	Fomalhaut	E.	$\begin{array}{llll}41 & 45 & 29\end{array}$	403121	391831	$38 \quad 7 \quad 5$
	a Pegasi	E.	$59 \quad 34 \quad 42$	$58 \quad 6 \quad 37$	$\begin{array}{llll}56 & 38 & 57\end{array}$	551141
	Sun	E.	$\begin{array}{llll}115 & 35 & 14\end{array}$	114102	112455	1112023
11	Spica	W.	1044259	1061347	1074423	1091447
	Antares	W.	585523	$60 \quad 2618$	$\begin{array}{llll}61 & 57 & 1\end{array}$	632733
	a Pegasi	E.	$48 \quad 159$	$\begin{array}{llll}46 & 37 & 26\end{array}$	$4513 \quad 24$	$43 \quad 49 \quad 53$
	Sun	E.	1042027	$10257 \quad 7$	1013358	100110
12	Antares	W.	705740	$\begin{array}{llll}72 & 27 & 15\end{array}$	$73 \quad 5642$	$75 \quad 26 \quad 2$
	Mars	W.	$25 \quad 2112$	264810	$2815 \quad 2$	294147
	Sun	E.	$\begin{array}{llll}93 & 18 & 40\end{array}$	915638	$\begin{array}{lllll}90 & 34 & 44\end{array}$	891256
13	Antares	W.	$\begin{array}{llll}82 & 51 & 25\end{array}$	$84 \quad 2017$	85497	$87 \quad 17 \quad 54$
	Mars	W.	365422	382042	$3947 \quad 0$	411316
	Sun	E.	$82 \quad 2517$	$81 \quad 3 \quad 57$	794240	$78 \quad 2124$
14	Antares	W.	944142	$\begin{array}{llll}96 & 10 & 30\end{array}$	973919	
	Mars	W.	$48 \quad 2433$	495051	511713	$5243 \quad 36$
	a Aquilæ	W.	$48 \quad 3 \quad 10$	$\begin{array}{llll}49 & 9 & 57\end{array}$	501735	51264
	Sun	E.	$7135 \quad 23$	$\begin{array}{llll}70 & 14 & 9\end{array}$	$68 \quad 5254$	673136
15	Antares	W.	1063328	$\begin{array}{ll}108 & 2\end{array} 46$	1093211	
	Mars	W.	595639	612331	625031	641738
	a Aquilæ	W.	571911	583143	594448	605826
	Sun	E.	604415	$\begin{array}{llll}59 & 22 & 34\end{array}$	$58 \quad 0 \quad 47$	$56 \quad 38 \quad 53$
16	Mars	W.	$\begin{array}{llll}71 & 3510\end{array}$		743116	$75 \quad 5935$
	a Aquilæ	W.	671351	$\begin{array}{llll}68 & 30 & 15\end{array}$	$6947 \quad 4$	$71 \quad 416$
	Fomalhaut	W.	421044	43246	443826	$45 \quad 5341$
	Sun	E.	$49 \quad 4742$	$4825 \quad 5$	$47 \quad 2 \quad 19$	$45 \quad 3924$
17	Mars	W.	$\begin{array}{llll}83 & 23 & 59\end{array}$	84 43	$86 \quad 2311$	8753
	a Aquilæ	W.	773539	$\begin{array}{llll}78 & 54 & 54\end{array}$	801428	813420
	Fomalhaut	W.	522148	534130	$\begin{array}{lll}55 & 1 & 49\end{array}$	562244
	Sun	E.	384232	371841	$35 \quad 5440$	343029
22			212548	225741	242959	$26 \quad 242$
	Jupiter	E.	294924	$28 \quad 933$	262930	244916
	Saturn	E.	$\begin{array}{lll}57 & 19 & 7\end{array}$	$\begin{array}{llll}55 & 38 & 30\end{array}$	535743	521645
	Regulus	E.	651025	632921	61486	$\begin{array}{lll}60 & 6 & 39\end{array}$
. 23					$37 \quad 0 \quad 23$	
	Saturn	E.	$\begin{array}{llll}43 & 49 & 19\end{array}$	$42 \quad 721$	$\begin{array}{llll}40 & 25 & 15\end{array}$	38430
	Regulus	E.	$\begin{array}{llll}51 & 36 & 44\end{array}$	495415	481137	$\begin{array}{r}46 \\ \hline 1050\end{array}$
	Spica		1054010	1035739	1021458	100327

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Star's an Positit		Noon.	III ${ }^{\text {b }}$	VI',	IX ${ }^{\text {n }}$
24	Sun Saturn Regulus Spica	W. E. E. E.	46 $33^{\prime \prime}$ 10 30 9 54 37 52 46 91 55 38	48 9 16 28 26 59 36 9 11 90 11 54	49 45 32 26 44 0 34 25 30 88 28 2	$\begin{array}{rrrr} 51 & 21 & 54 \\ 25 & 0 & 57 \\ 32 & 41 & 42 \\ 86 & 44 & 2 \end{array}$
25	Sun Venus Regulus Spica	W. W. E. E.	59 26 11 15 22 13 24 1 31 78 2 15	61 3 26 17 0 28 22 17 20 76 17 33	$\begin{array}{lll} 62 & 40 & 48 \\ 18 & 38 & 55 \\ 20 & 33 & 9 \\ 74 & 32 & 45 \end{array}$	$\begin{array}{lll} 64 & 18 & 17 \\ 20 & 17 & 32 \\ 18 & 49 & 1 \\ 72 & 47 & 51 \end{array}$
26	Sun Venus Pollux Jupiter Spica Antares	W. W. W. W. E.	$\begin{array}{rrr} 72 & 27 & 14 \\ 28 & 32 & 51 \\ 27 & 39 & 48 \\ 24 & 44 & 52 \\ 64 & 1 & 57 \\ 109 & 48 & 10 \end{array}$	$\begin{array}{rrr} 74 & 5 & 19 \\ 30 & 12 & 17 \\ 29 & 23 & 13 \\ 26 & 29 & 5 \\ 62 & 16 & 31 \\ 108 & 2 & 34 \end{array}$	$\begin{array}{rrr} 75 & 43 & 29 \\ 31 & 51 & 51 \\ 31 & 6 & 56 \\ 28 & 13 & 23 \\ 60 & 31 & 1 \\ 106 & 16 & 54 \end{array}$	$\begin{array}{rrr} 77 & 21 & 45 \\ 33 & 31 & 30 \\ 32 & 50 & 54 \\ 29 & 57 & 46 \\ 58 & 45 & 27 \\ 104 & 31 & 8 \end{array}$
27	Sun Pollux Venus Jupiter Spica Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \end{aligned}$	85 34 9 41 33 53 41 51 9 38 40 46 49 56 38 95 41 15	$\begin{array}{lll} 87 & 12 & 50 \\ 43 & 18 & 57 \\ 43 & 31 & 19 \\ 40 & 25 & 34 \\ 48 & 10 & 43 \\ 93 & 55 & 5 \end{array}$	88 51 35 45 4 8 45 11 34 42 10 25 46 24 45 92 8 52	90 30 23 46 49 27 46 51 54 43 55 19 44 38 45 90 22 36
28	Sun Pollux Venus Jupiter Saturn Spica Antares	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	98 45 6 55 37 24 55 14 28 52 40 31 26 4 59 35 48 22 81 30 30	$\begin{array}{rrr} 100 & 24 & 9 \\ 57 & 23 & 13 \\ 56 & 55 & 9 \\ 5425 & 40 \\ 27 & 50 & 25 \\ 34 & 2 & 16 \\ 79 & 43 & 58 \end{array}$	102 3 14 59 9 5 58 35 52 56 10 50 29 35 56 32 16 11 77 57 25	$\begin{array}{rrr} 103 & 42 & 20 \\ 60 & 55 & 0 \\ 60 & 16 & 37 \\ 57 & 56 & 3 \\ 31 & 21 & 33 \\ 30 & 30 & 7 \\ 76 & 10 & 50 \end{array}$
29	Sun Pollux Venus Jupiter Saturn Regulus Antares Mars	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 111 & 58 & 5 \\ 69 & 45 & 9 \\ 68 & 40 & 55 \\ 66 & 42 & 19 \\ 40 & 10 & 24 \\ 32 & 43 & 36 \\ 67 & 17 & 39 \\ 117 & 35 & 58 \end{array}$	$\begin{array}{rrr} 113 & 37 & 15 \\ 71 & 31 & 14 \\ 70 & 21 & 50 \\ 68 & 27 & 35 \\ 41 & 56 & 16 \\ 34 & 29 & 55 \\ 65 & 1 & 0 \\ 115 & 50 & 55 \end{array}$	$\begin{array}{rrr} 115 & 16 & 24 \\ 73 & 17 & 20 \\ 72 & 2 & 45 \\ 70 & 12 & 50 \\ 43 & 42 & 9 \\ 36 & 16 & 15 \\ 63 & 44 & 21 \\ 114 & 5 & 52 \end{array}$	$\begin{array}{rrr} 116 & 55 & 31 \\ 75 & 3 & 26 \\ 73 & 43 & 41 \\ 71 & 58 & 5 \\ 45 & 28 & 2 \\ 38 & 2 & 36 \\ 61 & 57 & 42 \\ 112 & 20 & 49 \end{array}$
30	Pollux Venus Jupiter Saturn Regulus Antares Mars	W. W. W. W. W. E.	$\begin{array}{rrr} 83 & 53 & 43 \\ 82 & 8 & 14 \\ 80 & 44 & 0 \\ 54 & 17 & 21 \\ 46 & 54 & 19 \\ 53 & 4 & 50 \\ 103 & 35 & 45 \end{array}$	$\begin{array}{rrr} 85 & 39 & 41 \\ 83 & 49 & 5 \\ 82 & 29 & 5 \\ 56 & 3 & 8 \\ 48 & 40 & 36 \\ 51 & 18 & 22 \\ 101 & 50 & 49 \end{array}$	$\begin{array}{rrr} 87 & 25 & 37 \\ 85 & 29 & 54 \\ 84 & 14 & 6 \\ 57 & 48 & 52 \\ 50 & 26 & 50 \\ 49 & 31 & 57 \\ 100 & 5 & 55 \end{array}$	89 11 29 87 10 40 85 59 4 59 34 34 52 13 2 47 45 35 98 21 4
31	Venus Jupiter Saturn Regulus Antares Mars	W. W. W. W. E. E.	95 33 45 94 42 55 68 22 3 61 3 6 38 54 46 89 37 42	97 14 9 96 27 25 70 7 18 62 48 52 37 8 52 87 53 16	$\begin{array}{lll} 98 & 54 & 28 \\ 98 & 11 & 49 \\ 71 & 52 & 27 \\ 64 & 34 & 33 \\ 35 & 23 & 4 \\ 86 & 8 & 55 \end{array}$	$\begin{array}{rrr} 100 & 34 & 41 \\ 99 & 56 & 6 \\ 73 & 37 & 30 \\ 66 & 20 & 7 \\ 33 & 37 & 23 \\ 84 & 24 & 41 \end{array}$

GREENWIOH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month.	$\begin{gathered} \text { Star’s } \\ \text { Yand } \\ \text { Positi } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {. }}$	X $\mathrm{II}^{\text {b }}$.
24	Sun	W.	$52^{\circ} 58{ }^{\prime \prime}$	$54^{\circ} 35^{\prime} 14$	$56^{\circ} 12^{\prime \prime}$	$57^{\circ} 498$
	Saturn	E.	231753	213448	195145	18845
	Regulus	E.	305748	291349	272946	254540
	Spica	E.	845955	831541	813119	794650
25	Sun	W.	655552	$\begin{array}{llll}67 & 33 & 34\end{array}$	691121	704915
	Venus	W.	215619	233516	251420	265332
	Regulus	E.	$17 \quad 50$	152110	133735	115421
	Spica	E.	$\begin{array}{llll}71 & 2 & 51\end{array}$	691746	673235	654719
26	Sun	W.	$79 \quad 0 \quad 5$	803830	821658	835532
	Venus	W.	351115	36516	38312	40113
	Pollux	W.	34357	361933	$\begin{array}{lll}38 & 4 & 9\end{array}$	394856
	Jupiter	W.	314214	332646	351122	36562
	Spica	E.	565948	55146	532820	514230
	Antares	E.	1024517	1005922	991324	972722
27	Stin	W.	$\begin{array}{llll}92 & 9 & 14\end{array}$	93488	$\begin{array}{lll}95 & 27 & 5\end{array}$	$\begin{array}{llll}97 & 6 & 4\end{array}$
	Pollux	W.	483452	502023	$52 \quad 515$	535139
	Venus	W.	483218	501245	515316	533351
	Jupiter	W.	454016	472516	491019	505524
	Spica	E.	425243	$41 \quad 639$	392035	373428
	Antares	E.	883616	864953	$85 \quad 328$	8317
28	Sun	W.	1052128	$107 \quad 036$	1083945	1101855
	Pollux	W.	624058	642658	66130	67594
	Venus	W.	615726	633816	65197	$67 \quad 0 \quad 0$
	Jupiter	W.	594117	612631	631146	$6457 \quad 2$
	Saturn	W.	$\begin{array}{llll}33 & 714\end{array}$	345258	363845	382434
	Spica	E.	28445	${ }_{26} 586$	251212	232623
	Antares	E.	742413	723736	705057	$\begin{array}{ll}69 & 419\end{array}$
29	Sun	W.	1183438	1201343	1215246	1233146
	Pollux	W.	764932	783537	802141	82743
	Venus	W.	752437	$77 \quad 533$	784628	$80 \quad 2722$
	Jupiter	W.	734319	752832	771344	785853
	Saturn	W.	471357	485950	504542	523132
	Regulus	W.	394858	413520	432141	$45 \quad 8: 1$
	Antares	E.	60115	582429	563754	545121
	Mars	E.	1103547	1085045	$107 \quad 543$	1052043
30	Pollux	W.	905717	$9343 \quad 2$	942842	961417
	Venus	W.	885125	90326	921243	$\begin{array}{llll}93 & 53 & 16\end{array}$
	Jupiter	W.	$8744 \quad 0$	892850	911337	92 58 19
	Saturn	W.	612012	$63 \quad 547$	645117	$66 \quad 3642$
	Regulus	W.	535911	554516	573117	$\begin{array}{llll}59 & 17 & 14\end{array}$
	Antares	E.	455916	44131	422651	$40 \quad 4046$
	Mars	E.	963615	945130	93650	912214
31	Venus	W.	1021448	1035448	1053443	1071429
	Jupiter	W.	1014017	1032420	$105 \quad 8 \quad 15$	106522
	Saturn	W.	752226	$77 \quad 715$	785156	803629
	Regulus	W.	$68 \quad 5 \quad 35$	695055	$\begin{array}{ll}7136 & 8\end{array}$	$\begin{array}{ll}73 & 21 \\ 14\end{array}$
	Antares	E.	315147	$30 \quad 620$	28210	263548
	Mars	E.	824031	805630	791236	772850

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VIb.	IX ${ }^{\text {b }}$
1	Jupiter	W.	$108^{\circ} 3540$	$110^{\circ} 19^{\prime} 10$	$112{ }^{2} 3{ }^{\prime \prime}$	$113^{\circ} 45^{\prime} 40^{\prime \prime}$
	Venus	W.	108548	1103339	112131	1135214
	Saturn	W.	822053	84	854914	873310
	Regulus	W.	$\begin{array}{llll}75 & 610\end{array}$	765057	783535	$80 \quad 20 \quad 3$
	Spica	W.	$\begin{array}{ll}21 & 9 \\ 38\end{array}$	225332	243725	$\begin{array}{llll}26 & 21 & 14\end{array}$
	Mars	E.	754512	$\begin{array}{ll}74 & 142\end{array}$	721822	703511
	- Aquilæ	E.	81941	793848	$\begin{array}{ll}78 & 8\end{array} 12$	$76 \quad 3754$
2	Saturn	W.	$9610 \quad 2$	975248	993521	1011741
	Regulus	W.	885942	90432	92269	$94 \quad 9 \quad 3$
	Spica	W.	345842	364144	382435	$\begin{array}{llll}40 & 7 & 15\end{array}$
	Mars	E.	$\begin{array}{lll}62 & 1 & 57\end{array}$	601953	$5838 \quad 2$	565625
	a Aquilæ	E.	69128	674422	$\begin{array}{llll}66 & 17 & 7\end{array}$	645028
	Fomalhaut	E.	$93 \quad 040$	912548	89518	881641
3	Saturn		1094548	1112641	$\begin{array}{ll}113 & 718\end{array}$	1144739
	Regulus	W.	102401	1042128	$106 \quad 239$	1074335
	Spica	W.	483721	501841	515945	534034
	Mars	E.	483145	465135	451140	$4332 \begin{array}{ll}43 & 1\end{array}$
	a Aquilæ	E.	574715	$\begin{array}{llll}56 & 24 & 57\end{array}$	$\begin{array}{llll}55 & 3 & 34\end{array}$	$\begin{array}{llll}53 & 43 & 7\end{array}$
	Fomalhaut	E.	8028 7	785517	772247	$75 \quad 5038$
	a Pegasi	E.	101427	$100 \quad 425$	$98 \quad 2656$	964940
4	Spica		$\begin{array}{lll}62 & 0 & 42\end{array}$	$63 \quad 3954$	$\begin{array}{llll}65 & 18 & 50\end{array}$	$\begin{array}{llll}66 & 57 & 28\end{array}$
	Mars	E.	35184	334012	$\begin{array}{llll}32 & 2 & 38\end{array}$	$3025 \quad 23$
	Fomalhaut	E.	681551	664614	$\begin{array}{llll}65 & 17 & 6\end{array}$	634829
	a Pegasi	E.	884659	871115	853548	84038
5	Spica	W.	$75 \quad 621$	764315	781952	795612
	Antares	W.	291655	305357	323042	$34 \quad 79$
	Fomalhaut	E.	563356	55856	534439	52216
	a Pegasi	E.	$76 \quad 928$	743613	$\begin{array}{llll}73 & 318\end{array}$	713043
	a Arietis	E.	1183514	1165839	1152220	1134618
6	Spica	W.	875329	$8928 \quad 5$	$\begin{array}{lll}91 & 2 & 25\end{array}$	923629
	Antares	W.	$42 \quad 5 \quad 6$	433950	$\begin{array}{llll}45 & 14 & 18\end{array}$	464829
	Fomalhaut	E.	4536	441752	$43 \quad 049$	414458
	a Pegasi	E.	635313	622250	$60 \quad 5250$	$\begin{array}{llll}59 & 2314\end{array}$
	a Arietis	E.	1055017	1041554	1024148	101757
7	Spica	W.	1002251	1015522	1032738	1045941
	Antares	W.	543529	$\begin{array}{lll}56 & 8 & 7\end{array}$	574032	591242
	a Pegasi	E.	52125	503422	$49 \quad 748$	474143
	a Arietis	E.	$93 \quad 2236$	915017	901812	884622
	Sun	E.	1343528	1331022	1314529	1302049
8	Antares	W.	$\begin{array}{llll}66 & 50 & 17\end{array}$	682112	695155	712228
	Mars	W.	$1520 \quad 15$	164846	181718	194550
	a Pegasi	E.	403918	391638	375439	363324
	a Arietis	E.	811023	793949	$78 \quad 9 \quad 25$	763913
	Sun	E.	1232031	$\begin{array}{ll}12157 & 5\end{array}$	1203344	1191036
9	Antares	W.	785247	802226	815159	832124
	Mars	W.	$27 \quad 830$	283656	$\begin{array}{lll}30 & 517\end{array}$	313334
	a Arietis	E.	691036	674119	661210	6443

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Midnight.	XVb.	XVIII ${ }^{\text {b }}$	XXI'.
1	Jupiter	W.	$115{ }^{\circ} 2840$	$11711{ }^{\circ} 9$	1185	
	Venus	W.	1153118	1171011	1184854	1202726
	Saturn	W.	891655	$91 \quad 029$	924352	9427
	Regulus	W.	$82 \quad 422$	834830	$\begin{array}{llll}85 & 32 & 26\end{array}$	$\begin{array}{llll}87 & 1610\end{array}$
	Spica	W.	$28 \quad 4 \quad 59$	294837	$\begin{array}{llll}31 & 32 & 7\end{array}$	$\begin{array}{llll}33 & 15 & 29\end{array}$
	Mars	E.	$\begin{array}{llll}68 & 52 & 10\end{array}$	$\begin{array}{llll}67 & 9 & 20\end{array}$	$\begin{array}{llll}65 & 26 & 41\end{array}$	$\begin{array}{llll}63 & 44 & 14\end{array}$
	a Aquilæ	E.	$75 \quad 756$	$73 \quad 3821$	$72 \quad 910$	704026
2	Saturn	W.	1025948	1044141	1062319	108442
	Regulus	W.	955143	$\begin{array}{llll}97 & 34 & 9\end{array}$	$\begin{array}{llll}99 & 16 & 21\end{array}$	1005819
	Spica	W.	414943	433158	$4514 \quad 0$	465548
	Mars	E.	$\begin{array}{llll}55 & 15 & 1\end{array}$	533350	515253	$\begin{array}{llll}50 & 12 & 12\end{array}$
	a Aquilæ	E.	632425	61592	603421	591024
	Fomalhaut	E.	864227	$85 \quad 8 \quad 27$	833443	$82 \quad 16$
3	Saturn	W.	1162743	$118 \quad 731$	119471	$\begin{array}{llll}121 & 2614\end{array}$
	Regulus	W.	1092414	111436	1124442	1142431
	Spica	W.	$55 \quad 218$	57126	584127	602113
	Mars	E.	415239	$\begin{array}{llll}40 & 13 & 34\end{array}$	383446	$\begin{array}{llll}36 & 56 & 16\end{array}$
	a Aquilæ	E.	$52 \quad 2342$	51522	494811	483215
	Fomalhaut	E.	$\begin{array}{lllll}74 & 18 & 51\end{array}$	724728	$\begin{array}{lll}71 & 1630\end{array}$	694557
	a Pegasi	E.	$\begin{array}{lllll}95 & 12 & 37\end{array}$	$\begin{array}{lllll}93 & 35 & 49\end{array}$	$\begin{array}{llll}91 & 59 & 16\end{array}$	90230
4	Spica	W.	$68 \quad 35 \quad 50$	$\begin{array}{llll}70 & 13 & 54\end{array}$	715140	$\begin{array}{llll}73 & 29 & 9\end{array}$
	Mars	E.	284829	271156	258544	235955
	Fomalhaut	E.	622023	605252	592556	575936
	a Pegasi	E.	$82 \quad 2546$	805113	79 16 59	77434
5	Spica	W.	$\begin{array}{llll}81 & 32 & 13\end{array}$	$\begin{array}{lll}83 & 7 & 57\end{array}$	844325	861835
	Antares	W.	$\begin{array}{llll}35 & 43 & 19\end{array}$	371911	$\begin{array}{llll}38 & 54 & 47\end{array}$	$40 \quad 30 \quad 5$
	Fomalhaut	E.	$\begin{array}{llll}50 & 58 & 20\end{array}$	493623	$\begin{array}{llll}48 & 15 & 19\end{array}$	465510
	a Pegasi	E.	$\begin{array}{llll}69 & 58 & 30\end{array}$	$\begin{array}{llll}68 & 26 & 37\end{array}$	66 55	652359
	a Arietis	E.	1121033	110354	1085952	1072456
6	Spica	W.	$\begin{array}{llll}94 & 10 & 17\end{array}$	$\begin{array}{llll}95 & 43 & 48\end{array}$	$\begin{array}{llll}97 & 17 & 4\end{array}$	$98 \quad 50 \quad 5$
	Antares	W.	$48 \quad 2224$	49564	512927	$\begin{array}{llll}53 & 2 & 36\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}40 & 30 & 21\end{array}$	$\begin{array}{llll}39 & 17 & 6\end{array}$	$\begin{array}{llll}38 & 5 & 17\end{array}$	$\begin{array}{llll}36 & 54 & 58\end{array}$
	a Pegasi	E.	5754	$\begin{array}{llll}56 & 25 & 14\end{array}$	$54 \quad 5652$	532856
	a Arietis	E.	$\begin{array}{llll}99 & 34 & 21\end{array}$	$\begin{array}{llll}98 & 1 & 2\end{array}$	$\begin{array}{llll}96 & 27 & 59\end{array}$	9455
7	Spica	W.	1063129	108	1093426	111536
	Antares	W.	604439	$\begin{array}{llll}62 & 16 & 22\end{array}$	634753	651911
	a Pegasi	E.	$\begin{array}{llll}46 & 16 & 7\end{array}$	$44 \begin{array}{lll}44 & 51\end{array}$	$43 \quad 2634$	$42 \quad 238$
	a Arietis	E.	871444	854320	84129	824110
	Sun	E.	1285621	127326	$\begin{array}{lll}126 & 8 & 2\end{array}$	1244411
8	Antares	W.	$\begin{array}{ll}72 & 52 \\ 50\end{array}$	$\begin{array}{lll}74 & 23 & 2\end{array}$	$\begin{array}{llll}75 & 53 & 5\end{array}$	$\begin{array}{ll}77 & 23\end{array}$
	Mars.	W.	211422	224254	241126	253959
	a Pegasi	E.	$\begin{array}{llll}35 & 12 & 58\end{array}$	$\begin{array}{llll}33 & 53 & 23\end{array}$	323444	31178
	a Arietis	E.	$\begin{array}{llll}75 & 9 & 10\end{array}$	$73 \quad 3918$	$72 \quad 935$	$7040 \quad 2$
	Sun	E.	1174737	1162447	$\begin{array}{lll}115 & 2 & 6\end{array}$	1133934
9	Antares	W.	845043	861956	87495	891810
	Mars	W.	33148	$3430 \quad 0$	3558	372616
	a Arietis	E.	631410	614521	$60 \quad 16 \quad 37$	584758

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Namo } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$	IX ${ }^{\text {b }}$
9	Sun	E.	$112^{\circ} 17^{\prime \prime} 10$	$110^{\circ} 544^{\prime \prime}$		$108^{\circ} 10^{\prime} 37$
10	Antares	W.	$\begin{array}{llll}90 & 47 & 10\end{array}$	$\begin{array}{llll}92 & 16 & 8\end{array}$	93450	951355
	a Aquilæ	W.	$45 \quad 28$	$46 \quad 638$	47128	481835
	Mars.	W.	$\begin{array}{llll}38 & 54 & 21\end{array}$	402225	415029	431834
	a Arietis	E.	571923	555053	542226	$5254 \quad 2$
	Sun	E.	1012133	995955	983820	971647
11	Antares	W.	102386	$104 \quad 659$	1053553	107450
	a Aquilæ	W.	$\begin{array}{llll}54 & 245\end{array}$	551339	$\begin{array}{llll}56 & 25 & 9\end{array}$	573714
	Mars.	W.	$\begin{array}{llll}50 & 39 & 2\end{array}$	52714	53 35 129	$\begin{array}{llll}55 & 3 & 48\end{array}$
	${ }_{\text {a }}$ Arietis	E.	453233	$\begin{array}{lll}44 & 4 & 18\end{array}$	$\begin{array}{llll}42 & 36 & 3\end{array}$	$\begin{array}{lll}41 & 7 & 47\end{array}$
	Sun	E.	$90 \quad 298$	$\begin{array}{ll}89 & 735\end{array}$	874559	862420
12	\boldsymbol{a} Aquilæ	W.	634512	$\begin{array}{llll}65 & 0 & 10\end{array}$	$\begin{array}{llll}66 & 15 & 32\end{array}$	$\begin{array}{llll}67 & 31 & 19\end{array}$
	Mars	W.	$\begin{array}{llll}62 & 26 & 38\end{array}$	635531	$\begin{array}{llll}65 & 24 & 31\end{array}$	$\begin{array}{llll}66 & 53 & 39\end{array}$
	Fomalhaut	W.	$\begin{array}{ll}39 & 718\end{array}$	- 40173	412758	423956
	a Arietis	E.	334614	321752	304928	29213
	Sun	E.	79354	781256	765041	$75 \quad 2819$
13	Mars	W.	742143	755152	$77 \quad 2213$	785247
	a Aquilæ	W.	735547	751342	763157	775032
	Fomalhaut	W.	485327	501032	512819	524647
	Sun	E.	683421	67114	654736	642356
14	Mars	W.	862856	$88 \quad 054$	89337	$91 \quad 5 \quad 35$
	a Aquilæ	W.	842751	85489	$87 \quad 842$	882932
	Fomalhaut	W.	59286	60501	621227	$63 \quad 35 \quad 23$
	${ }_{a}$ Pegasi	W.	$3645 \quad 27$	$\begin{array}{llll}38 & 8 & 24\end{array}$	39329	$40 \quad 56 \quad 39$
	Sun	E.	572227	555728	543215	$53 \quad 645$
15	Mars		$98 \quad 529$	1002620	102049	1033537
	a Aquilæ	W.	$\begin{array}{llll}95 & 17 & 7\end{array}$	963915	$\begin{array}{llll}98 & 1 & 34 \\ 78 & \end{array}$	$\begin{array}{llll}99 & 24 & 4\end{array}$
	Fomalhaut	W.	7037	$72 \quad 243$	$\begin{array}{lll}73 & 2847\end{array}$	$\begin{array}{ll}75 & 5515\end{array}$
	${ }_{\text {a Pegasi }}$	W.	$48 \quad 9 \quad 23$	493744	$\begin{array}{llll}51 & 6 & 39\end{array}$	$\begin{array}{lllll}52 & 36\end{array}$
	Sun	E.	$45 \quad 55 \quad 26$	442820	$43 \quad 058$	413318
16	Fomalhaut	W.	821327	834211	851115	864040
	a Pegasi	W.	601045	61435	$\begin{array}{lll}63 & 15 & 52\end{array}$	64494
	Sun	E.	341037	324112	311129	294130
21	Sun	W.	294443	312411	$\begin{array}{llll}33 & 3 & 47\end{array}$	344331
	Spica	E.	$8155 \quad 5$	$\begin{array}{llll}80 & 8 & 8\end{array}$	$78 \quad 217$	$76 \quad 33 \quad 59$
22	Sun	W.		44 43 17 58 52	$\begin{array}{llll}46 & 24 & 9\end{array}$	$\begin{array}{llll}48 & 4 & 27\end{array}$
	Jupiter	W.	$15 \quad 52 \quad 23$	173827	192433	$\begin{array}{lll}21 & 10 & 40\end{array}$
	Spica	E.	$\begin{array}{r}673726 \\ \hline\end{array}$	654959 11155	64 2 109	$\begin{array}{llll}62 & 15 & 3\end{array}$
	Antares	E.	1132332	1113554	1094816	-108 0036
23	Sun	W.	$\begin{array}{llll}56 & 26 & 7\end{array}$	$58 \quad 625$	594641	612656
	Jupiter	W.	301111	314713	$\begin{array}{llll}33 & 3314\end{array}$	351912
	Venus	W.	241520	$\begin{array}{llll}26 & 1 & 41 \\ 51 & 3\end{array}$	$\begin{array}{llll}27 & 48 & 3\end{array}$	293423
	Spica	E.	$\begin{array}{llll}53 & 17 & 50 \\ 09 & 2 & 17\end{array}$	$\begin{array}{llll}51 & 30 & 29 \\ 97 & 14 & 40\end{array}$	$\begin{array}{llll}49 & 43 & 10 \\ 95 & 27\end{array}$	475554
	Antares	E.	$99 \quad 217$	971440	95276	933935

GREENWICH MEAN TIME.						
LUNAR DIStances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nan } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIII.	XXI ${ }^{\text {b }}$
9	Sun	E.	$106^{\circ} 48^{\prime} 39$	$1050{ }^{\circ} 2646$	$104{ }^{\circ} 4{ }^{4} 58$	10284314
10	Antares	W.	964245 49 49	$\begin{array}{lllll}98 & 11 & 35 \\ 50 & 34 & \end{array}$	9940 5105 51	$\begin{array}{rrrr}101 & 9 & 15 \\ 52 & 52 & 29\end{array}$
	a Aquilæ	W.	492554	50341	514254	525229
	Mars	W.	444637	461441	474246	491053
	a Arietis	E.	512540	495721	$48 \quad 294$	$47 \quad 048$
	Sun	E.	$95 \quad 5515$	943344	931213	915041
11	Antares	W.	1083350	$\begin{array}{ll}110 & 254\end{array}$	111323	$\begin{array}{lll}118 & 1 & 17\end{array}$
	a Aquilæ	W.	584951	$\begin{array}{lll}60 & 2 & 59\end{array}$	611635	623040
	Mars.	W.	563212	$58 \quad 040$	592913	605752
	a Arietis	E.	393931	381114	364255	351435
	Sun	E.	$85 \quad 238$	834052	82191	8057
12	a Aquilæ	W.	68.4729	$\begin{array}{lll}70 & 4 & 1\end{array}$	712055	723810
	Mars	W.	682256	695223	712159	725146
	Fomalhaut	W.	435253	$45 \quad 646$	462131	47376
	a Arietis	E.	275238	262413	245549	232727
	Sun	E.	$74 \quad 550$	724312	712025	695728
13	Mars	W.	802333	815432	832545	$\begin{array}{llll}84 & 57 & 13\end{array}$
	${ }^{\text {a Aquilæ }}$	W.	$79 \quad 925$	802835	81484	$83 \quad 749$
	Fomalhaut	W.	$54 \quad 5 \quad 52$	$55 \quad 2534$	564551	$58 \quad 642$
	Sun		$\begin{array}{lll}63 & 0 & 4\end{array}$	61360	601143	58.4712
14	Mars	W.	923820	941122	954441	971816
	a Aquilæ	W.	895036	911154	923325	$\begin{array}{lll}93 & 5510\end{array}$
	Fomalhaut	W.	645848	662242	$6747 \quad 3$	691149
	${ }_{\text {a Pegasi }}$	W.	422154	434749	451424	464135
	Sun	E.	51411	$5015 \quad 2$	484847	472215
15	Mars	W.	1051043	106469	1082153	1095755
	a Aquilæ	W.	1004644	$\begin{array}{ll}102 & 9 \\ \\ & 32\end{array}$	$103 \quad 3228$	1045530
	Fomalhaut	W.	76228	774924	$\begin{array}{lll}79 & 17 & 3\end{array}$	80453
	a Pegasi	W.	$\begin{array}{llll}54 & 6 & 2\end{array}$	553629	57 7	583852
	Sun	E.	$\begin{array}{llll}40 & 5 & 21\end{array}$	$3837 \quad 6$	$\begin{array}{llll}37 & 8 & 33\end{array}$	353944
16	Fomalhaut	W.	881024	894027	911047	
	${ }^{\text {a Pegasi }}$	W.	662243	675645	693113	$\begin{array}{ll}71 & 68\end{array}$
	Sun	E.	281114	264042	$25 \quad 954$	233851
21	Sun	W.	362322	$\begin{array}{llll}38 & 3 & 19\end{array}$	394321	412328
	Spica	E.	744648	725932	711212	692450
22	Sun	W.	494446	51257	$\begin{array}{ll}53 & 5 \\ 27\end{array}$	544547
	Jupiter	W.	225647	244254	26291	28157
	Spica	E.	602735	$5840 \quad 7$	565240	$\begin{array}{llll}55 & 5 & 14\end{array}$
	Antares	E.	1061256	1042515	1023735	1004956
23	Sun	W.	$\begin{array}{llll}63 & 7 & 8\end{array}$	644717	$66 \quad 27 \quad 23$	
	Jupiter	W.	375	385059	403647	$42 \quad 2232$
	Venus	W.	312044	$\begin{array}{lll}33 & 7 & 3\end{array}$	345321	363936
	Spica	E.	$46 \quad 842$	442135	423432	404735
	Antarcs	E.	91525	$90 \quad 439$	$88 \quad 1717$	$8630 \quad 0$

GREENWICH MEAN TIME.						
Lunar distances.						
Day of the Month. Month	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III'.	VI'.	IXb.
24	Sun	W.	$69^{\circ} 47^{\prime} 24^{\prime \prime}$	$71^{\circ} 27^{\prime \prime}$	73 7 7 ¢	$74{ }^{\circ} 46{ }^{\prime \prime}$
	Jupiter	W.	$44 \quad 812$	$45 \quad 5347$	473918	492443
	Venus	W.	382550	40120	41588	434413
	Saturn	W.	204637	223153	241713	$26 \quad 235$
	Spica	E.	$39 \quad 044$	371359	352722	334051
	Antares	E.	844245	825536	81832	792132
25	Sun	W.	$83 \quad 414$	844324	862228	$88 \quad 124$
	Jupiter	W.	581024	$\begin{array}{ll}59 & 5512\end{array}$	613954	632430
	Venus	W.	523343	541924	$56 \quad 50$	575033
	Saturn	W.	344919	363431	381938	$40 \quad 40$
	Antares	E.	70280	684137	665520	65911
	Mars	E.	$122 \quad 221$	1201533	1182849	1164211
26	Sun	W.	$\begin{array}{llll}96 & 1415\end{array}$	975297	993031	10188
	Jupiter	W.	$72 \quad 538$	734928	753310	771644
	Venus	W.	663654	682153	$\begin{array}{lll}70 & 647\end{array}$	715134
	Saturn	W.	484820	503244	$5217 \quad 0$	$54 \quad 19$
	Regulus	W.	$4340 \quad 2$	$45 \quad 2512$	471015	$48 \quad 5 \overline{1} 11$
	Antares	E.	562010	$\begin{array}{llll}54 & 34 & 46\end{array}$	524930	51421
	Mars	E.	1075032	106432	1041839	1023253
27			109161	110536		
	Jupiter	W.	$\begin{array}{llll}85 & 52 & 28\end{array}$	873511	$\begin{array}{ll}89 & 1744\end{array}$	$\begin{array}{llll}90 & 0 & 9\end{array}$
	Venus	W.	803357	82186	$\begin{array}{llll}84 & 2 & 8\end{array}$	85463
	Saturn	W.	623958	$\begin{array}{llll}64 & 23 & 19\end{array}$	$\begin{array}{llll}66 & 631\end{array}$	674935
	Regulus	W.	573754	$\begin{array}{llll}59 & 22 & 2\end{array}$	$\begin{array}{llll}61 & 6 & 1\end{array}$	$\begin{array}{llll}62 & 49 & 52 \\ 37\end{array}$
	Antares	E.	422043	403626	$\begin{array}{llll}38 & 5217\end{array}$	$\begin{array}{llll}37 & 8 & 17\end{array}$
	Mars	E.	934559	9210	$\begin{array}{llll}90 & 1610\end{array}$	883128
	a Aquilæ	E.	$\begin{array}{llll}96 & 27 & 1\end{array}$	$\begin{array}{llll}94 & 56 & 18\end{array}$	$\begin{array}{llll}93 & 25 & 39\end{array}$	9155
28	Sun	W.	$\begin{array}{ll}122 & 825\end{array}$	1234416	$\begin{array}{llll}125 & 19 & 57\end{array}$	1265527
	Jupiter	W.	$99 \quad 2954$	1011123	1025241	1043350
	Venus	W.	942352	$\begin{array}{llll}96 & 7 & 3\end{array}$	$97 \quad 507$	99334
	Saturn	W.	762238	$\begin{array}{lll}78 & 4 & 47\end{array}$	794646	812835
	Regulus	W.	712652	$\begin{array}{llll}73 & 9 & 48\end{array}$	745235	763512
	Mars	E.	79508	$78 \quad 620$	762240	743911
	a Aquilæ	E.	842414	825437	812514	$\begin{array}{ll}79 & 56\end{array}$
	Fomalhaut	E.	109040	1072714	1055347	1042019
29	Venus	W.	$\begin{array}{llll}108 & 5 & 47\end{array}$			
	Saturn	W.		$91 \quad 3557$	9316164	$\begin{array}{llll}94 & 57 & 1\end{array}$
	Regulus	W.	$85 \quad 546$	864722	882848	$\begin{array}{llll}90 & 10 & 3\end{array}$
	Spica	W.	$\begin{array}{llll}31 & 5 & 53\end{array}$	$\begin{array}{llll}32 & 47 & 5\end{array}$	$\begin{array}{llll}34 & 28 \\ 62 & 8\end{array}$	$\begin{array}{llll}36 & 9 & 3\end{array}$
	Mars	E.	$\begin{array}{llll}66 & 4 & 15\end{array}$	642147	$\begin{array}{llll}6239 & 30\end{array}$	$60 \quad 5723$
	a Aquilæ	E.	72356	7180	694120	$68 \quad 156$
	Fomalhaut	E.	$\begin{array}{lllll}96 & 33 & 37\end{array}$	$95 \quad 0 \quad 31$	$\begin{array}{llll}93 & 27 & 33\end{array}$	915442
30	Saturn	W.	1031627	1045546	1063453	1081349
	Spica	W.	443121	$\begin{array}{llll}46 & 11 & 19\end{array}$	47516	493042
	Mars	E.	522946	504851	4988	472739
	a Aquilæ	E.	611155	$\begin{array}{llll}59 & 49 & 7\end{array}$	$\begin{array}{llll}58 & 27 & 2\end{array}$	$\begin{array}{llll}57 & 5 & 41\end{array}$
	Fomalhant	E.	$8413 \quad 2$	824119	$\begin{array}{ll}81 & 9 \\ 49\end{array}$	$\begin{array}{llll}79 & 38 & 34\end{array}$
	a Pegasi	E.	1054036	$104 \quad 412$	1022756	1005149

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathbf{X V}{ }^{\text {b }}$.	XVIII ${ }^{\text {b }}$	XXI'.
24	Sun	W.	$7{ }^{7} 2683$	78 6 $\prime \prime$	79845	$8124{ }^{\circ}{ }^{\prime \prime}$
	Jupiter	W.	51103	525517	544026	562528
	Venus	W.	453015	471613	$\begin{array}{llll}49 & 2 & 7\end{array}$	504757
	Saturn	W.	274759	293322	311844	3348
	Spica	E.	315429	30817	282214	263621
	Antares	E.	773438	754750	$74 \begin{array}{lll}74 & 1\end{array}$	721430
25	Sun	W.	894012	911854	925728	943550
	Jupiter	W.	65858	665319	683733	702140
	Venus	W.	$5936 \quad 0$	612121	$\begin{array}{lll}63 & 6 & 37\end{array}$	645148
	Saturn	W.	414936	433426	451911	$47 \quad 3 \quad 49$
	Antares	E.	$\begin{array}{llll}63 & 23 & 7\end{array}$	613712	$\begin{array}{llll}59 & 51 & 24\end{array}$	58543
	Mars	E.	1145539	$\begin{array}{ll}113 & 913\end{array}$	1112253	1093639
26	Sun	W.	1024614	1042353	106124	1073847
	Jupiter	W.	$79 \quad 0 \quad 10$	804327	822636	$84 \quad 937$
	Venus	W.	733615	752050	$77 \quad 519$	784942
	Saturn	W.	554511	$5729 \quad 5$	$5912 \quad 51$	605629
	Regulus	W.	50400	522440	$54 \quad 912$	55 53 53
	Antares	E.	491920	473428	453945	$44 \quad 510$
	Mars	E.	1004715	$99 \quad 144$	971621	$9531 \quad 6$
27	Sun	W.	1154327	1171956	1185615	1203225
	Jupiter	W.	924225	942431	96 6	974816
	Venus	W.	872951	891332	$9057 \quad 6$	924032
	Saturn	W.	693230	711516	725752	744020
	Regulus	W.	643334	$\begin{array}{llll}6617 & 7\end{array}$	$68 \quad 031$	694346
	Antares	E.	352426	334045	315714	301351
	Mars	E.	864654	$85 \quad 229$	831813	81346
	a Aquilæ	E.	902436	885416	$8724 \quad 4$	$85 \quad 54$
28	Sun	W.	1283048	$130 \quad 559$	1314059	1331549
	Jupiter	W.	1061449	1075538	$\begin{array}{llll}109 & 36 & 17\end{array}$	1111645
	Venus	W.	1011553	1025833	$10441 \quad 6$	1062331
	Saturn	W.	831014	845143	$8633 \quad 2$	88 88 1411
	Regulus	W.	$\begin{array}{llll}78 & 17 & 39\end{array}$	795956	$8142 \quad 2$	832359
	Mars	E.	725552	711242	692943	674654
	a Aquilæ	E.	$\begin{array}{ll}78 & 27 \\ 15\end{array}$	765842	753029	$74 \quad 236$
	Fomalhaut	E.	1024652	1011327	$9940 \quad 6$	$\begin{array}{lll}98 & 6 & 49\end{array}$
29	Venus	W.	$\begin{array}{lllll}114 & 53 & 26\end{array}$	1163458	1181622	1195737
	Saturn	W.	$\begin{array}{llll}96 & 37 & 17\end{array}$	981721	$\begin{array}{llll}99 & 57 & 15\end{array}$	1013657
	Regulus	W.	91517	93320	951241	965312
	Spica	W.	374950	393027	415055	425113
	Mars	E.	591528	573345	555213	541053
	a Aquilæ	E.	664921	65248	635928	623523
	Fomalhaut	E.	90221	884929	$87 \quad 178$	854459
30	Saturn	W.	1095233	$\begin{array}{llll}111 & 31 & 4\end{array}$	$\begin{array}{ll}113 & 923\end{array}$	1144730
	Spica	W.	$5110 \quad 8$	524922	542825	156 56
	Mars	E.	454724	$44 \quad 722$	422735	$4048 \quad 2$
	a Aquilæ	E.	55458	542526	53639	514849
	Fomalhaut	E.	$78 \quad 737$	763656	$75 \quad 633$	$\begin{array}{llll}73 & 36 & 29\end{array}$
	a Pegasi	E.	991551	$9740 \quad 2$	$96 \quad 4 \quad 22$	942853

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of Month.	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III.	VI'.	IX ${ }^{\text {b }}$
1	Spica	W.	$57{ }^{\circ} 455^{\prime \prime}$	$59824^{\prime \prime}$	61° 2́ 3 "11	$62^{\circ} 4043$
	Antares	W.	115447	133325	151151	16504
	Mars	E.	$\begin{array}{llll}39 & 8 & 47\end{array}$	372945	35510	341232
	a Aquilæ	E.	$5032 \quad 2$	491621	48 1 51	464836
	Fomalhaut	E.	$72 \quad 646$	703722	698821	673943
	a Pegasi	E.	925335	911828	894333	$88 \quad 850$
2	Spica	W.	704753	$72 \quad 2441$	$74 \begin{array}{lll}74 & 1 & 16\end{array}$	$\begin{array}{llllll}75 & 37 & 38\end{array}$
	Antares	W.	$2458 \quad 2$	263459	281143	294814
	Mars	E.	$\begin{array}{llll}26 & 5 & 14\end{array}$	242858	225311	211756
	Fomalhaut	E.	$6023 \quad 7$	585716	573158	$\begin{array}{llll}56 & 7 & 16\end{array}$
	a Pegasi	E.	801833	784511	77125	$\begin{array}{llll}55 & 39 & 14\end{array}$
	a Arietis	E.	122534	1211634	1194016	118411
3	Spica		833611	851113	8646	$88 \quad 2039$
	Antares	W.	374730	392241	405739	423224
	Fomalhaut	E.	491345	475321	463350	451515
	a Pegasi	E.	6759	$\begin{array}{r}66 \\ \hline 6753\end{array}$	64571	$\begin{array}{llll}63 & 26 & 28\end{array}$
	a Arietis		$\begin{array}{ll}110 & 652\end{array}$	108323	1065726	105232
4	Spica	W.	$\begin{array}{lll}96 & 10 & 27\end{array}$	974346	991651	1004944
	Antares	W.	502252	515619	532933	$55 \quad 235$
	Fomalhaut	E.	385859	374741	363757	352953
	a Pegasi	E.	555849	543022	$53 \quad 219$	513440
	a Arietis	E.	$\begin{array}{llll}97 & 34 & 12\end{array}$	$\begin{array}{lll}96 & 1 & 4\end{array}$	94289	92557
5	Spica	W.	108317	$\begin{array}{llll}110 & 2 & 48\end{array}$	$\begin{array}{llll}111 & 34 & 17\end{array}$	$113 \quad 536$
	Antares	W.	624441	$64 \quad 1631$	65489	671937
	Mars	W.	134326	151047	16396	$\begin{array}{llll}18 & 8 & 5\end{array}$
	a Pegasi	E.	44239	425821	41348	401031
	a Arietis	E.	851454	834323	82123	804055
	Aldebaran	E.	1172248	1155237	1142235	1125242
6	Antares	W.		762446		792514
	Mars	W.	25 746	$27 \quad 8 \quad 4$	283824	$30 \quad 844$
	a Arietis	E.	$73 \quad 750$	713743	$70 \quad 745$	$68 \quad 3756$
	Aldebaran	E.	1052521	1035618	1022722	1005834
7	Antares	W.	86544	$8823 \quad 29$	895249	91223
	a Aquilæ	W.	$\begin{array}{ll}42 & 13 \\ 39\end{array}$	431521	441820	$45 \quad 2225$
	Mars	W.	374025	391041	404054	42116
	a Arietis	E.	611057	594156	58131	564413
	Aldebaran	E.	$93 \quad 3619$	92811	90409	891213
	Sun	E.	1305725	1293511	12813	1265059
8	Antares	W.	98475	1001555	1014443	1031330
	a Aquilæ	W.	505649	$52 \quad 6 \quad 4$	531558	542629
	Mars	W.	494140	511143	524146	541149
	a Arietis	E.	492131	475312	$46 \quad 2457$	$44 \quad 5645$
	Aldebaran	E.	815339	$80 \quad 267$	785838	773111
	Sun	E.	$\begin{array}{ll}120 & 148\end{array}$	118407	1171829	1155652
9	Antares	W.				
	Mars	W.	614221	$6312 \begin{array}{ll}63\end{array}$	644249	$\begin{array}{llll}66 & 13 & 8\end{array}$
	a Aquilæ	W.	$60 \quad 27 \quad 3$	614034	625430	$64 \quad 850$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month	Star's Na and Position		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXI' ${ }^{\text {b }}$
1	Spica	W.	$64{ }^{\circ} 18884$	65.50613	67 33' 39	$69{ }^{10} 51{ }^{\prime \prime}$
	Antares	W.	18285	20553	214329	$23 \quad 2052$
	Mars	E.	323422	305633	$\begin{array}{llll}29 & 19 & 4\end{array}$	274156
	a Aquilæ	E.	$\begin{array}{llll}45 & 36 & 41\end{array}$	442613	$\begin{array}{llll}43 & 17 & 18\end{array}$	$\begin{array}{llll}42 & 10 & 2\end{array}$
	Fomalhaut	E.	661130	644342	6316121	614929
	a Pegasi	E.	$86 \quad 3420$	$85 \quad 0 \quad 3$	$83 \quad 25 \quad 59$	81529
2	Spica	W.	$\begin{array}{llll}77 & 13 & 47\end{array}$	784943	802525	82055
	Antares	W.	312432	$33 \quad 0 \quad 36$	343627	$\begin{array}{lll}36 & 12 & 5\end{array}$
	Mars	E.	194319	$\begin{array}{llll}18 & 9 & 27\end{array}$	$\begin{array}{llll}16 & 36 & 27\end{array}$	$\begin{array}{llll}15 & 4 & 32\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}54 & 43 & 11\end{array}$	$\begin{array}{llll}53 & 19 & 44\end{array}$	515659	$\begin{array}{llll}50 & 34 & 59\end{array}$
	a Pegasi	E.	$74 \quad 638$	$\begin{array}{llll}72 & 34 & 19\end{array}$	$\begin{array}{lll}71 & 2 & 17\end{array}$	693031
	a Arietis	E.	1162818	1145238	1131710	1114155
3	Spica	W.	8955	$91 \quad 2913$	$\begin{array}{llll}93 & 3 & 11\end{array}$	943655
	Antares	W.	$44 \quad 656$	454114	$47 \quad 15 \quad 20$	484912
	Fomalhaut	E.	435740	424110	412550	$\begin{array}{llll}40 & 11 & 44\end{array}$
	a Pegasi	E.	615615	602622	585649	572738
	a Arictis	E.	1034850	1021452	100416	$99 \quad 733$
4	Spica	W.	1022225	$\begin{array}{llll}103 & 54 & 54\end{array}$	1052710	1065914
	Antares	W.	563525	$58 \quad 8 \quad 2$	594027	611240
	Fomalhant	E.	342340	$\begin{array}{llll}33 & 19 & 26\end{array}$	$\begin{array}{lll}32 & 17 & 21\end{array}$	311739
	a Pegasi	E.	$50 \quad 727$	484039	471419	454829
	a Arietis	E.	912256	$89 \quad 50 \quad 38$	881831	864637
5	Spica	W.	114 36 43	$\begin{array}{lll}116 & 7 & 39\end{array}$	1173825	$\begin{array}{llll}119 & 9 & 1\end{array}$
	Antares	W.	$68 \quad 5054$	$70 \quad 220$	715256	$\begin{array}{llll}73 & 23 & 43\end{array}$
	Mars	W.	$\begin{array}{ll}19 & 37 \\ 32\end{array}$	21720	223721	$24 \quad 731$
	a Pegasi	E.	384732	$\begin{array}{llll}37 & 2516\end{array}$	36 3 15	$\begin{array}{llll}34 & 43 & 4\end{array}$
	a Arietis	E.	$\begin{array}{llll}79 & 9 & 57\end{array}$	$\begin{array}{ll}77 & 39\end{array} 10$	$76 \quad 8 \quad 33$	$\begin{array}{llll}74 & 38 & 7\end{array}$
	Aldebaran	E.	1112257	1095321	1082353	1065433
6	Antares	W.	$80 \quad 5515$	$\begin{array}{llll}82 & 25 & 8\end{array}$	835454	$85 \quad 2432$
	Mars	W.	$\begin{array}{llll}31 & 39 & 5\end{array}$	$33 \quad 9 \quad 26$	34 39 47	$\begin{array}{llll}36 & 10 & 7\end{array}$
	a Arietis	E.	67 8	$65 \quad 3844$	$64 \quad 921$	62405
	Aldebaran	E.	$99 \quad 2953$	$98 \quad 120$	963253	$95 \quad 433$
7	Antares	W.	$\begin{array}{llll}92 & 51 & 12\end{array}$	$\begin{array}{llll}94 & 20 & 16\end{array}$	954916	$\begin{array}{llll}97 & 18 & 12\end{array}$
	a Aquilæ	W.	$\begin{array}{llll}46 & 27 & 32\end{array}$	47 73	484032	$49 \quad 4817$
	Mars	W.	434116	$\begin{array}{llll}45 & 11 & 24\end{array}$	464131	481136
	a Arietis	E.	55	534653	521821	504954
	Aldebaran	E.	874421	861634	844852	$83 \quad 2114$
	Sun	E.	$\begin{array}{llll}125 & 29 & 1\end{array}$	$\begin{array}{lll}124 & 7 & 7\end{array}$	1224517	1212331
8	Antares	W.	1044216	$10611 \quad 1$	1073946	109831
	a Aquilæ	W.	$\begin{array}{llll}55 & 37 & 33\end{array}$	564910	$\begin{array}{llll}58 & 1 & 19\end{array}$	59 59 1357
	Mars	W.	554153	5711158	58424	601211
	a Arictis	E.	$\begin{array}{llll}43 & 28 & 37\end{array}$	$42 \quad 0 \quad 31$	$\begin{array}{llll}40 & 32 & 28\end{array}$	39 4 16
	Aldebaran	E.	$\begin{array}{llll}76 & 3 & 47\end{array}$	74 36	$\begin{array}{llll}73 & 9 & 3\end{array}$	714143
	Sun	E.	$\begin{array}{llll}114 & 3516\end{array}$	$\begin{array}{llll}113 & 13 & 40\end{array}$	111525	1103029
9	Antares	W.	$\begin{array}{llll}116 & 3242\end{array}$	$\begin{array}{lll}118 & 1\end{array}$	1193045	1205954
	Mars	W.	$67 \quad 4331$	$69 \quad 1359$	704432	721510
	a Aquilæ	W.	652333	$66 \quad 38 \quad 37$	$67 \quad 54 \quad 2$	$69 \quad 947$

GREENWICH MEAN TIME.
lunar distances.

$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	IIIT.	VI'.	IXb.
9	Fomalhaut	W.	$36^{\circ} 15411$	$37213{ }^{1}$	$38^{\circ} 28^{\prime} 52$	$39^{\circ} 37^{\prime} 23^{\prime \prime}$
	a Arietis	E.	373627	$\begin{array}{lll}36 & 8 & 29\end{array}$	344033	331238
	Aldebaran	E.	701423	68473	671943	655222
	Sun	E.	$109 \quad 852$	1074714	1062533	$105 \quad 350$
10	Mars	W.	734555	751647	764746	7818
	a Aquilæ	W.	702552	714215	725856	741554
	Fomalhaut	W.	$45 \quad 35 \quad 27$	464943	$48 \quad 443$	492027
	a Arietis	E.	255332	242551	225816	213049
	Aldebaran	E.	583515	$57 \quad 743$	55408	541230
	Sun	E.	981412	96520	952942	$\begin{array}{lll}94 & 717\end{array}$
11	Mars	W.	855645	872850	$89 \quad 17$	903337
	a Aquilæ	W.	804455	82330	$83 \quad 2220$	844124
	Fomalhaut	W.	554835	$57 \quad 755$	582746	59487
	a Pegasi	W.	325835	34484	353829	365947
	Aldebaran	E.	465326	$45 \quad 25 \quad 29$	$\begin{array}{llll}43 & 57 & 27\end{array}$	$42 \quad 2921$
	Sun	E.	871255	854932	842558	$83 \quad 212$
12		W.	981927	995321	1012731	$\begin{array}{lll}103 & 1 & 57\end{array}$
	a Aquilæ	W.	912015	924040	$\begin{array}{lll}94 & 18\end{array}$	$95 \quad 227$
	Fomalhaut	W.	663659	$68 \quad 0 \quad 6$	692338	704736
	a Pegasi	W.	$\begin{array}{llll}43 & 57 & 27\end{array}$	$45 \quad 2257$	$\begin{array}{llll}46 & 49 & 2\end{array}$	481541
	Aldebaran	E.	$35 \quad 838$	334034	321236	304446
	Sun	E.	$76 \quad 0 \quad 2$	743452	$73 \quad 926$	714343
13	Mars	W.	1105826	1123439	1141111	115482
	a Aquilæ	W.	102851	1033040	1045236	1061438
	Fomalhaut	W.	775332	791954	804639	821347
	${ }_{a}$ Pegasi	W.	553653	$\begin{array}{llll}57 & 6 & 37\end{array}$	$58 \quad 3650$	$\begin{array}{llll}60 & 7 & 32\end{array}$
	Sun	E.	643045	$\begin{array}{llll}63 & 313\end{array}$	613521	$\begin{array}{llll}60 & 7 & 9\end{array}$
14	a Aquilæ	W.	113551	114288	1155022	1171231
	Fomalhaut	W.	893453	$91 \quad 410$	923347	$94 \quad 344$
	a Pegasi	W.	674759	692126	705519	722939
	a Arietis	W.	24185	255344	272957	$29 \quad 642$
	Sun	E.	524055	511035	493952	$48 \quad 8 \quad 46$
15	Fomalhaut	W.	101380	103941	1044138	1061345
	a Pegasi	W.	802748	82441	834159	851941
	a Arietis	W.	37181	385741	403749	421823
	Sun	E.	402730	38544	372015	35462
20	Sun		26 4 1	274831	293211	311551
	Spica	E.	$57 \quad 5634$	$\begin{array}{lll}56 & 5 & 59\end{array}$	$\begin{array}{lll} 54 & 15 & 24 \end{array}$	522451
	Antares	E.	1034128	1015039	995949	$\begin{array}{llll}98 & 9 & 1\end{array}$
21	Sun	W.	395330	413848	431959	45
	Spica	E.	4313	412259	39333	374315
	Antares	E.	885540	$87 \quad 514$	851454	832442
	Mars	E.	1342544	13234	1304225	1285056
22	Sun	W.	533615	551823	$57 \quad 020$	58426
	Spica	E.	283713	264842	$25 \quad 0 \quad 29$	231237
	Antares	E.	741549	722633	703728	684834

GREENWICH MEAN TIME.

LUNAR DISTANCES

Day of the Month	Star's Name and Position.		Midnight.	$\mathbf{X V h .}$	XVIII ${ }^{\text {b }}$	XXI' ${ }^{\text {. }}$
9	Fomalhant		40×47	41578	$43 \stackrel{\circ}{8} \quad 9 \quad 24$	$44{ }^{\circ} 22^{\prime \prime}$
	a Arietis	E.	314445	301653	28493	272116
	Aldebaran	E.	64250	$62 \quad 5737$	$61 \quad 3012$	$60 \quad 245$
	Sun	E.	103423	$102 \quad 2012$	1005817	993617
10	Mars	W.	79508	$\begin{array}{ll}81 & 2132\end{array}$	82 783	842450
	a Aquilæ	W.	75 33 10	$76 \quad 5042$	$78 \quad 831$	792635
	Fomalhaut	W.	$\begin{array}{llll}50 & 36 & 51\end{array}$	515354	531133	542947
	a Arietis	E.	$20 \quad 331$	$\begin{array}{ll}18 & 36\end{array} 27$	$17 \quad 943$	154324
	Aldebaran	E.	524448	51173	$49 \quad 4914$	482122
	Sun	E.	924443	$91 \quad 221$	$8959 \quad 9$	$\begin{array}{llll}88 & 36 & 7\end{array}$
11	Mars	W.	$\begin{array}{llll}92 & 619\end{array}$	$\begin{array}{llll}93 & 39 & 15\end{array}$	951224	964548
	a Aquilæ	W.	$86 \quad 0 \quad 43$	872016	$8840 \quad 3$	$90 \quad 0 \quad 2$
	Fomalhaut	W.	$61 \quad 858$	$\begin{array}{llll}62 & 30 & 17\end{array}$	63524	651418
	a Pegasi	W.	382153	394445	418820	$\begin{array}{llll}42 & 32 & 35\end{array}$
	Aldebaran	E.	41113	39331	38453	$36 \quad 3645$
	Sun	E.	813813	$\begin{array}{llll}80 & 14 & 1\end{array}$	784936	772456
12	Mars	W.	1043639	1061139	1074657	1092232
	a Aquilæ	W.	96437	$\begin{array}{llll}98 & 4 & 18\end{array}$	$99 \quad 2540$	1004711
	Fomalhaut	W.	721159	$73 \quad 3646$	$\begin{array}{lll}75 & 1 & 58\end{array}$	$\begin{array}{llll}76 & 27 & 33\end{array}$
	a Pegasi	W.	494153	511037	$52 \quad 3852$	$54 \quad 737$
	Aldebaran	E.	$\begin{array}{llll}29 & 17 & 8\end{array}$	274946	$26 \quad 2245$	245611
	Sun	E.	$\begin{array}{llll}70 & 17 & 43\end{array}$	$68 \quad 5126$	672451	$65 \quad 5757$
13	Mars	W.	1172513	$\begin{array}{llll}119 & 244\end{array}$	1204036	1221848
	a Aquilæ	W.	1073646	1085859	1102115	1114333
	Fomalhaut	W.	834117	$85 \quad 9 \quad 9$	863722	$\begin{array}{rr}118 & 5 \\ 88 & 57\end{array}$
	a Pegasi	W.	613842	631020	644226	$\begin{array}{ll} 66 \quad 14 \quad 59 \end{array}$
	Sun	E.	$58 \quad 38 \quad 37$	$57 \quad 944$	554029	541053
14	a Aquilæ	W.	1183433	1195626	121186	1223930
	Fomalhaut	W.	$95 \quad 3359$	97433	983526	100635
	a Pegasi	W.	$74 \quad 425$	$\begin{array}{llll}75 & 39 & 37\end{array}$	$\begin{array}{llll}77 & 15 & 15\end{array}$	78 51 19
	a Arietis	W.	$\begin{array}{llll}30 & 43 & 59\end{array}$	322146	$34 \quad 0 \quad 2$	$\begin{array}{llll}35 & 38 & 47\end{array}$
	Sun	E.	$46 \quad 3717$	$45 \quad 5 \quad 25$	$43 \quad 3310$	$\begin{array}{llll}42 & 0 & 32\end{array}$
15	Fomalhaut	W.	$10746 \quad 5$	1091838		
	a Pegasi	W.	$86 \cdot 5746$	$\begin{array}{llll}88 & 36 & 14\end{array}$	90156	915421
	a Arietis	W.	435924	$\begin{array}{llll}45 & 40 & 51\end{array}$	472243	49 5 1
	Son	E.	341126	$32 \quad 3626$	$\begin{array}{lll}31 & 1 & 3\end{array}$	292516
20	Sun	W.	$\begin{array}{llll}32 & 59 & 29\end{array}$	$\begin{array}{llll}34 & 43 & 5\end{array}$	$\begin{array}{llll}36 & 26 & 38\end{array}$	38106
	Spica	E.	503421	484354	465331	$\begin{array}{llll}45 & 3 & 14\end{array}$
	Antares	E.	961814	942730	923649	$90 \quad 4612$
21	Sun	W.	$\begin{array}{llll}46 & 46 & 0\end{array}$	482848	$\begin{array}{llll}50 & 11 & 27\end{array}$	
	Spica	E.	$\begin{array}{llll}35 & 53 & 39\end{array}$	$34 \quad 414$	32150	30260
	Antares	E.	813437	794441	$77 \quad 5454$	$\begin{array}{llll}76 & 5 & 16\end{array}$
	Mars	E.	1265934	125820	$\begin{array}{llll}123 & 17 & 14\end{array}$	1212617
22	Sun	W.	$60 \quad 23 \quad 39$	$62 \quad 459$	$63 \quad 466$	652659
	Spica	E.	$2125 \quad 5$	$\begin{array}{llll}19 & 37 & 57\end{array}$	17518	$\begin{array}{llll}16 & 5 & 13\end{array}$
	Antares	E.	665953	651125	$63 \quad 2310$	$61 \quad 35$

GREENWICH MEAN TIME.						
LUNAR DIStances.						
Day of Month.			Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$.
22	Mars	E.	$11983{ }^{\circ} \mathrm{C}$	$117^{\circ} 44^{\prime \prime} 50$	$11554^{\circ} 21$ '	$\begin{array}{llll}114^{\circ} & 4 & 3\end{array}$
23	Sun	W.	$67 \quad 7 \quad 39$	68484	702815	72811
	Antares	E.	594720	575946	561227	542523
	Mars	E.	1045525	103 1092	1011731	992854
	$a \mathrm{Aquilæ}$		1113052	1095917	1082735	1065548
24	Sun	W.	$8024 \quad 7$	$82 \quad 232$	834041	851834
	Antares	E.	453346	434814	$42 \quad 257$	401756
	Mars	E.	902939	884235	865546	$85 \quad 915$
	$a \mathrm{Aquilæ}$	E.	991642	$9745 \quad 3$	961332	94429
25	Sun	W.	9324	950017	963619	$9812 \quad 5$
	Spica	W.	143154	$1613 \quad 3$	175421	193545
	Antares	E.	313650	295324	281014	$26 \quad 2720$
	Mars	E.	762038	743545	72517	71646
	a Aquilæ	E.	87810	$8538 \quad 5$	$\begin{array}{ll}84 & 818\end{array}$	823849
	Fomalhaut	E.	1114741	1101419	1084059	107741
26	Sun	W.	$\begin{array}{llll}106 & 7 & 3\end{array}$	1074177	1091515	1104859
	Spica	W.	$\begin{array}{lll}28 & 1 & 29\end{array}$	294211	312242	$\begin{array}{llll}33 & 3 & 2\end{array}$
	Mars	E.	62298	604626	$\begin{array}{lll}59 & 4 & 0\end{array}$	572151
	a Aquilæ	E.	751638	734923	$72 \quad 2234$	$70 \quad 5613$
	Fomalhaut	E.	992235	974957	$9617 \quad 29$	944511
	a Pegasi	E.	1213314	1195648	$\begin{array}{llll}118 & 20 & 27\end{array}$	1164411
27					1213819	
	Spica	W.	412138	$\begin{array}{lll}43 & 0 & 43\end{array}$	443936	$\begin{array}{llll}46 & 18 & 16\end{array}$
	Mars	E.	485511	471441	453428	435432
	a Aquilæ	E.	635213	$\begin{array}{llll}62 & 29\end{array}$	${ }_{61}^{61} 645$	59451
	Fomalhaut	E.	87643	853542	$84 \quad 455$	823424
	a Pegasi	E.	1084436	107	1053346	1035835
28	Spica					59 59 20
	Mars	E.	353912	$34 \begin{array}{lll}34 & 1\end{array}$	$32 \quad 2316$	304549
	a Aquilæ	E.	$\begin{array}{llll}53 & 8 & 3\end{array}$	$\begin{array}{llll}51 & 51 & 19\end{array}$	$\begin{array}{llll}50 & 35 & 37\end{array}$	492058
	Fomalhaut	E.	$\begin{array}{llll}75 & 6 & 2\end{array}$	$\begin{array}{llll}73 & 37 & 17\end{array}$	$\begin{array}{llll}72 & 8 & 52\end{array}$	704048
	a Pegasi	E.	$96 \quad 513$	94316	$\begin{array}{llll}92 & 57 & 10\end{array}$	
29	Spica	W.	$67 \quad 2217$	$\begin{array}{llll}68 & 58 & 7\end{array}$	$70 \quad 3346$	$\begin{array}{llll}72 & 9 & 14\end{array}$
	Antares	W.	213158	23758	244347	261924
	Fomalhaut	E.	$63 \quad 2613$	$62 \quad 034$	$6035 \quad 22$	591041
	a Pegasi	E.	833741	$\begin{array}{lll}82 & 5 & 9\end{array}$	803250	$79 \quad 044$
30	Spica	W.	$80 \quad 346$	8138	831218	844618
	Antares	W.	341441	354911	372330	385739
	Fomalhaut	E.	521530	505421	493354	481414
	a Pegasi	E.	712339	695257	$68 \quad 2229$	$66 \quad 5217$
	a Arietis	E.	1133911	$112 \quad 5$	110315	1085717
31	Spica	W.				
	Antares	W.	$46 \quad 45 \quad 47$	481854	$\begin{array}{lll} 49 & 51 & 51 \\ 56 & 08 & 24 \end{array}$	512438
	a Pegasi a Arietis	$\begin{aligned} & \text { E. } \\ & \text { E. } \end{aligned}$		57 97 99 848	$\begin{array}{rrr} 56 & 28 & 34 \\ 98 & 5 & 25 \end{array}$	$\begin{array}{rrr} 55 & 0 & 40 \\ 96 & 32 & 57 \end{array}$
	a Arietis					

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Star's Name and Position.		Midnight.	XVh.	XVIII ${ }^{\text {h }}$.	XXI'.
22	Mars	E.	$112^{\circ} 183814$	11080	10883418	
23	Sun	W.	$\begin{array}{llll}73 & 47 & 53\end{array}$	$\begin{array}{llll}75 & 27 & 19\end{array}$	$77 \quad 631$	$\begin{array}{ll}7845 & 27\end{array}$
	Antares	E.	523833	505158	$49 \quad 5 \quad 39$	471935
	Mars	E.	974032	$\begin{array}{llll}95 & 52 & 26\end{array}$	$94 \quad 4 \quad 34$	921659
	a Aquilæ	E.	1052358	103527	1022016	1004827
24	Sun	W.	865611	$\begin{array}{llll}88 & 33 & 32\end{array}$	$\begin{array}{llll}90 & 10 & 37\end{array}$	914726
	Antares	E.	383311	364842	$35 \quad 429$	$33 \quad 2032$
	Mars	E.	832259	$8137 \quad 0$	$\begin{array}{llll}79 & 51 & 17\end{array}$	$\begin{array}{ll}78 & 5\end{array} 49$
	a Aquilæ	E.	$\begin{array}{llll}93 & 10 & 56\end{array}$	913955	$\begin{array}{llll}90 & 9 & 6\end{array}$	883831
25	Sun	W.	994736	1012251	1025750	1043234
	Spica	W.	21176	225824	243934	$26 \quad 2036$
	Antares	E.	244441	$\begin{array}{lll}23 & 2 & 18\end{array}$	212011	193819
	Mars	E.	692241	$\begin{array}{llll}67 & 38 & 54\end{array}$	$\begin{array}{lll}65 & 55 & 22\end{array}$	$\begin{array}{llll}64 & 12 & 7\end{array}$
	a Aquilæ	E.	$81 \quad 9 \quad 39$	794050	$\begin{array}{ll}78 & 12\end{array} 23$	764418
	Fomalhaut	E.	1053427	$\begin{array}{lll}104 & 1 & 19\end{array}$	1022817	1005522
26	Sun	W.	1122228	1135542	1152842	$\begin{array}{ll}117 & 128\end{array}$
	Spica	W.	$\begin{array}{llll}34 & 43 & 10\end{array}$	$3623 \quad 6$	$\begin{array}{lll}38 & 2 & 49\end{array}$	394220
	Mars	E.	$55 \quad 3958$	535822	52172	$\begin{array}{llll}50 & 35 & 59\end{array}$
	a Aquilæ	E.	693020	$68 \quad 458$	$66 \quad 40 \quad 9$	651553
	Fomalhaut	E.	$\begin{array}{llll}93 & 13 & 5\end{array}$	914110	$\begin{array}{llll}90 & 9 & 28\end{array}$	$88 \quad 3759$
	a Pegasi	E.	$\begin{array}{llll}115 & 8 & 1\end{array}$	1133158	111563	1102015
27	Sun	W.	1244144	$\begin{array}{llll}12613 & 6\end{array}$	1274415	1291511
	Spica	W.	475644	493459	$\begin{array}{lll}51 & 13 & 2\end{array}$	525052
	Mars	E.	421452	$\begin{array}{llll}40 & 35 & 30\end{array}$	$\begin{array}{llll}38 & 56 & 25\end{array}$	371740
	a Aquilæ	E.	$5824 \quad 1$	$\begin{array}{llll}57 & 3 & 46\end{array}$	$\begin{array}{llll}55 & 44 & 19\end{array}$	$\begin{array}{llll}54 & 25 & 44\end{array}$
	Fomalhaut	E.	$81 \quad 4 \quad 9$	$79 \quad 3411$	$78 \quad 4 \quad 30$	$\begin{array}{ll}76 & 35\end{array} 7$
	a Pegasi	E.	1022334	1004843	$\begin{array}{llll}99 & 14 & 2\end{array}$	$97 \quad 3932$
28	Spica	W.	$\begin{array}{llll}60 & 56 & 59\end{array}$	$\begin{array}{llll}62 & 33 & 36\end{array}$	$\begin{array}{llll}64 & 10 & 1\end{array}$	$65 \quad 4615$
	Mars	E.	$29 \quad 843$	$2732 \quad 2$	$25 \quad 5547$	241959
	a Aquilæ	E.	$48 \quad 7 \quad 28$	$\begin{array}{llll}46 & 55 & 12\end{array}$	454413	$\begin{array}{llll}44 & 34 & 37\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}69 & 13 & 6\end{array}$	67 45 46	$\begin{array}{llll}66 & 18 & 50\end{array}$	$\begin{array}{llll}64 & 52 & 19\end{array}$
	a Pegasi	E.	$89 \quad 4952$	$\begin{array}{llll}88 & 16 & 31\end{array}$	$8643 \quad 22$	$85 \quad 10 \quad 25$
29	Spica	W.	734431	$\begin{array}{llll}75 & 19 & 36\end{array}$	$\begin{array}{llll}76 & 54 & 30\end{array}$	$78 \quad 2914$
	Antares	W.	$\begin{array}{llll}27 & 54 & 50\end{array}$	$2930 \quad 5$	3158	32400
	Fomalhaut	E.	574630	$\begin{array}{llll}56 & 22 & 51\end{array}$	$\begin{array}{llll}54 & 59 & 47\end{array}$	$\begin{array}{llll}53 & 37 & 19\end{array}$
	a Pegasi	E.	$77 \quad 2852$	$\begin{array}{llll}75 & 57 & 13\end{array}$	$74 \quad 2547$	725436
30	Spica	W.	$\begin{array}{llll}86 & 20 & 8\end{array}$	875348	$89 \quad 2717$	$91 \quad 036$
	Antares	W.	$\begin{array}{llll}40 & 31 & 37\end{array}$	$42 \quad 5 \quad 25$	$43 \quad 39 \quad 3$	451230
	Fomalhaut	E.	465523	$\begin{array}{llll}45 & 37 & 23\end{array}$	442020	$\begin{array}{lll}43 & 4 & 17\end{array}$
	a Pegasi	E.	$65 \quad 2221$	635240	$\begin{array}{llll}62 & 23 & 16\end{array}$	60549
	a Arietis	E.	1072340	1055013	1041656	1024348
31	Spica	W.	$\begin{array}{llll}98 & 44 & 39\end{array}$	1001658	101498	103218
	Antares	W.	$\begin{array}{llll}52 & 57 & 15\end{array}$	542943	$\begin{array}{llll}56 & 2 & 1\end{array}$	57 3410
	a Pegasi	E.	$\begin{array}{llll}53 & 33 & 7\end{array}$	$52 \quad 5 \quad 55$	$\begin{array}{llll}50 & 39 & 5\end{array}$	491238
	a Arietis	E.	$95 \quad 0 \quad 38$	$93 \quad 2829$	915629	$90 \quad 2439$
	\bullet.					

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Nam and Position.		Noon.	III.	VI'.	IX ${ }^{\text {n }}$
1	Spica	W.	$104582{ }^{\prime \prime}$	$106^{\circ} 24^{\prime} 40$	$10756^{\circ} 121$	$109^{\circ} 27^{\prime \prime} 3$
	Antares	W.	$\begin{array}{lll}59 & 6 & 9\end{array}$	$60 \quad 3759$	$62 \quad 940$	634112
	Mars	W.	$\begin{array}{llll}16 & 55 & 41\end{array}$	182436	$\begin{array}{llll}19 & 54 & 2\end{array}$	212351
	a Pegasi	E.	474635	$46 \quad 2058$	445548	43318
	a Arietis	E.	885258	872126	85	841850
2	Antares	W.	$\begin{array}{llll}71 & 1647\end{array}$	724729	$\begin{array}{llll}74 & 18 & 4\end{array}$	754830
	Mars	W.	285535	$\begin{array}{llll}30 & 26 & 9\end{array}$	315643	$33 \quad 2716$
	a Arietis	E.	$\begin{array}{llll}76 & 44 & 51\end{array}$	$\begin{array}{llll}75 & 14 & 28\end{array}$	$\begin{array}{llll}73 & 44 & 14\end{array}$	$\begin{array}{llll}72 & 14 & 7\end{array}$
	Aldebaran	E.	1085943	1073028	106120	1043216
3	Antares	W.	$83 \quad 18 \quad 55$	844840	$\begin{array}{llll}86 & 18 & 19\end{array}$	874751
	Mars	W.	405926	$42 \quad 2943$	435956	$45 \quad 30 \quad 5$
	a Aquilæ	W.	$\begin{array}{llll}39 & 50 & 32\end{array}$	40493	$4149 \quad 2$	425022
	a Arietis	E.	64 45 15	$\begin{array}{llr}63 & 16 & 6\end{array}$	$\begin{array}{llll}61 & 46 & 50\end{array}$	$\begin{array}{llll}60 & 17 & 41\end{array}$
	Aldebaran	E.	$\begin{array}{llll}97 & 8 & 38\end{array}$	954012	9411151	924337
4	Antares	W.	$\begin{array}{llll}95 & 14 & 12\end{array}$	$96 \quad 4314$	$98 \quad 1213$	99418
	Mars	W.	525953	542940	$55 \quad 5923$	$57 \quad 29 \quad 4$
	a Aquilæ	W.	$48 \quad 1353$	492123	502940	513841
	a Arietis	E.	525328	512454	495626	48283
	Aldebaran	E.	$85 \quad 2342$	$83 \quad 55 \quad 58$	$82 \quad 2818$	81041
5	Mars	W.	64 56 56	$\begin{array}{llll}66 & 2618\end{array}$	$67 \quad 5545$	692511
	a Aquilæ	W.	573251	584514	59 598 8	$\begin{array}{llll}61 & 11 & 19\end{array}$
	a Arietis	E.	$41 \quad 714$	$\begin{array}{llll}39 & 39 & 17\end{array}$	381123	$\begin{array}{llll}36 & 43 & 34\end{array}$
	Aldebaran	E.	$73 \quad 4334$	$\begin{array}{llll}72 & 1618\end{array}$	70495	692153
	Venus	E.	$\begin{array}{llll}114 & 13 & 6\end{array}$	$\begin{array}{lllll}112 & 44 & 16\end{array}$	$\begin{array}{llll}111 & 15 & 28\end{array}$	1094642
	Sun	E.	1382230	$\begin{array}{llll}137 & 1 & 1\end{array}$	1353933	134185
6	Mars	W.	$\begin{array}{llll}76 & 52 & 23\end{array}$	$78 \quad 2152$	$\begin{array}{llll}79 & 51 & 23\end{array}$	812057
	a Aquilæ	W.	$67 \quad 2257$	$\begin{array}{llll}68 & 38 & 14\end{array}$	695348	$\begin{array}{llll}71 & 9 & 38\end{array}$
	Fomalhaut	W.	423939	435130	$45 \quad 414$	$\begin{array}{llll}46 & 17 & 45\end{array}$
	Aldebaran	E.	$62 \quad 622$	$\begin{array}{llll}60 & 39 & 19\end{array}$	$\begin{array}{llll}59 & 12 & 17\end{array}$	574516
	Venus	E.	$\begin{array}{lll}102 & 23 & 5\end{array}$	1005422	$\begin{array}{llll}99 & 25 & 39\end{array}$	97 56 85
	Pollux	E.	104355	1023540	101722	99392
	Sun	E.	1273044	$\begin{array}{ll}126 & 9\end{array}$	1244738	$\begin{array}{llll}123 & 26 & 1\end{array}$
7	Mars	W.	884937	$\begin{array}{llll}90 & 19 & 34\end{array}$	914937	931946
	a Aquilæ	W.	$77 \quad 3226$	784940	$80 \begin{array}{lll}80 & 7\end{array}$	812444
	Fomalhaut	W.	523511	535225	$\begin{array}{llll}55 & 10 & 8\end{array}$	562820
	\boldsymbol{a} Pegasi	W.	$\begin{array}{llll}29 & 47 & 18\end{array}$	31321	$\begin{array}{llll}32 & 20 & 30\end{array}$	$\begin{array}{llll}33 & 38 & 38\end{array}$
	Aldebaran	E.	$\begin{array}{llll}50 & 30 & 11\end{array}$	49×3	$\begin{array}{llll}47 & 36 & 7\end{array}$	$\begin{array}{llll}46 & 9 & 6\end{array}$
	Venus	E.	$90 \quad 3239$	$89 \quad 3 \quad 39$	873435	$86 \quad 5 \quad 27$
	Pollux	E.	$\begin{array}{llll}92 & 16 & 19\end{array}$	$\begin{array}{llll}90 & 47 & 31\end{array}$	891836	874935
	Sun	E.	1163657	$\begin{array}{llll}115 & 14 & 53\end{array}$	1135243	1123026
8	Mars	W.	1005223	1022320	1035427	1052543
	a Aquilæ	W.	8755542	891425	$\begin{array}{llll}90 & 33 & 18\end{array}$	$\begin{array}{llll}91 & 52 & 20\end{array}$
	Fomalhaut	W.	$63 \quad 6 \quad 4$	$64 \quad 2651$	65481	$\begin{array}{llll}67 & 9 & 32\end{array}$
	a Pegasi	W.	402139	414419	$\begin{array}{llll}43 & 7 & 33\end{array}$	443120
	Aldebaran	E.	$\begin{array}{llll}38 & 54 & 10\end{array}$	372716	$\begin{array}{lll}36 & 0 & 26\end{array}$	$\begin{array}{llll}34 & 33 & 43\end{array}$
	Venus	E.	$\begin{array}{llll}78 & 38 & 17\end{array}$	$77 \quad 8 \quad 31$	$\begin{array}{llll}75 & 38 & 37\end{array}$	$\begin{array}{llll}74 & 8 & 35\end{array}$
	Pollux	F.	$80 \quad 22 \quad 29$	$78 \quad 5237$	$\begin{array}{llll}77 & 22 & 34\end{array}$	$75 \quad 52 \quad 20$
	Sun	E.	$10537 \quad 2$	1041353	1025034	101273

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Nam and Position.		Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$.
9	a Aquilæ	W.	$98^{\circ} 29{ }^{\prime \prime}{ }^{\prime \prime}$	$99^{\circ} 49834$	$101^{\circ} 963{ }^{\prime \prime}$	1022939
	Fomalhaut	W.	$74 \quad 240$	$75 \quad 2621$	765022	$78 \quad 1443$
	a Pegasi	W.	$\begin{array}{llll}51 & 37 & 54\end{array}$	$\begin{array}{llll}53 & 4 & 38\end{array}$	$\begin{array}{llll}54 & 31 & 47\end{array}$	5515923
	Venus	E.	$\begin{array}{llll}66 & 36\end{array}$	$\begin{array}{llll}65 & 4 & 58\end{array}$	$\begin{array}{llll}63 & 33 & 44\end{array}$	$\begin{array}{llll}62 & 2 & 18\end{array}$
	Pollux	E.	$\begin{array}{llll}68 & 18 & 10\end{array}$	664640	$\begin{array}{llll}65 & 14 & 56\end{array}$	$\begin{array}{llll}63 & 42 & 57\end{array}$
	Sun	E.	$94 \quad 2623$	931133	913628	$9011 \begin{aligned} & 7\end{aligned}$
10	Fomalhaut	W.	$\begin{array}{lll}85 & 21 & 30\end{array}$	$\begin{array}{llll}86 & 47 & 51\end{array}$	881431	894130
	a Pegasi	W.	$\begin{array}{llll}63 & 23 & 47\end{array}$	645356	$\begin{array}{llll}66 & 24 & 29\end{array}$	675527
	a Arietis	W.	194832	212016	225238	242536
	Venus	E.	542154	52498	5116	494256
	Pollux	E.	$55 \quad 59 \quad 1$	$\begin{array}{llll}54 & 25 & 23\end{array}$	$\begin{array}{llll}52 & 51 & 27\end{array}$	511713
	Sun	E.	$83 \quad 0$	81330	$80 \quad 533$	$78 \quad 3747$
11	Fomalhaut	W.	$\begin{array}{llll}97 & 1 & 7\end{array}$	$\begin{array}{llll}98 & 29 & 58\end{array}$	99595	1012828
	a Pegasi	W.	$\begin{array}{llll}75 & 36 & 37\end{array}$	77106	7844	801821
	a Arietis	W.	321830	335434	35317	$37 \quad 87$
	Venus	E.	415312	$\begin{array}{llll}40 & 18 & 34\end{array}$	384344	$37 \quad 841$
	Pollux	E.	432121	414513	$\begin{array}{llll}40 & 8 & 47\end{array}$	$\begin{array}{llll}38 & 32 & 2\end{array}$
	Sun	E.	$\begin{array}{llll}71 & 13 & 36\end{array}$	694339	$\begin{array}{llll}68 & 1319\end{array}$	664235
12	a Pegasi	W.	$\begin{array}{llll}88 & 16 & 20\end{array}$	895311	918027	$\begin{array}{lll}93 & 8 & 8\end{array}$
	a Arietis	W.	$45 \quad 20 \quad 9$	46	$48 \quad 4012$	502055
	Venus	E.	291115	273535	$26 \quad 0 \quad 0$	242434
	Sun	E.	$\begin{array}{llll}59 & 2 & 50\end{array}$	572938	$\begin{array}{llll}55 & 56 & 0\end{array}$	$54 \quad 2157$
13	a Arietis	W.	585125	603453	$\begin{array}{llll}62 & 18 & 48\end{array}$	$\begin{array}{llll}64 & 3 & 10\end{array}$
	Aldebaran	W.	274719	292434	$\begin{array}{llll}31 & 2 & 52\end{array}$	32429
	Sun	E.	$\begin{array}{llll}46 & 25 & 11\end{array}$	444832	4311127	413357
14	a Arietis	W.	$\begin{array}{llll}72 & 51 & 33\end{array}$	743830	$\begin{array}{llll}76 & 25 & 51\end{array}$	$\begin{array}{llll}78 & 13 & 35\end{array}$
	Aldebaran	W.	411056	425448	$\begin{array}{llll}44 & 39 & 17\end{array}$	462421
	Sun	E.	$\begin{array}{llll}33 & 20 & 12\end{array}$	314015	295955	$\begin{array}{llll}28 & 19 & 14\end{array}$
18	Sun	W.	$22 \quad 2746$	$\begin{array}{llll}24 & 13 & 19\end{array}$	$\begin{array}{llll}25 & 58 & 49\end{array}$	274413
	Spica	E.	$\begin{array}{llll}34 & 2 & 17\end{array}$	$32 \quad 941$	$\begin{array}{llll}30 & 17 & 15\end{array}$	28251
	Antares	E.	794256	774945	$75 \quad 5642$	$\begin{array}{llll}74 & 3 & 47\end{array}$
19	Sun	W.		$\begin{array}{llll}38 & 13 & 33\end{array}$	$\begin{array}{llll}39 & 57 & 45\end{array}$	414143
	Antares	E.	644140	624952	605818	$\begin{array}{rrr}59 & 6 & 58\end{array}$
	Mars	E.	105476	1035548	102445	1001358
20	Sun	W.	501727	$\begin{array}{llll}51 & 59 & 42\end{array}$	534138	$\begin{array}{llll}55 & 2315\end{array}$
	Antares	E.	$49 \quad 5432$	$48 \quad 4 \begin{array}{ll}48\end{array}$	$\begin{array}{llll}46 & 15 & 42\end{array}$	442647
	Mars	E.	91420	891521	$87 \quad 2642$	$\begin{array}{llll}85 & 38 & 23\end{array}$
	a Aquilæ	E.	$\begin{array}{ll}103 & 1\end{array}$	1012615	995133	$\begin{array}{llll}98 & 17 & 0\end{array}$
21	Sun	W.	$63 \quad 466$	$\begin{array}{llll}65 & 25 & 36\end{array}$	$\begin{array}{llll}67 & 4 & 45\end{array}$	684331
	Antares	E.	$\begin{array}{llll}35 & 27 & 22\end{array}$	334034	$\begin{array}{llll}31 & 54 & 8\end{array}$	$\begin{array}{lll}30 & 8 & 3\end{array}$
	Mars	E.	$76 \quad 4213$	7456	$\begin{array}{llll}73 & 10 & 22\end{array}$	$\begin{array}{llll}71 & 25 & 1\end{array}$
	a Aquilæ	E.	902723	$88 \quad 5417$	872131	85497
22	Sun	W.	$\begin{array}{llll}76 & 5151\end{array}$	$\begin{array}{llll}78 & 28 & 24\end{array}$	$80 \quad 435$	814024
	Spica	W.	$2436 \quad 4$	$\begin{array}{llll}26 & 19 & 6\end{array}$	$\begin{array}{llll}28 & 1 & 51\end{array}$	294419
	Mars	E.	62446	6116	591829	$57 \quad 3616$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Na and Position		Midnight.	XVh.	XVIIT ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
9	a Aquilæ	W.	$103^{\circ} 4950$	$10510{ }^{\circ}$	$106^{\circ} 30^{\prime} \quad 28$	$107^{\circ} 50{ }^{\prime \prime}$
	Fomalhaut	W.	793924	81426	822948	835529
	a Pegasi	W.	$57 \quad 2725$	585553	$60 \quad 2446$	61543
	Venus	E.	603039	585848	$57 \quad 2644$	$55 \quad 5426$
	Pollux	E.	$62 \quad 1042$	603812	$59 \quad 5 \quad 25$	573222
	Sun	E.	884530	$87 \quad 19 \quad 36$	$85 \quad 5324$	842655
10	Fomalhaut	W.	91848	92 3626	$\begin{array}{llll}94 & 4 & 22\end{array}$	$95 \quad 3235$
	a Pegasi	W.	$\begin{array}{llll}69 & 2651\end{array}$	705840	723054	$\begin{array}{llll}74 & 3 & 33\end{array}$
	a Arietis	W.	25598	$27 \quad 3313$	$29 \quad 749$	304255
	Venus	E.	$48 \quad 928$	463545	$\begin{array}{lll}45 & 1 & 48\end{array}$	$\begin{array}{llll}43 & 27 & 37\end{array}$
	Pollux	E.	494240	$48 \quad 749$	$\begin{array}{llll}46 & 3238\end{array}$	44579
	Son	E.	$77 \quad 940$	$75 \quad 4112$	$\begin{array}{lllll}74 & 12 & 22\end{array}$	$72 \quad 4310$
11	Fomalhaut	W.	$10258 \quad 9$	104285	1055816	1072840
	a Pegasi	W.	81536	$\begin{array}{ll}83 & 2817\end{array}$	$85 \quad 353$	863954
	a Arietis	W.	$38 \quad 4536$	402333	$\begin{array}{lll}42 & 1 & 57\end{array}$	434049
	Venus	E.	$\begin{array}{llll}35 & 33 & 27\end{array}$	3358	322232	304656
	Pollux	E.	$\begin{array}{llll}36 & 54 & 58\end{array}$	$\begin{array}{llll}35 & 17 & 36\end{array}$	$\begin{array}{llll}33 & 39.57\end{array}$	$\begin{array}{lll} 32 & 2 & 2 \end{array}$
	Sun	E.	$\begin{array}{llll}65 & 11 & 27\end{array}$	$63 \quad 3955$	62 7 88	603537
12	a Pegasi	W.	$\begin{array}{llll}94 & 4614\end{array}$	$96 \quad 2444$	$\begin{array}{llll}98 & 3 & 38\end{array}$	994255
	a Arietis	W.	$\begin{array}{llll}52 & 2 & 6\end{array}$	534344	552550	$57 \quad 824$
	Venus	E.	224926	211446	194045	18 7 40
	Sun	E.	524728	511232	493711	$48 \quad 124$
13	a Arietis	W.	654759	$\begin{array}{llll}67 & 33 & 14\end{array}$	691855	$\begin{array}{lll}71 & 5 & 1\end{array}$
	Aldebaran	W.	342221	$36 \quad 3 \quad 22$	374511	392743
	Sun	E.	$\begin{array}{llll}39 & 56 & 1\end{array}$	381741	$36 \quad 3855$	345946
14	a Arietis	W.	$80 \quad 143$	815014	$\begin{array}{llll}83 & 39 & 7\end{array}$	$85 \quad 2821$
	Aldebaran	W.	$48 \quad 956$	$4956 \quad 5$	514243	$53 \quad 2949$
	Sun	E.	263811	245648	$\begin{array}{llll}23 & 15 & 5\end{array}$	21335
18			292931	311440	325940	344430
	Spica	E.	$\begin{array}{llll}26 & 33 & 1\end{array}$	244118	224953	$20 \quad 5849$
	Antares	E.	$\begin{array}{llll}72 & 11 & 0\end{array}$	$\begin{array}{lllll}70 & 18 & 23\end{array}$	$\begin{array}{lll}68 & 25 \quad 57\end{array}$	663342
19	Sun			$45 \quad 852$	$\begin{array}{llll}46 & 52 & 1\end{array}$	483453
	Antares	E.	$\begin{array}{llll}57 & 15 & 54\end{array}$	$\begin{array}{llll}55 & 25 & 8\end{array}$	$\begin{array}{llll}53 & 34 & 38\end{array}$	514425
	Mars	E.	$98 \quad 23 \quad 27$	963313	944319	925339
20	Sun	W.	$\begin{array}{llll}57 & 4 & 31\end{array}$	$5845 \quad 26$	$\begin{array}{llll}60 & 26 & 1\end{array}$	$\begin{array}{llll}62 & 615\end{array}$
	Antares	E.	$\begin{array}{llll}42 & 38 & 12\end{array}$	404958	$\begin{array}{llll}39 & 2 & 5\end{array}$	$\begin{array}{llll}37 & 14 & 33\end{array}$
	Mars	E.	$83 \quad 5025$	$82 \quad 249$	$80 \quad 15 \quad 35$	782843
	a Aquilæ	E.	$96 \quad 42 \quad 37$	$\begin{array}{llll}95 & 8 & 26\end{array}$	$\begin{array}{llll}93 & 34 & 29\end{array}$	$92 \quad 0 \quad 47$
21	Sun	W.	$\begin{array}{llll}70 & 21 & 56\end{array}$	$\begin{array}{llll}71 & 59 & 58\end{array}$	$\begin{array}{llll}73 & 37 & 38\end{array}$	$\begin{array}{llll}75 & 14 & 56\end{array}$
	Antares	E.	$28 \quad 2221$	$\begin{array}{llll}26 & 37 & 1\end{array}$	24524	$23 \quad 728$
	Mars	E.	69403	$67 \quad 55 \quad 29$	$\begin{array}{llll}66 & 11 & 18\end{array}$	$64 \quad 2730$
	a Aquilæ	E.	$8417 \quad 5$	$8245 \quad 27$	811415	794329
22	Sun	W.		$\begin{array}{llll}84 & 50 & 56\end{array}$	862540	$88 \quad 0 \quad 2$
	Spica	W.	312630	$33 \quad 8 \quad 21$	344954	$\begin{array}{llll}36 & 21 & 10\end{array}$
	Mars	E.	$55 \quad 54 \quad 26$	541259	523156	$\begin{array}{llll}50 & 5116\end{array}$

GREENWICH MEAN TLME.						
lunar distances.						
Day of Month.			Noon.	ITI ${ }^{\text {b }}$	VIr.	IX ${ }^{\text {b }}$
22	a Aquilæ	E.	$78{ }^{\circ} 1311$	$76^{\circ} 43$ 22゙	7514	$73^{\circ} 4517$
23	Son	W.	$\begin{array}{llll}89 & 34 & 3 \\ 38 & 12 & 5\end{array}$	$\begin{array}{rrr}91 & 7 & 43 \\ 39 & 52\end{array}$	$\begin{array}{llll}92 & 41 & 2 \\ 41 & 32\end{array}$	$\begin{array}{llll}94 & 14 & 1 \\ 43 & 12\end{array}$
	Spica	W.	$\begin{array}{llll}38 & 12 & 5\end{array}$	$\begin{array}{llll}39 & 5240\end{array}$	413257	431256
	Mars	E.	$49 \quad 1059$	47315	455135	441227
	a Aquilæ	E.	$\begin{array}{llll}66 & 30 & 2\end{array}$	$65 \quad 453$	634024	621640
	Fomalhaut	E.	$\begin{array}{lll}90 & 2 & 20\end{array}$	882951	865743	$85 \quad 2554$
24	Sun	W.	1015356	1032457	1045540	106265
	Spica	W.	51286	$\begin{array}{llll}53 & 614\end{array}$	54444	562135
	Mars	E.	$\begin{array}{llll}36 & 2 & 30\end{array}$	342539	324911	$\begin{array}{lll}31 & 13\end{array}$
	a Aquilæ	E.	$\begin{array}{llll}55 & 29 & 51\end{array}$	$\begin{array}{llll}54 & 11 & 9\end{array}$	525325	513643
	Fomalhaut	E.	775210	$76 \quad 2233$	$\begin{array}{llll}74 & 5319\end{array}$	732429
	a Pegasi	E.	985826	972341	954911	941458
25	Sun	W.	1135350	1152234	11651	1181913
	Spica	W.	$\begin{array}{ll}64 & 25 \\ 7\end{array}$	$\begin{array}{lll}66 & 1 & 1\end{array}$	673640	$69 \quad 12 \quad 5$
	Antares	W.	183447	201050	214639	232212
	Fomalhaut	E.	$66 \quad 643$	644031	631448	614935
	a Pegasi	E.	862753	$84 \quad 5517$	832256	815051
26	Sun	W.	1253632	$127 \quad 318$	1282951	1295611
	Spica	W.	$77 \quad 534$	783935	801324	81471
	Antares	W.	311625	325034	342431	355816
	Fomalhant	E.	545134	$\begin{array}{llll}53 & 29 & 45\end{array}$	$\begin{array}{llll}52 & 8 & 35\end{array}$	50488
	a Pegasi	E.	741424	724355	711341	694344
27	Spica	W.	$\begin{array}{llll}89 & 32 & 9\end{array}$	$\begin{array}{llll}91 & 4 & 37\end{array}$	923656	$\begin{array}{llll}94 & 9 & 5\end{array}$
	Antares	W.	43445	451641	$\begin{array}{lll}46 & 49 & 7\end{array}$	482124
	Fomalhaut	E.	$\begin{array}{llll}44 & 17 & 39\end{array}$	$\begin{array}{llll}43 & 2 & 18\end{array}$	4148	403450
	a Pegasi	E.	$\begin{array}{lll}62 & 18 & 4\end{array}$	604947	$\begin{array}{lll}59 & 2147\end{array}$	57545
	a Arietis	E.	104123	1023947	101741	993544
28						
	Antares	W.	$56 \quad 026$	573148	$\begin{array}{llll}59 & 3 & 2\end{array}$	60348
	a Pegasi	E.	50 40 23 1	$\begin{array}{llll}49 & 14 & 41\end{array}$	474922	$\begin{array}{llll}46 & 24 & 28 \\ 87\end{array}$
	a Arietis	E.	915817	$\begin{array}{lllll}90 & 27 & 13\end{array}$	$\begin{array}{llll}88 & 5617\end{array}$	872528
29	Antares	W.	68 7 9	$\begin{array}{llllll}69 & 38 & 13\end{array}$	$\begin{array}{llll}71 & 8 & 30\end{array}$	733841
	Mars	W.	262711	275512	$\begin{array}{llllll}29 & 23 & 13\end{array}$	$\begin{array}{lllll}30 & 51 & 13\end{array}$
	a Pegasi	E.	392659	$38 \quad 5 \quad 8$	$\begin{array}{llll}36 & 43 & 57\end{array}$	$\begin{array}{llll}35 & 23 & 29\end{array}$
	a Arietis	E.	79. 5321	$\begin{array}{llll}78 & 23 & 18\end{array}$	$\begin{array}{llll}76 & 53 & 21\end{array}$	$\begin{array}{llll}75 & 23 & 31\end{array}$
	Aldebaran	E.	112555	110370	109810	1073924
30	Antares	W.	$\begin{array}{llll}80 & 8 & 12\end{array}$	813750	$83 \quad 724$	843653
	Mars	W.	$38 \quad 1043$	$\begin{array}{ll}39 & 3829\end{array}$	$\begin{array}{lll}41 & 612\end{array}$	423352
	a Aquilæ	W.	375137	384649	394340	40423
	a Arietis	E.	675548	$\begin{array}{llll}66 & 26 & 31\end{array}$	645720	632814
	Aldebaran	E.	1001640	984819	$97 \quad 20 \quad 3$	$95 \quad 5151$
31	Antares	W.	$\begin{array}{llll}92 & 3 & 18\end{array}$	$\begin{array}{llll}93 & 32 & 24\end{array}$	$\begin{array}{llll}95 & 1 & 27\end{array}$	$\begin{array}{llll}96 & 30 & 27\end{array}$
	Mars	W.	495124	511846	52465	541321
	a Aquilæ	W.	$\begin{array}{llll}45 & 53 & 39\end{array}$	$\begin{array}{llll}46 & 59 & 17\end{array}$	$\begin{array}{llll}48 & 5 & 51\end{array}$	491317
	a Arietis	E.	$\begin{array}{lll}56 & 3 & 55\end{array}$	$\begin{array}{lllll}54 & 35 & 17\end{array}$	$53 \quad 643$	513813
	Aldebaran	E.	883146	$87 \quad 355$	$85 \quad 368$	$84 \quad 824$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Midnight.	XVb.	XVIII.	XXI'.
22	a Aquilæ		$72^{\circ} 17 \frac{11}{3}$	$70^{\circ} 492{ }^{\prime \prime}$	$69^{\circ} 22^{19}$	$67^{\circ} 55^{\prime \prime} 51$
23	Sun	W.	954640	$97 \quad 1858$	985057	1002236
	Spica	W.	445235	463155	$48 \quad 1057$	494940
	Mars	E.	423342	405519	391720	373943
	a Aquilæ	E.	605340	593127	$58 \quad 10 \quad 3$	564930
	Fomalhaut	E.	$83 \quad 5426$	822319	805233	$79 \quad 2210$
24	Sun	W.	1075612	109262	1105535	1122451
	Spica	W.	575851	593549	611231	624857
	Mars	E.	293728	$\begin{array}{llll}28 & 2 & 13\end{array}$	262723	245259
	a Aquilw	E.	$\begin{array}{llll}50 & 21 & 6\end{array}$	$49 \quad 639$	475323	464126
	Fomalhaut	E.	71564	70284	$69 \quad 030$	673323
	a Pegasi	E.	9241	91720	893355	$88 \quad 046$
25	Sun	W.	1194710	1211452	1224220	124933
	Spica	W.	704715	$72 \quad 2210$	735651	753120
	Antares	W.	245731	263236	28.726	29422
	Fomalhaut	E.	602453	$59 \quad 0 \quad 42$	$\begin{array}{llll}57 & 37 & 4\end{array}$	$\begin{array}{llll}56 & 14 & 1\end{array}$
	a Pegasi	E.	$\begin{array}{llll}80 & 19 & 1\end{array}$	784728	771611	75459
26	Sun	W.	$\begin{array}{llll}131 & 2218\end{array}$	1324813	1341355	1353925
	Spica	W.	832025	845338	862639	875930
	Antares	W.	373149	$\begin{array}{llll}39 & 5 & 10\end{array}$	$\begin{array}{llll}40 & 38 & 19\end{array}$	421117
	Fomalhant	E.	492823	$48 \quad 925$	$\begin{array}{llll}46 & 51 & 16\end{array}$	45340
	a Pegasi	E.	$\begin{array}{llll}68 & 14 & 3\end{array}$	$66 \quad 4438$	651530	634638
27	Spica	W.	95414	971253	984433	100164
	Antares	W.	495331	512528	525716	$54 \quad 2856$
	Fomalhaut	E.	392254	$\begin{array}{llll}38 & 1217\end{array}$	$\begin{array}{llll}37 & 3 & 6\end{array}$	355528
	a Pegasi	E.	562641	$54 \quad 5937$	$\begin{array}{llll}53 & 32 & 52\end{array}$	$\begin{array}{ll}52 & 6\end{array} 27$
	a Arietis	E.	$98 \quad 356$	$\begin{array}{llll}96 & 32 & 18\end{array}$	$95 \quad 0 \quad 49$	$93 \quad 29 \quad 29$
28	Spica	W.	1075135	1092218	1105253	1122321
	Antares	W.	$\begin{array}{llll}62 & 5 & 7\end{array}$	$63 \quad 3558$	$65 \quad 642$	$66 \quad 3719$
	a Pegasi	E.	4500	433559	$\begin{array}{lll}42 & 12 & 27\end{array}$	404926
	a Arietis	E.	$85 \quad 5447$	842414	825349	812331
29	Antares	W.	$74 \cdot 846$	$\begin{array}{lllll}75 & 38 & 45\end{array}$	$77 \quad 839$	783827
	Mars	W.	$\begin{array}{ll}32 & 1911\end{array}$	33478	$\begin{array}{llll}35 & 15 & 2\end{array}$	364254
	a Pegasi	E.	$34 \quad 348$	324459	31279	301024
	a Arietis	E.	$\begin{array}{llll}73 & 53 & 47\end{array}$	72 24*9	$\begin{array}{llll}70 & 54 & 37\end{array}$	692510
	Aldebaran	E.	1061043	104426	1031333	101454
30	Antares	W.	$86 \quad 618$	$87 \quad 35 \quad 39$	$89 \quad 4 \quad 56$	9034
	Mars	W.	$44 \quad 129$	$45 \quad 29 \quad 2$	465633	48241
	a Aquilæ	W.	414152	$4243 \quad 2$	434526	44,490
	a Arietis	E.	615913	603016	$59 \quad 125$	573238
	Aldebaran	E.	942343	92 5538	912737	895940
31	Antares	W.	$\begin{array}{llll}97 & 59 & 24\end{array}$	$\begin{array}{llll}99 & 2819\end{array}$	1005711	102260
	Mars	W.	554034	$57 \quad 746$	$58 \quad 3454$	$60 \quad 20$
	a Aquilæ	W.	502129	513027	5240	$53 \quad 5024$
	a Arietis	E.	$\begin{array}{llll}50 & 9 & 47\end{array}$	484125	$\begin{array}{llll}47 & 13 & 7\end{array}$	$\begin{array}{llll}45 & 44 & 52\end{array}$
	Aldebaran	E.	824044	81136	794531	$78 \quad 1758$

SEPTEMBER, 1860.

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Name $\begin{aligned} & \text { and } \\ & \text { Position. } \end{aligned}$		Noon.	III.	VIr.	IX ${ }^{\text {n }}$
1	Antares	W.	$10354{ }^{\circ} \mathrm{Cl}$	$105^{\circ} 23^{\prime} 36$	$10682{ }^{1}$	$1082{ }^{\circ}{ }^{\text {¢ }}$
	Mars	W.	61294	62567	64239	65508
	a Aquilæ	W.	$\begin{array}{llll}55 & 1 & 17\end{array}$	561244	572440	58376
	a Arietis	E.	441641	424834	412031	395231
	Aldebaran	E.	765029	$75 \quad 23 \quad 2$	735537	722815
	Venus	E.	1251642	1235318	1222955	121633
${ }^{2}$	Mars	W.	$73 \quad 452$	743147	755843	772540
	a Aquilæ	W.	644525	$66 \quad 0 \quad 8$	67159	683027
	Fomalhaut	W.	$40 \quad 6 \quad 6$	411558	422649	$43 \quad 3834$
	a Arietis	E.	323333	$31 \quad 559$	293830	28118
	Aldebaran	E.	651159	634449	621741	605035
	Pollux	E.	1071311	1054458	1041644	1024829
	Venus	E.	114951	1124631	1112311	1095950
3	Mars	W.	844037	86741	873448	$\begin{array}{lll}89 & 1 & 58\end{array}$
	a Aquilæ	W.	745043	$76 \quad 725$	772418	784122
	Fomalhaut	W.	494831	51425	522051	533747
	a Pegasi	W.	$2712 \quad 2$	$2825 \quad 5$	293930	$\begin{array}{llll}30 & 55 & 9\end{array}$
	Aldebaran	E.	533529	$\begin{array}{llll}52 & 8 & 32\end{array}$	504138	491446
	Pollux	E.	$95 \quad 2649$	935822	$92 \quad 2951$	$91 \quad 16$
	Venus	E.	103247	1013917	1001544	$98 \quad 52 \quad 9$
	Jupiter	E.	1185430	1172712	1155950	1143226
4	Mars	W.	961841	974614	991353	1004138
	a Aquilæ	W.	$85 \quad 9 \begin{array}{ll}85\end{array}$	86272	87457	$89 \quad 319$
	Fomalhaut	W.	$\begin{array}{lll}60 & 9 & 7\end{array}$	612834	624822	$64 \quad 830$
	a Pegasi	W.	372736	384822	40 9	413140
	Aldebaran	E.	$\begin{array}{lll}42 & 1\end{array}$	403429	$\begin{array}{lll}39 & 759\end{array}$	374136
	Pollux	E.	833725	82824	803917	$\begin{array}{llll}79 & 10 & 5\end{array}$
	Venus	E.	915317	902917	$89 \quad 5 \quad 12$	8741
	Jupiter	E.	1071416	1054623	1041824	1025018
5	Mars	W.	$\begin{array}{llll}108 & 2 & 1\end{array}$	1093028	110594	1122750
	a Aquilæ	W.	953548	965433	$\begin{array}{llll}98 & 13 & 22\end{array}$	$\begin{array}{ll}99 & 32 \\ 75\end{array}$
	Fomalhaut	W.	705353	721551	73385	$\begin{array}{llll}75 & 0 & 35\end{array}$
	a Pegasi	W.	482846	495329	$\begin{array}{llll}51 & 18 & 36\end{array}$	52445
	Pollux	E.	714214	701216	68429	671153
	Veuns	E.	803825	7913131	$\begin{array}{ll}77 & 48 \\ 28\end{array}$	$\begin{array}{llll}76 & 2316\end{array}$
	Jupiter	E.	952757	9359	$\begin{array}{llll}92 & 30 & 0\end{array}$	$\begin{array}{lll}91 & 0 & 47\end{array}$
	Sun	E.	1234640	1222340	121030	1193710
6	Fomalhaut	W.	81578	832113	844534	86108
	a Pegasi	W.	595653	612430 17	$6252 \quad 26$	$64 \quad 2042$
	a Arietis	W.	161912	174722	191615	204549
	Pollux	E.	$5938 \quad 2$	$58 \quad 641$	$\begin{array}{llll}56 & 35 & 10\end{array}$	$\begin{array}{llll}55 & 3 & 25\end{array}$
	Venus	E.	691440	674823	662153	$\begin{array}{llll}64 & 55 & 10\end{array}$
	Jupiter	E.	833155	$82 \quad 132$	803056	$\begin{array}{llll}79 & 9 & 5\end{array}$
	Sun	E.	1123741	1111310	1094826	1082328
7	Fomalhaut	W.	$\begin{array}{llll}93 & 1641\end{array}$	944243	$\begin{array}{llll}96 & 8 & 59\end{array}$	97 35 28
	a Pegasi	W.	$\begin{array}{llll}71 & 47 & 3\end{array}$	$\begin{array}{ll}7317 & 17\end{array}$	74 17 1	$\begin{array}{llll}76 & 18 & 55\end{array}$
	a Arietis	W.	282150	295426 5	$\begin{array}{llll}31 & 27 & 25\end{array}$	$\begin{array}{llll}33 & 0 & 51\end{array}$
	Pollux	E.	$\begin{array}{llll}47 & 21 & 27\end{array}$	454821	$\begin{array}{llll}44 & 15 & 1 \\ 54 & 41\end{array}$	$\begin{array}{llll}4241 & 26 \\ 53 & 12\end{array}$
	Venus	E.	57383	$56 \quad 951$	544123	$5312 \quad 38$

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { yon } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nan } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathrm{XV}^{\text {b }}$.	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
1	Antares	W.	$109^{\circ} 49^{\prime \prime} 48^{\prime \prime}$	$111^{\circ} 18{ }^{\prime \prime} 3$	$112^{\circ} 47{ }^{12}$	$11{ }^{\circ} 15^{\prime} 53^{\prime \prime}$
	Mars	W.	$67 \quad 176$	68443	70110	713756
	a Aquilæ	W.	594958	$61 \quad 316$	621657	$\begin{array}{llll}63 & 31 & 1\end{array}$
	a Arietis	E.	382435	365643	352856	$\begin{array}{lll}34 & 1 & 13\end{array}$
	Aldebaran	E.	71056	693339	$68 \quad 623$	$\begin{array}{llll}66 & 39 & 10\end{array}$
	Venus	E.	1194312	1181951	1165631	1153311
2	Mars	W.	$78 \quad 5237$	801935	814634	831335
	a Aquilæ	W.	6946	$71 \quad 151$	721755	733413
	Fomalhaut	W.	44518	$46 \quad 428$	471831	483312
	a Arietis	E.	264354	251646	234949	$\begin{array}{llll}22 & 23\end{array}$
	Aldebaran	E.	592331	575628	562927	$\begin{array}{lll}55 & 2 & 27\end{array}$
	Pollux	E.	1012013	995155	982335	965513
	Venus	E.	1083628	$10713 \quad 5$	1054941	1042615
3	Mars	W.	902911	915627	932347	
	a Aquilæ	W.	795836	$8116 \quad 0$	823332	835114
	Fomalhaut	W.	$\begin{array}{llll}54 & 5512\end{array}$	$\begin{array}{llll}56 & 13 & 4\end{array}$	573121	5850
	a Pegasi	W.	321152	332934	34488	$36 \quad 731$
	Aldebaran	E.	474756	46218	$44 \quad 5423$	432741
	Pollux	E.	893239	$88 \quad 3 \quad 57$	863511	$85 \quad 621$
	Venus	E.	972830	$\begin{array}{lll}96 & 4 & 48\end{array}$	$9441 \quad 2$	$\begin{array}{llll}93 & 1712\end{array}$
	Jupiter	E.	$\begin{array}{lll}113 & 457\end{array}$	1113724	110947	108424
4	Mars	W.	$\begin{array}{lll}102 & 9 & 29\end{array}$	1033726	$105 \quad 531$	1063342
	a Aquilæ	W.	902137	9140 1	925831	$\begin{array}{llll}94 & 17 \\ 7\end{array}$
	Fomalhaut	W.	652858	664944	681049	693212
	a Pegasi	W.	42549	$4417 \quad 7$	$45 \quad 40 \quad 34$	47 4
	Aldebaran	E.	$\begin{array}{llll}36 & 15 & 19\end{array}$	344910	332312	315726
	Pollux	E.	774045	761119	744145	$\begin{array}{ll}73 & 12\end{array}$
	Venus	E.	861643	845219	$83 \quad 2749$	$82 \quad 311$
	Jupiter	E.	$10122 \quad 5$	995345	982517	965641
5	Mars	W.	1135644	1152549	$\begin{array}{llll}116 & 55 & 4\end{array}$	1182430
	\boldsymbol{a} Aquilæ	W.	1005111	1021010	1032910	1044813
	Fomalhaut	W.	762322	774625	79844	803318
	${ }_{a}$ Pegasi	W.	$54 \quad 956$	553610	$57 \quad 243$	582938
	Pollux	E.	654128	641052	$6240 \quad 6$	$61 \quad 9$
	Venus	E.	745754	733221	72638	704045
	Jupiter	E.	893123	88148	$8632 \quad 3$	$85 \quad 2 \quad 5$
	Sun	E.	1181339	1164957	$\begin{array}{llll}115 & 26 & 4\end{array}$	$\begin{array}{ll}114 & 159\end{array}$
6	Fomalhaut	W.	873457	$89 \quad 0 \quad 2$	902522	915054
	a Pegasi	W.	654917	671813	684730	7017
	a Arietis	W.	221559	234641	251755	264939
	Pollux	E.	533127	$\begin{array}{llll}51 & 59 & 18\end{array}$	502655	$\begin{array}{llll}48 & 54 & 17\end{array}$
	Venus	E.	632814	$\begin{array}{llll}62 & 1\end{array}$	603338	59 5 515
	Jupiter	E.	$77 \quad 290$	$\begin{array}{llll}75 & 5740\end{array}$	$74 \quad 26 \quad 5$	725413
	Sun	E.	1065815	1053247	104 7	102414
7	Fomalhaut	W.	$\begin{array}{llll}99 & 2 & 11\end{array}$	$\begin{array}{lll}100 & 29 & 7\end{array}$	1015617	1032338
	a Pegasi	W.	775014	792154	80 80 53	10822617
	a Arjetis	W.	343439	$36 \quad 852$	374328	391828
	Pollux	E.	$41 \quad 738$	$3933 \quad 35$	375916	362443
	Venus	E.	514336	501416	484438	471441

GREENWICH MEAN TTME.						
lunar distances.						
Day of the Month	$\begin{gathered} \text { Star's Nar } \\ \text { and } \\ \text { Position } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI ${ }^{\text {b }}$.	IX ${ }^{\text {b }}$.
7	Jupiter Sun	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{E} . \end{aligned}$	71 22 101 14 48	$\begin{array}{lll} 69 & 49 & 40 \\ 99 & 48 & 16 \end{array}$	$\begin{array}{lll} 68 & 16 & 58 \\ 98 & 21 & 27 \end{array}$	$\begin{array}{llll} 66 & 43 & 57 \\ 96 & 54 & 19 \end{array}$
8	Fomalhaut	W.	1045112	1061858	1074655	1091512
	a Pegasi	W.	83590	85324	$\begin{array}{llll}87 & 5 & 30\end{array}$	$88 \quad 3918$
	a Arietis	W.	405352	422940	$44 \quad 5 \quad 53$	454228
	Pollux	E.	344957	$\begin{array}{llll}33 & 14 & 57\end{array}$	313944	$30 \quad 421$
	Venus	E.	454425	441349	424253	411138
	Jupiter	E.	58548	57199	554349	$54 \quad 87$
	Sun	E.	893351	$88 \quad 445$	863518	$85 \quad 5 \quad 29$
9	a Arietis	W.	535141	553048	571020	$58 \quad 5018$
	Aldebaran	W.	$\begin{array}{ll}23 & 626\end{array}$	243713	$26 \quad 924$	274250
	Venus	E.	$\begin{array}{llll}33 & 30 & 6\end{array}$	315643	302259	284854
	Jupiter	E.	$\begin{array}{llll}46 & 3 & 56 \\ 77 & \end{array}$	442555	424730	$\begin{array}{llll}41 & 8 & 40\end{array}$
	Sun	E.	773044	755836	$74 \quad 264$	72538
10	a Arietis	W.	671646	685925	704229	72262
	Aldebaran	W.	354455	372352	$39 \quad 3 \quad 32$	404355
	Jupiter	E.	324816	$\begin{array}{ll}31 & 655\end{array}$	29259	$27 \quad 4259$
	Sun	E.	$\begin{array}{lll}65 & 2 & 6\end{array}$	$63 \quad 2637$	$\begin{array}{lll} 61 \quad 50 \quad 42 \end{array}$	601422
11	a Arietis	W.	811024	825635	844314	863018
	Aldebaran	W.	$\begin{array}{lll}49 & 15 & 19\end{array}$	505922	524358	54296
	Sun	E.	$\begin{array}{llll}52 & 6 & 13\end{array}$	502720	48481	$\begin{array}{llll}47 & 8 & 19\end{array}$
12	a Arietis	W.	$\begin{array}{llllll}95 & 31 & 51\end{array}$	$97 \quad 2121$	$\begin{array}{llll}99 & 11 & 13\end{array}$	101128
	Aldebaran	W.	632211	$65 \quad 1012$	665838	$68 \quad 4729$
	Pollux	W.	211436	$23 \quad 031$	244720	263456
	Sun	E.	38442	$\begin{array}{llll}37 & 2 & 7\end{array}$	$35 \quad 1952$	$\begin{array}{llll}33 & 37 & 19\end{array}$
17		W.	$\begin{array}{llll}32 & 15 & 51\end{array}$		$\begin{array}{llll}35 & 42 & 11\end{array}$	372456
	Antares	E.	405858	$39 \quad 729$	371618	352528
	Mars	E.	875653	$86 \quad 819$	84206	823214
	a Aquilæ	E.	$95 \quad 12 \quad 35$	$9335 \quad 23$	915825	902143
18	Sun	Wi	$45 \quad 5350$	473431	491450	$50 \quad 5446$
	Mars	E.	$73 \quad 3837$	71536	$70 \quad 8 \quad 1$	682321
	a Aquilæ	E.	822330	80497	$\begin{array}{ll}79 & 1514\end{array}$	774152
	Fomalhaut	E.	107343	1052510	1034650	102845
19	Sun Mars	W. E.		$\begin{array}{rrr} 60 & 45 & 39 \\ 58 & 4 & 40 \end{array}$	$\begin{array}{llrr}62 & 22 & 39 \\ 56 & 23 & 7\end{array}$	$\begin{array}{lllr}63 & 59 & 13 \\ 54 & 42 & 3\end{array}$
	M Aquilæ	E.	70 70	$6834 \begin{array}{ll}68 & 7\end{array}$	67	$65 \quad 3658$
	Fomalhaut	E.	$\begin{array}{llll}94 & 2 & 38\end{array}$	922626	$90 \quad 50 \quad 37$	891511
	a Pegasi	E.	1154948	114918	112296	1104913
20.	Sun	W.	715541	732942	$\begin{array}{llll}75 & 3 & 18\end{array}$	76 36 1
	Mars	E.	462329	44459	$43 \quad 714$	412947
	a Aquilæ	E.	582818	$\begin{array}{llll}57 & 5 & 17\end{array}$	554316	542217
	Fonalhaut	E.	812420	795131	781911	$\begin{array}{ll}76 & 4719\end{array}$
	a Pegasi	E.	1023442	1005651	991922	974215
21	Sun	W.	841626	854715	871741	884746
	Antares	W.	151046	$1649 \quad 9$	182711	$20 \quad 450$

GREENWICH MEAN TIME.						
lunar distances.						
Day of Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathrm{XV}^{\text {h }}$.	XVIII.	XXPr.
7	Jupiter Sun	$\underset{\mathrm{E} .}{\mathrm{E} .}$	65 10 10 95 26 52	63 37 1 "1 93 59 6	$\begin{array}{llll}62 & 3 & \prime \prime \\ 92 \\ 92 & 31 & 1\end{array}$	$\begin{array}{rrrr} 60 & 28^{\prime \prime \prime} & 45 \\ 91 & 2 & 36 \end{array}$
8	Fomalhant	W.	1104359	1121145	1134019	$\begin{array}{llll}115 & 9 & 0\end{array}$
	a Pegasi	W.	901328	$9148 \quad 0$	932253	9458
	a Arietis	W.	471929	485655	503446	52130
	Pollux	E.	282846	$2653 \quad 2$	251713	234122
	Venus	E.	$3940 \quad 2$	$\begin{array}{llll}38 & 8 & 5\end{array}$	363546	$\begin{array}{lll}35 & 3 & 7\end{array}$
	Jupiter	E.	$\begin{array}{llll}52 & 32 & 3 \\ 83 & 35\end{array}$	505536	491846	474132
	Sun	E.	833518	82444	803348	$79 \quad 228$
9	a Arietis	W.	603043	621134	$63 \quad 5251$	653435
	Aldebaran	W.	291722	305255	322924	34645
	Venus	E.	271428	253941	$\begin{array}{ll}24 & 434\end{array}$	22298
	Jupiter	E.	392925	374946	$36 \quad 941$	342911
	Sux	E.	711947	69460	681147	$\begin{array}{llll}66 & 37 & 9\end{array}$
10	a Arietis	W.	7410	$75 \quad 5425$	773918	792437
	Aldebaran	W.	$42 \quad 2457$	$44 \quad 6 \quad 38$	454856	473150
	Jupiter	E.	$\begin{array}{lll}26 & 0 & 23\end{array}$	241722	223359	205012
	Sun	E.	$\begin{array}{llll}58 & 37 & 36\end{array}$	$57 \quad 023$	552245	534441
11	a Arietis	W.	881748	$90 \quad 542$	91541	934244
	Aldebaran	W.	561445	$58 \quad 0 \quad 53$	594731	613437
	Sun	E.	$45 \quad 2813$	434743	$42 \quad 651$	402537
12	a Arietis	W.	102523	1044258	1063413	1082546
	Aldebaran	W.	703643	722620	741619	$76 \quad 638$
	Pollux	W.	282314	301211	$32 \quad 142$	335144
	Sun	E.	315430	301125	28288	264440
17	Sun	W.	$\begin{array}{ll}39 & 723\end{array}$			
	Antares	E.	$\begin{array}{lllll}33 & 35 & 1\end{array}$	314455	295512	$28 \quad 5 \quad 53$
	Mars	E.	804444	785737	771052	752433
	a Aquilæ	E.	884520	$87 \quad 918$	853337	835821
18	Sun	W.		541324	$\begin{array}{llll}55 & 52 & 6\end{array}$	573023
	Mars	E.	$\begin{array}{llll}66 & 39 & 7\end{array}$	645519	631158	61294
	a Aquilæ	E.	$\begin{array}{llll}76 & 9 & 2\end{array}$	743647	$73 \quad 58$	71348
	Fomalhaut	E.	1003054	985321	$9716 \quad 7$	953913
19	Sun	W.	$65 \quad 35 \quad 22$	$6711 \quad 5$	684622	702115
	Mars	E.	$\begin{array}{ll}53 & 125\end{array}$	512116	494133	$48 \quad 217$
	${ }_{\text {a A A }}$ Aquilæ	E.	$64 \quad 933$	624255	61178	595215
	Fomalhant	E.	87408	$86 \quad 532$	843122	825738
	a Pegasi	E.	109939	107. 3023	1055129	1041255
20	Sun	W.	$78 \quad 917$	794140	811338	824514
	Mars	E.	395248	381613	36406	35425
	a Aquilæ	E.	$\begin{array}{llll}53 & 2 & 23\end{array}$	514338	$5026 \quad 5$	$49 \quad 948$
	Fomalhaut	E.	751556	73454	721442	704452
	a Pegasi	E.	$96 \quad 5 \quad 29$	94296	92535	911726
21	Sun	W.	$90 \quad 17 \quad 29$	914650	931515	944431
	Antares	W.	21429	$23 \quad 19 \quad 6$	245543	$2632 \quad 0$

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$			Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
21	Mars Fomalhaut a Pegasi	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{E} . \\ & \mathrm{E} . \end{aligned}$	$\begin{array}{rrr} 33 & 29 & 12 \\ 69 & 15 & 34 \\ 89 & 42 & 9 \end{array}$	$\begin{array}{lrrr} 31 & 54 & 25 \\ 67 & 46 & 49 \\ 88 & 7 & 15 \end{array}$	$\begin{array}{rrr} 30 & 20 & 4 \\ 66 & 18 & 37 \\ 86 & 32 & 43 \end{array}$	$\begin{array}{lll} 28 & 46 & 110 \\ 64 & 50 & 59 \\ 84 & 58 & 33 \end{array}$
22	Sun Antares Fomalhaut a Pegasi	W. W. E. E.	86 12 51 28 7 58 57 41 50 77 13 8	97 40 51 29 43 35 56 17 57 75 41 7	$\begin{array}{rrr} 99 & 8 & 33 \\ 31 & 18 & 54 \\ 54 & 54 & 43 \\ 74 & 9 & 28 \end{array}$	$\begin{array}{rrr} 100 & 35 & 56 \\ 32 & 53 & 54 \\ 53 & 32 & 13 \\ 72 & 38 & 11 \end{array}$
23	Sun Antares Fomalhaut a Pegasi a Arietis	W. W. E. E. E.	$\begin{array}{r} 10748 \quad 27 \\ 404435 \\ 465133 \\ 65 \\ 6 \\ 6 \\ 107 \\ 10 \end{array}$	$\begin{array}{rrr} 109 & 14 & 8 \\ 42 & 17 & 55 \\ 45 & 34 & 4 \\ 63 & 37 & 45 \\ 105 & 37 & 26 \end{array}$	$\begin{array}{rrr} 110 & 39 & 32 \\ 43 & 51 & 0 \\ 44 & 17 & 34 \\ 62 & 8 & 54 \\ 104 & 4 & 42 \end{array}$	$\begin{array}{rrr} 112 & 4 & 43 \\ 45 & 23 & 51 \\ 43 & 2 & 7 \\ 60 & 40 & 24 \\ 102 & 32 & 12 \end{array}$
24	Sun Antares a Pegasi a Arietis	W. W. E. E.	$\begin{array}{rrr} 119 & 7 & 8 \\ 53 & 4 & 44 \\ 53 & 23 & 17 \\ 94 & 53 & 0 \end{array}$	$\begin{array}{r} 1203058 \\ 543617 \\ 515659 \\ 93 \end{array} 2146$	$\begin{array}{rrr} 121 & 54 & 37 \\ 56 & 7 & 39 \\ 50 & 31 & 5 \\ 91 & 50 & 44 \end{array}$	$\begin{array}{rrr} 123 & 18 & 3 \\ 57 & 38 & 51 \\ 49 & 5 & 35 \\ 90 & 19 & 51 \end{array}$
25	Antares Mars a Pegasi a Arietis Aldebaran	W. W. E. E. E.	$\begin{array}{rrr} 65 & 12 & 24 \\ 15 & 31 & 44 \\ 42 & 4 & 45 \\ 82 & 47 & 58 \\ 114 & 59 & 57 \end{array}$	$\begin{array}{rr} 66 & 42 \\ 16 & 40 \\ 16 & 28 \\ 40 & 42 \\ 8 & 6 \\ 81 & 18 \\ 113 & 31 \\ \hline \end{array}$	$\begin{array}{rrr} 68 & 12 & 49 \\ 18 & 21 & 23 \\ 39 & 20 & 1 \\ 79 & 48 & 14 \\ 112 & 2 & 29 \end{array}$	$\begin{array}{r} 694251 \\ 194627 \\ 375833 \\ 781833 \\ 11033 \end{array}$
26	Antares Mars a Arietis Aldebaran	W. W. E. E.	$\begin{array}{rrr} 77 & 11 & 20 \\ 26 & 52 & 50 \\ 70 & 51 & 48 \\ 103 & 12 & 5 \end{array}$	$\begin{array}{rr} 7840 & 45 \\ 2818 & 9 \\ 6922 & 45 \\ 10143 & 57 \end{array}$	$\begin{array}{rrr} 80 & 10 & 6 \\ 2943 & 28 \\ 67 & 53 & 47 \\ 100 & 15 & 52 \end{array}$	81 39 21 31 8 45 66 24 54 98 47 50
27	Antares a Aquilæ Mars a Arietis Aldebaran	W. W. W. E. E.	89 4 46 43 43 26 38 14 57 59 1 33 91 28 33	$\begin{array}{rrr} 90 & 33 & 42 \\ 44 & 47 & 0 \\ 39 & 40 & 8 \\ 57 & 33 & 4 \\ 90 & 0 & 49 \end{array}$	92 2 36 45 51 40 41 5 17 56 4 38 88 33 8	$\begin{array}{lll} 93 & 31 & 28 \\ 46 & 57 & 20 \\ 42 & 30 & 26 \\ 54 & 36 & 16 \\ 87 & 5 & 27 \end{array}$
28	Antares a Aquilæ Mars a Arietis Aldebaran	W. W. W. E. E.	$\begin{array}{r} 100 \\ 55 \\ 52 \\ 38 \\ 49 \\ 45 \\ 45 \\ 47 \\ 15 \\ 79 \\ \hline 47 \\ \hline \end{array}$	$\begin{array}{rrr} 102 & 24 & 12 \\ 53 & 48 & 52 \\ 51 & 1 & 5 \\ 45 & 46 & 53 \\ 78 & 20 & 5 \end{array}$	$\begin{array}{r} 103 \quad 5257 \\ 545953 \\ 5226 \\ 42 \\ 4418 \\ 76 \\ 78 \\ \hline 5 \end{array}$	$\begin{array}{rrr} 105 & 21 & 42 \\ 56 & 11 & 28 \\ 53 & 51 & 18 \\ 42 & 50 & 44 \\ 75 & 25 & 7 \end{array}$
29	a Aquilæ Mars Fomalhant a Arietis Aldebaran Pollux	W. W. W. E. E. E.	$\begin{array}{rrr} 62 & 16 & 43 \\ 60 & 56 & 57 \\ 37 & 47 & 9 \\ 35 & 31 & 3 \\ 68 & 7 & 54 \\ 110 & 11 & 41 \end{array}$	$\begin{array}{rrr} 63 & 31 & 3 \\ 62 & 22 & 9 \\ 38 & 54 & 46 \\ 34 & 3 & 15 \\ 66 & 40 & 28 \\ 108 & 43 & 23 \end{array}$	$\begin{array}{rrr} 64 & 45 & 43 \\ 63 & 47 & 24 \\ 40 & 3 & 33 \\ 32 & 35 & 40 \\ 65 & 13 & 4 \\ 107 & 15 & 2 \end{array}$	$\begin{array}{rrr} 66 & 0 & 44 \\ 65 & 12 & 37 \\ 41 & 13 & 25 \\ 31 & 7 & 59 \\ 63 & 45 & 39 \\ 105 & 46 & 40 \end{array}$
30	Mars a Aquilæ Fomalhant Aldebaran Pollux	W. W. W. E. E.	$\begin{array}{lll} 72 & 19 & 19 \\ 72 & 20 & 15 \\ 47 & 16 & 22 \\ 56 & 28 & 43 \\ 98 & 24 & 12 \\ \hline \end{array}$	73 44 47 73 36 56 48 31 14 55 1 21 96 55 34	75 10 18 74 53 50 49 46 43 53 34 0 95 26 52	76 35 52 76 10 57 51 2 48 52 6 40 93 58 7

GREENWICH MEAN TLME.

LUNAR DISTANCES.

Day of the Month.	Star's Name and Position.		Midnight.	XVh.	XYIIT.	XXI'.
21	Mars	E.	$27^{\circ} 124{ }^{\prime \prime}$	$25^{\circ} 399^{\prime \prime}$	$24^{\circ} \quad 7 \quad 14{ }^{\prime \prime}$	$22^{\circ} 35^{\prime} 12{ }^{\prime \prime}$
	Fomalhaut	E.	632356	615729	603138	$\begin{array}{llll}59 & 6 & 24\end{array}$
	a Pegasi	E.	832445	815118	801813	784530
22	Sun	W.	$\begin{array}{llll}102 & 3 & 1\end{array}$	1032947	1045617	1062230
	Antares	W.	342836	$\begin{array}{llll}36 & 3 & 1\end{array}$	$\begin{array}{llll}37 & 37 & 9\end{array}$	39110
	Fomalhaut	E.	$52 \quad 10 \quad 27$	504928	492918	$48 \quad 958$
	a Pegasi	E.	$71 \quad 715$	69 36	$68 \quad 624$	663630
23	Sun	W.	1132939	1145421	1161849	117435
	Antares	W.	$\begin{array}{llll}46 & 56 & 28\end{array}$	482851	$\begin{array}{lll}50 & 1 & 1\end{array}$	513259
	Fomalhaut	E.	414747	$\begin{array}{llll}40 & 34 & 39\end{array}$	$\begin{array}{llll}39 & 22 & 48\end{array}$	381220
	a Pegasi	E.	591215	574428	56172	544958
	a Arietis	E.	1005955	$99 \quad 27 \quad 53$	$97 \quad 56$	962426
24	Sun	W.	1244119	$126 \quad 424$	1272719	128504
	Antares	W.	$\begin{array}{lll}59 & 9 & 53\end{array}$	604045	621127	63420
	a Pegasi	E.	$47 \quad 40 \quad 30$	$\begin{array}{llll}46 & 15 & 51\end{array}$	445140	$\begin{array}{llll}43 & 27 & 57\end{array}$
	a Arietis	E.	884910	871838	$\begin{array}{llll}85 & 48 & 16\end{array}$	84182
25	Antares		711245	724232	$\begin{array}{llll}74 & 1213\end{array}$	$\begin{array}{llll}75 & 41 & 49\end{array}$
	Mars	W.	211138	$\begin{array}{lllll}22 & 36 & 53\end{array}$	$\begin{array}{ll}24 & 210\end{array}$	$25 \quad 2730$
	a Pegasi	E.	$\begin{array}{llll}36 & 37 & 45\end{array}$	$\begin{array}{lllll}35 & 17 & 41\end{array}$	$\begin{array}{llll}33 & 58 & 25\end{array}$	$3240 \quad 0$
	a Arietis	E.	764859	$\begin{array}{lllll}75 & 19 & 33\end{array}$	735011	722056
	Aldebaran	E.	109521	1073656	106835	1044018
26	Antares	W.	$\begin{array}{llll}83 & 8 & 33\end{array}$	$\begin{array}{llll}84 & 37 & 41\end{array}$	86 6	$87 \quad 35 \quad 47$
	Mars	W.	$\begin{array}{llll}32 & 34 & 2\end{array}$	335918	$35 \quad 2432$	364945
	a Arietis	E.	64565	$63 \quad 2721$	615842	60306
	Aldebaran	E.	$97 \quad 1953$	9515158	94247	$\begin{array}{llll}92 & 56 & 19\end{array}$
27	Antares	W.	$95 \quad 0 \quad 18$	96897	975755	$\begin{array}{llll}99 & 2641\end{array}$
	a Aquilæ	W.	$48 \quad 3 \quad 55$	$\begin{array}{llll}49 & 11 & 24\end{array}$	501941	512844
	Mars	W.	435533	452041	464548	481053
	a Arietis	E.	$53 \quad 756$	513938	501123	$48 \quad 4311$
	Aldebaran	E.	$\begin{array}{llll}85 & 37 & 50\end{array}$	$84 \quad 1014$	824240	$\begin{array}{llll}81 & 15 & 7\end{array}$
28	Antares	W.	1065027	1081913	109480	1111648
	a Aquilæ	W.	572334	$58 \quad 3611$	594916	$\begin{array}{rr}111 & 247\end{array}$
	Mars	W.	551624	564132	$\begin{array}{llll}58 & 6 & 39\end{array}$	593148
	a Arietis	E.	412243	$\begin{array}{llll}39 & 54 & 44\end{array}$	$\begin{array}{llll}38 & 2647\end{array}$	365853
	Aldebaran	E.	$\begin{array}{llll}73 & 57 & 40\end{array}$	$\begin{array}{llll}72 & 30 & 12\end{array}$	$71 \quad 245$	693520
29	a Aquilæ	W.	$\begin{array}{llll}67 & 16 & 4\end{array}$	683143	69 4738	$71 \quad 349$
	Mars	W.	$\begin{array}{llll}66 & 37 & 52\end{array}$	$68 \quad 311$	692831	705353
	Fomalhaut	W.	$\begin{array}{llll}42 & 24 & 17\end{array}$	4336	444845	$46 \quad 212$
	a Arietis	E.	294012	281240	$\begin{array}{lllll}26 & 45 & 15\end{array}$	$\begin{array}{llll}25 & 17 & 58\end{array}$
	Aldebaran	E.	621816	605052	592329	57566
	Pollux	E.	1041815	1024948	1012119	$\begin{array}{llll}99 & 524\end{array}$
30	Mars	W.	$\begin{array}{lll}78 & 1 & 29\end{array}$	$\begin{array}{llll}79 & 27 & 10\end{array}$	$80 \quad 5254$	821842
	a Aquilæ	W.	$\begin{array}{llll}77 & 28 & 15\end{array}$	784544	$80 \quad 324$	812113
	Fomalhaut	W.	521924	$\begin{array}{llll}53 & 36 & 33\end{array}$	545411	$\begin{array}{llll}56 & 1216\end{array}$
	Aldebaran	E.	503923	$\begin{array}{llll}49 & 12 \quad 5\end{array}$	474450	$\begin{array}{llll}46 & 17 & 38\end{array}$
	Pollux	E.	$92 \quad 2919$	$91 \quad 027$	893131	$88 \quad 2 \quad 31$

GREENWICH MEAN TIME.						
Lunar distances.						
Day of Month.			Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {a }}$
1	Mars	W.	$83{ }^{\circ} 44^{\prime \prime} 3$	$8510{ }^{101}$	$86836{ }^{\prime \prime}$	$88^{\circ} 2^{\prime} 36$
	a Aquilæ	W.	823911	83 58 18	851532	863354
	Fomalhaut	W.	573045	584940	$60 \quad 857$	612836
	Aldebaran	E.	445027	$\begin{array}{ll}43 & 2319\end{array}$	415615	402916
	Pollux	E.	$\begin{array}{llll}86 & 33 & 27\end{array}$	$\begin{array}{llll}85 & 4 & 18\end{array}$	$83 \quad 35 \quad 5$	$82 \quad 548$
2		W.	951418	964055	$98 \quad 7 \quad 38$	993428
	Fomalhaut	W.	681141	693310	705455	721655
	a Pegasi	W.	$\begin{array}{lllllllllllllll}45 & 48 & 19\end{array}$	471224	483652	$50 \quad 143$
	Pollux	E.	$\begin{array}{llll}74 & 38 & 3\end{array}$	$73 \quad 814$	713818	$70 \quad 815$
	Jupiter	E.	$\begin{array}{llll}103 & 3439\end{array}$	$\begin{array}{llll}102 & 5 & 41\end{array}$	1003637	$\begin{array}{lll}99 & 7 & 27\end{array}$
	Venus	E.	1071154	105493	104266	$103 \quad 3 \quad 3$
3	Mars	W.	1065022	1081756	1094538	1111328
	Fomalhaut	W.	791022	803342	815714	832058
	a Pegasi	W.	571056	583742	$60 \quad 445$	61324
	Pollux	E.	623626	$61 \quad 543$	593452	$58 \quad 3 \quad 55$
	Jupiter	E.	913941	$\begin{array}{llll}90 & 9 & 43\end{array}$	883936	$87 \quad 920$
	Venus	E.	$\begin{array}{llll}96 & 6 & 3\end{array}$	944216	931820	915416
	Saturn	E.	$106 \quad 545$	1043530	$\begin{array}{llll}103 & 5 & 6\end{array}$	1013433
4	Fomalhaut	W.	902224	914712	93129	$\begin{array}{llllll}94 & 37 & 16\end{array}$
	a Pegasi	W.	685240	$70 \quad 2134$	715043	73207
	a Arietis	W.	$\begin{array}{llll}25 & 22 & 0\end{array}$	$\begin{array}{lll}26 & 5 & 52\end{array}$	$\begin{array}{llll}28 & 24 & 7\end{array}$	$\begin{array}{llll}29 & 55 & 43\end{array}$
	Pollux	E.	502659	485511	472313	$\begin{array}{llll}45 & 51 & 6\end{array}$
	Jupiter	E.	793531	$78 \quad 413$	763244	$\begin{array}{llll}75 & 1 & 3\end{array}$
	Venus	E.	845135	$83 \quad 2632$	$82 \quad 118$	803553
	Regulus	E.	$87 \quad 1250$	854016	$84 \quad 731$	$\begin{array}{llll}82 & 34 & 35 \\ 89\end{array}$
	Saturn	E.	$\begin{array}{llll}93 & 59 & 17\end{array}$	922741	905555	892357
5	a Pegasi	W.	805056	822152	$8353 \quad 3$	
	a Arietis	W.	373828	$\begin{array}{ll}39 & 1156\end{array}$	404542 85	4219 45 20
	Pollux	E.	$\begin{array}{llll}38 & 8 & 24\end{array}$	36 365 65	$\begin{array}{llll}35 & 2 & 27\end{array}$	$\begin{array}{llll}33 & 29 & 17\end{array}$
	Jupiter	E.	671928	654628	$64 \quad 1314$	623946
	Venus	E.	732545	71595	703211	$\begin{array}{lll}69 & 5 & 2\end{array}$
	Regulus	E.	744643	731228	713759	$\begin{array}{llll}70 & 3 & 15\end{array}$
	Saturn	E.	814055	$\begin{array}{ll}80 & 7 \\ 38\end{array}$	78347	$77 \quad 0 \quad 22$
	Sun	E.	1191647	1175013	1162325	1145621
6	a Arietis	W.	501435	$\begin{array}{llll}51 & 50 & 29\end{array}$	532642 51	$\begin{array}{llll}55 & 3 & 14 \\ 50 & 2\end{array}$
	Jupiter	E.	544831	531326	51384	$\begin{array}{lll}50 & 2 & 25\end{array}$
	Venus	E.	614530	601647	584748	571830
	Regulus	E.	$62 \quad 543$	602923	585246	571551
	Saturn	E.	$\begin{array}{lll}69 & 7 & 43\end{array}$	673222	$65 \quad 5644$	642049
	Sun	E.	107372	106819	1043919	103100
7		W.	$\begin{array}{llll}63 & 10 & 54\end{array}$	644928	662822	$\begin{array}{llll}68 & 7 & 38\end{array}$
	Aldebaran	W.	314336	$\begin{array}{llll}33 & 17 & 58\end{array}$	34531	362845
	Jupiter	E.	415933	$\begin{array}{llll}40 & 22 & 2\end{array}$	384410	$\begin{array}{llll}37 & 5 & 59\end{array}$
	Regulus	E.	$\begin{array}{ll}49 & 6 \\ 43\end{array}$	472756	454849	$\begin{array}{llll}44 & 9 & 22\end{array}$
	Venus	E.	494733	481624	464456	$45 \quad 138$
	Saturn	E.	561640	543854	53048	512222
	Sun	E.	953841	$\begin{array}{ll}94 & 726\end{array}$	923551	$91 \quad 355$
8	a Arietis	W.	762931	78112	795256	813512

GREENWICH MEAN TIME.

LUNAR DISTANCES.						
Day of the Month	Star's Name and Position.		Midnight.	$\mathbf{X V h}$.	XVIII ${ }^{\text {b }}$	XXI'.
1	Mars	W.	$89^{\circ} 28^{\prime \prime} 46^{\prime \prime}$	$90^{\circ} 5$55 1	$92^{\circ} 21^{\prime} 22^{\prime \prime}$	$93^{\circ} 47^{\prime} 46^{\prime \prime}$
	\boldsymbol{a} Aquilæ	W.	875222	891056	902936	914820
	Fomalhaut	W.	624836	$64 \quad 855$	652933	6650.29
	Aldebaran	E.	$\begin{array}{lll}39 & 2 & 23\end{array}$	373535	$\begin{array}{lll}36 & 8 & 56\end{array}$	344226
	Pollux	E.	803626	79 6 8	$77 \quad 3725$	$76 \quad 747$
2	Mars	W.	101125	1022828	1035538	1052256
	Fomalhaut	W.	$\begin{array}{llll}73 & 39 & 9\end{array}$	$\begin{array}{lll}75 & 1 & 38\end{array}$	762420	774715
	a Pegasi	W.	512656	$\begin{array}{llll}52 & 52 & 27\end{array}$	$\begin{array}{llll}54 & 18 & 18\end{array}$	$\begin{array}{llll}55 & 44 & 28\end{array}$
	Pollux	E.	$68 \quad 38 \quad 7$	$67 \quad 752$	$65 \quad 3730$	$\begin{array}{llll}64 & 7 & 2\end{array}$
	Jupiter	E.	$97 \quad 3810$	$\begin{array}{llll}96 & 8 & 44\end{array}$	$\begin{array}{llll}94 & 39 & 11\end{array}$	$\begin{array}{llll}93 & 9 & 30\end{array}$
	Venus	E.	1013954	1001637	$\begin{array}{llll}98 & 53 & 13\end{array}$	972942
3	Mars	W.	1124127	114936	1153754	117621
	Foralhaut	W.	844453	$86 \quad 9 \quad 0$	873317	$88 \quad 5745$
	a Pegasi	W.	62 59	$\begin{array}{llll}64 & 27 & 31\end{array}$	$65 \quad 5539$	$67 \quad 24 \quad 2$
	Pollux	E.	$\begin{array}{llll}56 & 3248\end{array}$	$55 \quad 134$	$\begin{array}{llll}53 & 30 & 11\end{array}$	$\begin{array}{llll}51 & 58 & 39\end{array}$
	Jupiter	E.	85 58	$\begin{array}{llll}84 & 8 & 19\end{array}$	$\begin{array}{llll}82 & 37 & 34\end{array}$	81638
	Venus	E.	$90 \quad 30 \quad 3$	$89 \quad 541$	87419	$\begin{array}{llll}86 & 16 & 27\end{array}$
	Saturn	E.	100 350	$\begin{array}{llll}98 & 32 & 57\end{array}$	$97 \quad 154$	$95 \quad 3041$
4	Fomalhaut	W.	$\begin{array}{llll}96 & 2 & 31\end{array}$	972755	$98 \quad 5328$	100199
	a Pegasi	W.	744946	761940	$77 \quad 4950$	792016
	a Arietis	W.	312738	$\begin{array}{llll}32 & 59 & 53\end{array}$	$\begin{array}{llll}34 & 32 & 27\end{array}$	$\begin{array}{llll}36 & 5 & 18\end{array}$
	Pollux	E.	441851	424627	411354	394112
	Jupiter	E.	$\begin{array}{llll}73 & 29 & 10\end{array}$	$\begin{array}{llll}71 & 57 & 4\end{array}$	$70 \quad 2445$	685214
	Venus	E.	791017	774428	$\begin{array}{llll}76 & 18 & 27\end{array}$	745213
	Regulus	E.	$81 \quad 126$	$\begin{array}{llll}79 & 28 & 5\end{array}$	775451	$76 \quad 2044$
	Saturn	E.	$87 \quad 5146$	$86 \quad 1922$	844646	831358
5	a Pegasi	W.	$\begin{array}{llll}86 & 56 & 12\end{array}$	$88 \quad 2810$	90	
	a Arietis	W.	$\begin{array}{llll}43 & 54 & 7\end{array}$	$45 \quad 2847$	$47 \quad 345$	$\begin{array}{ll}48 & 39\end{array}$
	Pollux	E.	31561	302238	$2849 \quad 9$	27 15 133
	Jupiter	E.	$61 \quad 6 \quad 3$	59324	575750	$\begin{array}{llll}56 & 23 & 19\end{array}$
	Venus	E.	673739	$66 \quad 10 \quad 0$	64426	631356
	Regulus	E.	$68 \quad 2816$	66532	$\begin{array}{llll}65 & 17 & 32\end{array}$	634146
	Saturn	E.	$75 \quad 2622$	$\begin{array}{llll}73 & 52 & 6\end{array}$	$72 \quad 1735$	704247
	Sun	E.	113292	$\begin{array}{lll}112 & 1 & 26\end{array}$	1103335	109527
6	a Arietis	W.	$5640 \quad 6$	$\begin{array}{llll}58 & 17 & 18\end{array}$	$\begin{array}{llll}59 & 5450\end{array}$	
	Jupiter	E.	482628	$46 \quad 50 \quad 12$	451313	$43 \quad 3645$
	Venus	E.	554856	5419	524852	511822
	Regulus	E.	$\begin{array}{llll}55 & 38 & 39\end{array}$	$54 \quad 1$	$52 \quad 2319$	504510
	Saturn	E.	624436	$61 \quad 8 \quad 4$	593115	$5754 \quad 7$
	Sun	E.	1014023	1001027	$98 \quad 40 \quad 11$	$\begin{array}{llll}97 & 9 & 35\end{array}$
7	a Arietis	W.	$\begin{array}{llll}69 & 47 & 16\end{array}$	$\begin{array}{llll}71 & 27 & 17\end{array}$	$73 \quad 7 \quad 39$	744824
	Aldebaran	W.	$\begin{array}{lll}38 & 5 & 8\end{array}$	39427	411941	425749
	Jupiter	E.	$\begin{array}{llll}35 & 27 & 28\end{array}$	334837	$32 \quad 926$	302954
	Regulus	E.	$42 \quad 2935$	404927	$39 \quad 858$	37289
	Venus	E.	43410	$42 \quad 831$	403542	$\begin{array}{lll}39 & 2 & 32\end{array}$
	Saturn	E.	$\begin{array}{llll}49 & 43 & 37\end{array}$	$\begin{array}{llll}48 & 4 & 31\end{array}$	$\begin{array}{llll}46 & 25 & 6\end{array}$	$44 \quad 45 \quad 20$
	Sun	E.	893138	875859	$\begin{array}{llll}86 & 25 & 59\end{array}$	$84 \quad 5237$
8	a Arietis	W.	$83 \quad 1752$	$85 \quad 0 \quad 55$	$80 \quad 44 \quad 22$	$88 \quad 2813$

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Mone. } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI'.	IXb.
8	Aldebaran	W.	${ }^{\circ} 443^{\prime} 6{ }^{\prime \prime} 9$	${ }^{\circ} 6161^{\prime} 5 \quad 41$	$4775{ }^{\circ} 514$	49835
	Regulus	E.	354659	$34 \quad 529$	322338	304127
	Venus	E.	$37 \quad 291$	35558	342055	324621
	Saturn	E.	$43 \quad 515$	412450	39444	$38 \quad 258$
		E.	831853	814447	801018	783526
9	a Arietis	W.	$\begin{array}{llll}90 & 12 & 27\end{array}$	9157	$9342 \quad 5$	$95 \quad 2730$
	Aldebaran	W.	$\begin{array}{lll}58 & 4 & 7\end{array}$	594713	613046	631446
	Saturn	E.	293254	$2750 \quad 3$	26659	242344
	Sun	E.	703524	$68 \quad 5815$	672042	654247
10	a Arietis	W.	1042019	106 8	107562	1094426
	Aldebaran	W.	72116	734748	753444	77224
	Pollux	W.	$29 \quad 51 \quad 2$	313651	332316	351013
	Sun	E.	$57 \quad 2736$	554728	$\begin{array}{lll}54 & 7 & 0\end{array}$	522612
11	Aldebaran	W.	$86 \quad 24 \quad 3$	881326	$\begin{array}{llll}90 & 3 & 8\end{array}$	$\begin{array}{llll}91 & 53 & 7\end{array}$
	Pollux	W.	441211	46151	475152	494215
	Sun	E.	$43 \quad 5730$	421455	40326	38493
16	Sun	W.	264938	282955	3010	314951
	a Aquilæ	E.	75442	$73 \quad 30 \quad 3$	71561	702235
	Mars	E.	$78 \quad 25 \quad 3$	763951	74551	731037
	Fomalhaut	E.	993222	975226	961245	943320
17	Sun	W.	$40 \quad 441$	414236	43209	$44 \quad 5718$
	a Aquilæ	E.	624610	611720	594924	582226
	Mars	E.	643445	625154	611129	593031
	Fomalhaut	E.	862136	844429	$83 \quad 748$	813135
18	Sun	W.	525656	543136	$56 \quad 5 \quad 51$	573940
	Mars	E.	511240	493429	475646	461932
	Fomalhaut	E.	733811	$72 \quad 5 \quad 9$	703242	$69 \quad 051$
	a Pegasi	E.	941143	923239	90541	891548
19	Sun	W.	$65 \quad 22 \quad 26$	665344		69558
	Antares	W.	235656	25367	271452	285313
	Mars	E.	382024	364558	$\begin{array}{llll}35 & 12 & 0\end{array}$	$\begin{array}{llll}33 & 38 & 29\end{array}$
	Fomalhaut	E.	613113	$\begin{array}{llll}60 & 3 & 20\end{array}$	583611	$\begin{array}{lll}57 & 9 & 48\end{array}$
	$a \mathrm{Pegasi}$	E.	811115	793540	$78 \quad 0 \quad 30$	$\begin{array}{llll}76 & 2547\end{array}$
20	Sun	W.	$77 \quad 2147$	784959	801750	814519
	Antares	W.	36595	$3835 \quad 7$	$40 \quad 1048$	41468
	Fomalhaut	E.	$5010 \quad 4$	484849	$\begin{array}{llll}47 & 28 & 32\end{array}$	$\begin{array}{llll}46 & 9 & 17\end{array}$
	a Pegasi	E.	$68 \quad 3847$	$67 \quad 642$	65354	$\begin{array}{llll}64 & 3 & 52\end{array}$
21	Sun	W.	885750	$\begin{array}{llll}90 & 23 & 23\end{array}$	914839	$\begin{array}{llll}93 & 13 & 39\end{array}$
	Antares	W.	493746	51119	524415	$\begin{array}{llll}54 & 17 & 4\end{array}$
	a Pegasi	E.	563430	$\begin{array}{llll}55 & 5 & 59\end{array}$	$\begin{array}{llll}53 & 37 & 55\end{array}$	521018
	a Arietis	E.	981816	$\begin{array}{llll}96 & 45 & 14\end{array}$	$95 \quad 12 \quad 29$	93400
22	Sun	W.	1001445	1013815	103. 132	1042437
	Antares	W.	615717	$\begin{array}{llll}63 & 28 & 37\end{array}$	645944	663039
	a Pegasi	E.	$44 \quad 5939$	$\begin{array}{llll}43 & 35 & 5 \\ 84 & \end{array}$	$\begin{array}{llll}42 & 11 & 5 \\ 82 & 59 & \end{array}$	404742
	a Arietis	E.	86128	843029	825943	81298

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV'.	XVIII.	XXI'.
8	Aldebaran Regulus Venus Saturn Sun	$\begin{aligned} & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{cccc}51 & 16 & 21 \\ 28 & 58 & 56 \\ 31 & 11 & 25 \\ 36 & 21 & 34 \\ 77 & 0 & 12\end{array}$	52 57 35 27 16 6 29 36 9 34 39 50 75 24 35	54 $39^{\prime \prime}$ 18 25 32 57 28 0 32 32 57 48 73 48 34	56 21 28 23 49 30 26 24 34 31 15 29 72 12 11
9	a Arietis Aldebaran Saturn Sun	W. W. E. E.	$\begin{array}{lll} 97 & 13 & 18 \\ 64 & 59 & 13 \\ 22 & 40 & 23 \\ 64 & 4 & 30 \end{array}$	$\begin{array}{llr} 98 & 59 & 30 \\ 66 & 44 & 7 \\ 20 & 57 & 0 \\ 62 & 25 & 50 \end{array}$	$\begin{array}{rrr} 100 & 46 & 4 \\ 68 & 29 & 26 \\ 19 & 13 & 38 \\ 60 & 46 & 46 \end{array}$	$\begin{array}{rrr} 102 & 33 & 0 \\ 70 & 15 & 9 \\ 17 & 30 & 23 \\ 59 & 7 & 22 \end{array}$
10	a Arietis Aldebaran Pollux Sun	W. W. W. E.	$\begin{array}{rrr} 1111 & 33 & 11 \\ 79 & 9 & 45 \\ 36 & 57 & 42 \\ 50 & 45 & 4 \end{array}$	$\begin{array}{rrr} 113 & 22 & 16 \\ 80 & 57 & 48 \\ 38 & 45 & 39 \\ 49 & 3 & 37 \end{array}$	$\begin{array}{rrr} 115 & 11 & 41 \\ 82 & 46 & 12 \\ 40 & 34 & 5 \\ 47 & 21 & 52 \end{array}$	$\begin{array}{rrr} 117 & 1 & 24 \\ 84 & 34 & 58 \\ 42 & 22 & 55 \\ 45 & 39 & 49 \end{array}$
11	Aldebaran Pollux Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 93 & 43 & 23 \\ 51 & 32 & 57 \\ 37 & 5 & 49 \end{array}$	$\begin{array}{llll} 95 & 33 & 54 \\ 53 & 23 & 59 \\ 35 & 22 & 24 \end{array}$	$97 \quad 24 \quad 39$ $\begin{array}{lll}55 & 15 & 18\end{array}$ $33 \quad 3849$	$\begin{array}{rrr} 99 & 15 & 38 \\ 57 & 6 & 55 \\ 31 & 55 & 8 \end{array}$
16	Sun a Aquilæ Mars Fomalhaut	W. E. E. E.	33 29 28 68 49 49 71 26 35 92 54 14	35 8 45 67 17 45 69 43 0 91 15 30	$\begin{array}{llr} 36 & 47 & 44 \\ 65 & 46 & 26 \\ 67 & 59 & 49 \\ 89 & 37 & 8 \end{array}$	$\begin{array}{llrr}38 & 26 & 23 \\ 64 & 15 & 53 \\ 66 & 17 & 4 \\ 87 & 59 & 9\end{array}$
17	Sun a Aquilæ Mars Fomalhaut	W. E. E. E.	$\begin{array}{llr} 46 & 34 & 3 \\ 56 & 56 & 28 \\ 57 & 50 & 1 \\ 79 & 55 & 52 \end{array}$	$\begin{array}{lll} 48 & 10 & 23 \\ 55 & 31 & 33 \\ 56 & 10 & 0 \\ 78 & 20 & 38 \end{array}$	49 46 19 54 7 45 54 30 25 76 45 56	$\begin{array}{rrr} 51 & 21 & 50 \\ 52 & 45 & 8 \\ 52 & 51 & 8 \\ 75 & 11 & 46 \end{array}$
18	Sun Mars Fomalhaut a Pegasi	W. E. E. E.	$\begin{array}{lll} 59 & 13 & 4 \\ 44 & 42 & 47 \\ 67 & 29 & 37 \\ 87 & 38 & 2 \end{array}$	$\begin{array}{lrr} 60 & 46 & 2 \\ 43 & 6 & 29 \\ 65 & 59 & 2 \\ 86 & 0 & 41 \end{array}$	$\begin{array}{llr} 62 & 18 & 35 \\ 41 & 30 & 39 \\ 64 & 29 & 5 \\ 84 & 23 & 46 \end{array}$	$\begin{array}{lll} 63 & 50 & 43 \\ 39 & 55 & 17 \\ 62 & 59 & 49 \\ 82 & 47 & 17 \end{array}$
19	Sun Antares Mars Fomalhaut a Pegasi	W. W. E. E. E.	$\begin{array}{rrr} 71 & 25 & 14 \\ 30 & 31 & 10 \\ 32 & 5 & 26 \\ 55 & 44 & 10 \\ 74 & 51 & 30 \end{array}$	72 54 56 32 8 44 30 32 52 54 19 22 73 17 40	74 24 15 33 45 53 29 0 46 52 55 23 71 44 16	75 53 12 35 22 40 27 29 8 51 32 17 70 11 18
20	Sun Antares Fomalhaut a Pegasi	W. W. E. E.	83 12 29 43 21 7 44 51 7 62 33 6	84 39 18 44 55 45 43 34 6 61 2 47	86 5 47 46 30 4 42 18 17 59 32 54	87 31 58 48 4 4 41 3 46 58 3 29
21	Sun Antares a Pegasi a Arietis	W. W. E. E.	$\begin{array}{rrr} 94 & 38 & 23 \\ 55 & 49 & 37 \\ 50 & 43 & 11 \\ 92 & 7 & 47 \end{array}$	96 2 51 57 21 54 49 16 33 90 35 50	97 27 4 58 53 57 47 50 24 89 4 8	98 51 2 60 25 44 46 24 46 87 32 41
22	Sun Antares a Pegasi a Arietis	W. W. E. E.	$\begin{array}{rrr} 105 & 47 & 29 \\ 68 & 1 & 22 \\ 39 & 24 & 56 \\ 79 & 58 & 46 \end{array}$	$\begin{array}{rrr} 107 & 10 & 9 \\ 69 & 31 & 53 \\ 38 & 2 & 51 \\ 78 & 28 & 35 \end{array}$	108 32 39 71 2 14 36 41 28 76 58 35	$\begin{array}{rrr} 109 & 54 & 59 \\ 72 & 32 & 26 \\ 35 & 20 & 53 \\ 75 & 28 & 45 \end{array}$

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nar } \\ \text { and } \\ \text { Position } \end{gathered}$		Noon.	III ${ }^{\text {b }}$	VI'.	IX ${ }^{\text {b }}$
23	Sun Antares a Arietis	W. E.	$\begin{array}{rrr} 111 & 117 & 9 \\ 74 & 2 & 27 \\ 73 & 59 & 6 \end{array}$	$\begin{array}{rrr} 112 & 39 & \prime \prime \\ 75 & 32 & 19 \\ 72 & 29 & 35 \end{array}$	$\begin{array}{rrr}1{ }^{\circ} & 1 & \prime \prime \\ 114 & 1 & 0 \\ 77 & 2 & 3 \\ 71 & 0 & 13\end{array}$	$$
24	Sun Antares Mars a Arietis Aldebaran	W. W. W. E. E.	$\begin{array}{rrr} 122 & 9 & 32 \\ 85 & 57 & 59 \\ 21 & 19 & 42 \\ 62 & 6 & 39 \\ 94 & 34 & 56 \end{array}$	$\begin{array}{rrr} 123 & 30 & 36 \\ 87 & 26 & 59 \\ 22 & 42 & 58 \\ 60 & 38 & 5 \\ 93 & 7 & 7 \end{array}$	$\begin{array}{rrr} 124 & 51 & 34 \\ 88 & 55 & 54 \\ 24 & 6 & 19 \\ 59 & 9 & 37 \\ 91 & 39 & 21 \end{array}$	$\begin{array}{rrr} 126 & 12 & 27 \\ 90 & 24 & 46 \\ 25 & 29 & 43 \\ 57 & 41 & 13 \\ 90 & 11 & 39 \end{array}$
25	Antares a Aquilæ. Mars a Arietis Aldebaran	W. W. W. E. E.	$\begin{array}{rrr} 97 & 48 & 23 \\ 50 & 6 & 50 \\ 32 & 27 & 22 \\ 50 & 20 & 9 \\ 82 & 53 & 49 \end{array}$	99 17 1 51 15 58 33 50 59 48 52 5 81 26 21	$\begin{array}{rrr} 100 & 45 & 39 \\ 52 & 25 & 48 \\ 35 & 14 & 38 \\ 47 & 24 & 4 \\ 79 & 58 & 55 \end{array}$	$\begin{array}{rrr} 10214 & 16 \\ 53 & 36 & 18 \\ 3638 & 19 \\ 45 & 56 & 5 \\ 78 & 31 & 30 \end{array}$
26	a Aquilæ Mars a Arietis Aldebaran Pollux	W. W. E. E. E.	$\begin{array}{rrr} 59 & 37 & 13 \\ 43 & 37 & 16 \\ 38 & 36 & 35 \\ 71 & 14 & 26 \\ 113 & 18 & 14 \end{array}$	$\begin{array}{rrrr} 60 & 50 & 52 \\ 45 & 1 & 11 \\ 37 & 8 & 46 \\ 69 & 47 & 0 \\ 111 & 50 & 7 \end{array}$	$\begin{array}{rrr} 62 & 4 & 57 \\ 46 & 25 & 10 \\ 35 & 40 & 57 \\ 68 & 19 & 34 \\ 110 & 21 & 56 \end{array}$	$\begin{array}{rrr} 63 & 19 & 26 \\ 47 & 49 & 12 \\ 34 & 13 & 11 \\ 66 & 52 & 7 \\ 108 & 53 & 42 \end{array}$
27	a Aquilæ Mars Fomalhaut Aldebaran Pollux	W. W. W. E. E.	$\begin{array}{rrr} 69 & 37 & 11 \\ 54 & 50 & 21 \\ 44 & 42 & 1 \\ 59 & 34 & 31 \\ 101 & 31 & 35 \end{array}$	$\begin{array}{rrr} 70 & 53 & 41 \\ 56 & 14 & 48 \\ 45 & 55 & 15 \\ 58 & 6 & 55 \\ 100 & 2 & 56 \end{array}$	$\begin{array}{rrr} 72 & 10 & 28 \\ 57 & 39 & 19 \\ 47 & 9 & 16 \\ 56 & 39 & 18 \\ 98 & 34 & 14 \end{array}$	73 27 30 59 3 56 48 23 59 55 11 40 97 5 25
28	a Aquilæ Mars Fomalhaut Aldebaran Pollux	W. W. W. E. E.	$\begin{array}{rrr} 79 & 56 & 12 \\ 66 & 8 & 26 \\ 54 & 47 & 1 \\ 47 & 53 & 12 \\ 89 & 40 & 2 \end{array}$	81 14 34 67 33 38 56 5 14 46 25 28 88 10 39	82 33 6 68 58 56 57 23 56 44 57 46 86 41 10	$\begin{array}{lll} 83 & 51 & 49 \\ 70 & 24 & 21 \\ 58 & 43 & 4 \\ 43 & 30 & 3 \\ 85 & 11 & 36 \end{array}$
29	Mars Fomalhant a Pegasi Aldebaran Pollux Jupiter	W. W. W. E. E. E.	$\begin{array}{rrr} 77 & 33 & 11 \\ 65 & 24 & 39 \\ 42 & 58 & 53 \\ 36 & 12 & 12 \\ 77 & 42 & 0 \\ 110 & 45 & 48 \end{array}$	$\begin{array}{rrr} 78 & 59 & 19 \\ 66 & 46 & 1 \\ 44 & 22 & 50 \\ 34 & 44 & 54 \\ 76 & 11 & 44 \\ 109 & 16 & 3 \end{array}$	$\begin{array}{rrrr} 80 & 25 & 34 \\ 68 & 7 & 43 \\ 45 & 47 & 15 \\ 33 & 17 & 44 \\ 74 & 41 & 20 \\ 107 & 46 & 11 \end{array}$	$\begin{array}{rrr} 81 & 51 & 58 \\ 69 & 29 & 42 \\ 47 & 12 & 7 \\ 31 & 50 & 46 \\ 73 & 10 & 50 \\ 106 & 16 & 11 \end{array}$
30	Mars Fomalhaut a Pegasi Pollux Jupiter Saturn	W. W. W. E. E. E.	$\begin{array}{rrr} 89 & 5 & 53 \\ 76 & 23 & 43 \\ 54 & 22 & 10 \\ 65 & 36 & 28 \\ 98 & 44 & 2 \\ 111 & 44 & 6 \end{array}$	$\begin{array}{rrr} 90 & 33 & 5 \\ 77 & 47 & 16 \\ 55 & 49 & 13 \\ 64 & 5 & 13 \\ 97 & 13 & 11 \\ 110 & 13 & 11 \end{array}$	$\begin{array}{rrr} 92 & 0 & 25 \\ 79 & 11 & 2 \\ 57 & 16 & 34 \\ 62 & 33 & 51 \\ 95 & 42 & 11 \\ 108 & 42 & 6 \end{array}$	$\begin{array}{rrr} 93 & 27 & 54 \\ 80 & 35 & 0 \\ 58 & 44 & 13 \\ 61 & 2 & 20 \\ 94 & 11 & 3 \\ 107 & 10 & 52 \end{array}$
31	Mars a Pegasi a Arietis Pollux Jupiter Regulus Saturn	W. W. W. E. E. E. E.	$\begin{array}{rrr} 100 & 47 & 29 \\ 66 & 6 & 32 \\ 22 & 31 & 52 \\ 53 & 22 & 56 \\ 86 & 33 & 1 \\ 90 & 9 & 24 \\ 99 & 32 & 22 \end{array}$	$\begin{array}{rrr} 102 & 15 & 51 \\ 67 & 35 & 46 \\ 24 & 2 & 42 \\ 51 & 50 & 42 \\ 85 & 0 & 56 \\ 88 & 36 & 24 \\ 98 & 0 & 12 \end{array}$	$\begin{array}{rrr} 103 & 44 & 22 \\ 69 & 5 & 14 \\ 25 & 33 & 55 \\ 50 & 18 & 20 \\ 83 & 28 & 41 \\ 87 & 3 & 15 \\ 96 & 27 & 52 \end{array}$	$\begin{array}{rrr} 105 & 13 & 3 \\ 70 & 34 & 56 \\ 27 & 5 & 31 \\ 48 & 45 & 51 \\ 81 & 56 & 17 \\ 85 & 29 & 57 \\ 94 & 55 & 21 \end{array}$

GREENWICH MEAN TIME.						
LUNAR DIStances.						
Day of the Month	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Noon.	IIIL.	VI'.	IX ${ }^{\text {a }}$
1	a Pegasi	W.	$78^{\circ} 645$	$79^{\circ} 374{ }^{\prime \prime}$	$81^{\circ} 88^{\prime \prime}$	$82^{\circ} 40{ }^{\prime} 23^{\prime \prime}$
	a Arietis	W.	344817	362140	37 57 55	392911
	Pollux	E.	$41 \quad 148$	392841	375530	$\begin{array}{llll}36 & 22 & 14\end{array}$
	Jupiter	E.	741147	723822	71447	69311
	Regulus	E.	774057	$76 \quad 639$	743210	725730
	Saturn	E.	871020	853649	$84 \begin{array}{lll}8 & 3\end{array}$	$82 \quad 2915$
	Venus	E.	1054321	1041756	1025221	1012636
2	a Pegasi	W.	902025	915259	$\begin{array}{llll}93 & 25 & 44 \\ 50\end{array}$	$\begin{array}{lllll}94 & 58 \\ 50 & 41\end{array}$
	a Arietis	W.	47229	485726	503257	$52 \quad 842$
	Jupiter	E.	$\begin{array}{llll}6139 & 27\end{array}$	$\begin{array}{lll}60 & 4 & 35\end{array}$	582930	$\begin{array}{llll}56 & 54 & 14\end{array}$
	Regulus	E.	65129	$63 \quad 2543$	614945	$\begin{array}{llll}60 & 13 & 36\end{array}$
	Saturn	E.	743711	$73 \quad 213$	71273	695141
	Venus	E.	94154	924812	91219	895354
3	a Arietis	W.	601051	614758	632520	$65 \quad 256$
	Aldebaran	W.	284556	301815	315116	332454
	Jupiter	E.	485455	471826	454144	$44 \quad 450$
	Regalus	E.	$\begin{array}{lll}52 & 9 & 50\end{array}$	503228	485453	47176
	Saturn	E.	615156	601521	583835	$\begin{array}{llll}57 & 1 & 37\end{array}$
	Venus	E.	823441	81614	793734	$\begin{array}{llll}78 & 8 & 41\end{array}$
	Sun	E.	12534.3	$\begin{array}{ll}124 & 429\end{array}$	1223440	$\begin{array}{lll}121 & 437\end{array}$
4	a Arietis	W.	$\begin{array}{llll}73 & 14 & 36\end{array}$		76331	781237
	Aldebaran	W.	41216	425743	443445	461212
	Jupiter	E.	$\begin{array}{llll}35 & 57 & 8\end{array}$	341857	324034	$\begin{array}{lll}31 & 1 & 59\end{array}$
	Regulus	E.	$\begin{array}{lll}39 & 4 & 53\end{array}$	37 25 47 77 15	354629	34 6 57 4 58
	Saturn	E.	$48 \quad 53 \quad 32$	471517	453649	43588
	Venus	E.	70410	691047	674020	$\begin{array}{lll}66 & 9 & 40\end{array}$
	Sun	E.	1133039	111596	1102717	1085513
5			863433	881545	895713	913857
	Aldebaran	W.	54250	- 56438	574436	59 9 30
	Saturn	E.	354140	$\begin{array}{lll}34 & 148\end{array}$	322146	304135
	Venus	E.	583245	$57 \quad 0 \quad 40$	552821	$\begin{array}{llll}53 & 55 & 47\end{array}$
	Sun	E.	1011055	993713	$98 \quad 316$	96292
6	Aldebaran	W.	675129	693347	711623	72 59 19
	Pollux	W.	$25 \quad 5020$	27313	291223	305417
	Venus	E.	$\begin{array}{llll}46 & 9 & 27\end{array}$	44.3530	43120	412658
	Sun	E.	883337	865740	852126	834456
7	Aldebaran	W.	813836	832321	$85 \quad 823$	865343
	Pollux	W.	$\begin{array}{ll}39 & 31\end{array}$	411539	$43 \quad 040$	44463
	Venus	E.	333231	315713	302150	284626
	Sun	E.	$7538 \quad 3$	735949	722119	704233
8	Aldebaran	W.	954425	973119	991827	101549
	Pollux	W.	53382	552522	5713 0	$\begin{array}{lll}59 & 0 & 54\end{array}$
	Jupiter	W.	191940	$\begin{array}{lll}21 & 548\end{array}$	225222	243922
	Regulus	W.	163826	182455	201158	$\begin{array}{llll}21 & 59 & 29\end{array}$
	Sun	E.	622442	604423	$\begin{array}{llll}59 & 3 & 48\end{array}$	57233
9	Pollux	W.	$68 \quad 413$	695333	$\begin{array}{llll}71 & 43 & 6\end{array}$	73 32
	Jupiter	W.	$33 \quad 3920$	3528	371711	$39 \quad 6 \quad 27$

GREENWICH MEAN TIME.						
lunar distances.						
Day of the Month.			Midnight.	XV'.	xVIII ${ }^{\text {b }}$	XXIL.
1	a Pegasi	W.	$84{ }^{\circ} 12{ }^{\prime \prime}$	$85{ }^{\circ} 43^{\prime \prime} 4$	$87{ }^{\circ} 1549$	$88^{\circ} 48^{\prime} 1$
	a Arietis	W.	$41 \quad 319$	423740	441216	45476
	Pollux	E.	344855	331533	314210	$\begin{array}{llll}30 & 8 & 47\end{array}$
	Jupiter	E.	${ }_{67} 574$	662256	644838	$\begin{array}{llll}63 & 14 & 8\end{array}$
	Regulus	E.	712240	694739	681227	6637
	Saturn	E.	805512	792059	774634	761158
	Venus	E.	$\begin{array}{llll}100 & 0 & 39\end{array}$	983431	$97 \quad 813$	954144
2	a Pegasi	W.	963149	$\begin{array}{lll}98 & 5 & 7\end{array}$	993836	1011215
	a Arietis	W.	534440	552052	565718	583357
	Jupiter	E.	551847	53437	$52 \quad 715$	503111
	Regulus	E.	583715	$57 \quad 0 \quad 42$	$\begin{array}{llll}55 & 23 & 57\end{array}$	53470
	Saturn	E.	68168	$6640 \quad 23$	65426	632817
	Venus	E.	882628	865849	853059	$84 \quad 256$
3	a Arictis	W.	664046	681851	695711	713546
	Aldebaran	W.	34598	363355	$38 \quad 911$	394455
	Jupiter	E.	422743	$40 \quad 50 \quad 23$	391251	37356
	Regulus	E.	45395	$44 \begin{array}{lll}44 & 0 & 51\end{array}$	$42 \quad 22 \quad 25$	404345
	Saturn	E.	552425	53470	52924	503134
	Venus	E.	763935	751016	734044	721059
	Sun	E.	1193419	$118 \quad 346$	1163259	$\begin{array}{ll}115 & 156\end{array}$
4	a Arietis	W.	795228	813236	831259	845338
	Aldebaran	W.	47501	492813	$51 \quad 647$	524543
	Jupiter	E.	$29 \quad 2312$	274413	$26 \quad 5 \quad 3$	242543
	Regulus	E.	322713	304716	2977	272646
	Saturn	E.	421914	40409	$39 \quad 0 \quad 52$	372122
	Venus	E.	643846	$63 \quad 738$	613615	$\begin{array}{ll}60 & 437\end{array}$
	Sun	E.	1072254	1055019	1041727	1024419
5	a Arietis	W.	$\begin{array}{llll}93 & 20 & 59\end{array}$			982844
	Aldebaran	W.	$61 \quad 535$	624634	642752	$66 \quad 931$
	Saturn	E.	$\begin{array}{lll}29 & 116\end{array}$	272050	254021	$23 \quad 5950$
	Venus	E.	$\begin{array}{lll}52 & 2259\end{array}$	504956	491640	474310
	Sun	E.	$\begin{array}{lllll}94 & 54 & 31\end{array}$	931943	914438	$90 \quad 916$
6	Aldebaran	W.	744234	$\begin{array}{llll}76 & 26 & 7\end{array}$	78.959	7954
	Pollux	W.	323643	341938	36	374648
	Venus	E.	395225	381740	364245	$35 \quad 742$
	Sun	E.	$\begin{array}{lll}82 & 8 & 8\end{array}$	$8031 \quad 2$	$78 \quad 53 \quad 39$	77160
7	Aldebaran	W.	$88 \quad 3919$	902512	921121	935746
	Pollux	W.	463147	481751	$50 \quad 4 \quad 15$	51510
	Venus	E.	$2711 \quad 2$	253541	$24 \quad 0 \quad 29$	222531
	Sun	E.	$\begin{array}{llll}69 & 3 & 30\end{array}$	672411	654437	$64 \quad 4$ 17
8	Aldebaran	W.	1025324	1044111	1062910	
	Pollux	W.	60494	623730	642611	$\begin{array}{llll}66 & 15 & 5\end{array}$
	Jupiter	W.	262644	281426	$\begin{array}{lll}30 & 2 & 27\end{array}$	315045
	Regulus	W.	23 47 18	253545	272425	291323
	Sun	E.	5542 2,	$54 \quad 050$	521926	503750
9	Pollux	W.	$75 \quad 2243$	771246	$79 \quad 258$	$\begin{array}{llll}80 & 5317\end{array}$
	Jupiter	W.	$40 \quad 55 \quad 53$	424530	$44 \quad 3517$	$\begin{array}{r}46 \quad 2513 \\ \hline\end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{aligned} & \text { Star's Name } \\ & \text { and } \\ & \text { Position. } \end{aligned}$		Noon.	III ${ }^{\text {b }}$	VI^{h}.	IX ${ }^{\text {n }}$
9	Regulus	W.	$\begin{array}{lll} \\ 31 & 1 & 2 \\ 3\end{array}$	${ }^{\circ} 2582 \quad 7$	$3^{\circ} 44^{4} 1{ }^{1 \prime \prime}$	363147
	Saturn	W.	212122	$23 \quad 8$	245518	26434
	Sun	E.	$48 \quad 564$	47148	45323	434950
10	Pollux	W.	824344	$\begin{array}{llll}84 & 34 & 17\end{array}$	862454	881535
	Jupiter	W.	481516	$50 \quad 5 \quad 27$	515544	5346
	Regulus	W.	$\begin{array}{lllll}45 & 44 & 13\end{array}$	47356	49266	511711
	Saturn	W.	35476	373639	392622	411614
	Sun	E.	351724			
14	Sun	W.	$\begin{array}{ll}20 & 645\end{array}$	214256	$\begin{array}{llll}23 & 19 & 3\end{array}$	2455
	Mars	E.	732558	714451	$\begin{array}{llll}70 & 4 & 7\end{array}$	$68 \quad 2346$
	Fomalhaut	E.	$79 \quad 98$	773236	755633	742059
	a Pegasi	E.	995618	981353	963146	94500
15	Sun	W.	325159	342632	$\begin{array}{lll}36 & 0 & 45\end{array}$	373437
	Mars	E.	$\begin{array}{lll}60 & 8 & 1\end{array}$	58306	$56 \quad 5236$	551532
	Fomalhaut	E.	663114	64596	$63 \quad 2736$	615647
	a Pegasi	E.	862636	84476	8380	812920
16	Sun	W.	451836			495230
	Mars	E.	471640	454212	$44 \quad 8 \quad 9$	423433
	Fomalhaut	E.	$5434 \quad 2$	$\begin{array}{lll}53 & 7 & 59\end{array}$	514251	501841
	a Pegasi	E.	732229	714629		$68 \quad 35 \quad 50$
17	Sun	W.	572133	585015	601836	614636
	Mars	E.	$34 \quad 538$	332210	315139	302134
	a Pegasi	E.	604733	$5915 \quad 22$	574341.	561230
	a Arietis	E.	1024649	1011032	993436	97592
18	Sun	W.	$69 \quad 130$	702731	715313	$\begin{array}{ll}73 & 18 \\ 37\end{array}$
	${ }_{a}$ Pegasi	E.	484432	47 16	454917	442233
	a Arietis	E.	$90 \quad 624$	883252	865938	852643
19	Sun	W.				
	a Arietis	E.	774625	$\begin{array}{llll}76 & 15 & 9\end{array}$	74447	731320
	Aldebaran	E.	$\begin{array}{ll}110 & 9 \\ 91\end{array}$	1083933	$\begin{array}{ll}107 & 9\end{array}$	
20	Sun	W.	912541	924751	$\begin{array}{lll}94 & 9 & 52\end{array}$	953145
	a Arietis	E.	654234	64130	624335	611421
	Aldebaran	E.	981259	964410	$95 \quad 15 \quad 30$	934659
21	Sun	W.	$10219 \quad 9$	1034019	$\begin{array}{lll}105 & 1 & 24\end{array}$	1062225
	a Aquilæ	W.	471456	482240	493112	- 504028
	a Arietis	E.	535012	522144	$5053 \quad 23$	49256
	Aldebaran	E.	862613	845823	$83 \quad 30 \quad 37$	$82 \quad 256$
22	Sun	W.	113648	1142735	1154822	117910
	a Aquilæ	W.	$5636 \quad 6$	574850	$\begin{array}{llll}59 & 2 & 1\end{array}$	$\begin{array}{llll}60 & 15 & 39\end{array}$
	Mars	W.	$2330 \quad 3$	245216	$\begin{array}{llll}26 & 14 & 38\end{array}$	2737
	a Arietis	E.	42451	403659	$\begin{array}{lll}39 & 9 & 10\end{array}$	374124
	Aldebaran	E.	744522	731758	715036	702314
23	Sun	W.	123 53-24	1251422	1263523	1275628
	a Aquilæ	W.	$66 \quad 2934$	674523	$69 \quad 131$	701756

GREENWICH MEAN TIME.						
Lunar distances.						
Day of the	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	$\mathrm{XV}^{\text {L }}$	XVIII.	XXIb.
9	Regulus Saturn Sun	W. W. E.	38 21 117 28 31 15 42 7 30	$\begin{array}{llr} 40 & 12 & 17 \\ 30 & 12 & 47 \\ 40 & 25 & 5 \end{array}$	42 2 47 32 8 38 38 42 35	
10	Pollux Jupiter Regulus Saturn Sun	W. W. W. W. E.	90 6 19 55 36 30 53 8 19 43 6 14 28 27 12	91 57 5 57 26 59 54 59 30 44 56 19 26 44 52	93 47 52 59 17 29 56 50 43 46 46 29 25 2 42	95 38 39 61 8 0 58 41 57 48 36 41 23 20 46
14	Sun Mars Fomalhant ${ }^{a}$ Pegasi	W. E. E. E.	26 30 57 66 43 49 72 45 54 93 8 34	28 6 36 65 4 16 71 11 22 91 27 30	$\begin{array}{lrrr}29 & 42 & 0 \\ 63 & 25 & 6 \\ 69 & 37 & 24 \\ 89 & 46 & 49\end{array}$	$\begin{array}{rrrr}31 & 17 & 9 \\ 61 & 46 & 21 \\ 68 & 4 & 1 \\ 98 & 6 & 30\end{array}$
15	Sun Mars	W. E.	$\begin{array}{rrrr} 39 & 8 & 8 \\ 53 & 38 & 53 \end{array}$	$\begin{array}{crr}40 & 41 & 18 \\ 52 & 2 & 41 \\ 58 & 57\end{array}$	$\begin{array}{lll} 42 & 14 & 6 \\ 50 & 26 & 55 \end{array}$	$\begin{aligned} & 434632 \\ & 48 \quad 51 \quad 34 \end{aligned}$
,	Fomalhaut a Pegasi	E.	$\begin{array}{lrr} 60 & 26 & 41 \\ 79 & 51 & 4 \end{array}$	$\begin{array}{lll} 58 & 57 & 20 \\ 78 & 13 & 16 \end{array}$	$\begin{aligned} & 572845 \\ & 76 \quad 35 \quad 53 \end{aligned}$	$\begin{array}{rrr} 56 & 0 & 58 \\ 74 & 58 & 58 \end{array}$
16	Sun Mars Fomalhaut a Pegasi	W. E. E. E.	$\begin{array}{rrr} 51 & 23 & 4 \\ 41 & 1 & 23 \\ 48 & 55 & 30 \\ 67 & 1 & 13 \end{array}$	52 53 14 39 28 39 47 33 24 65 27 5	$\begin{array}{lll} 54 & 23 & 2 \\ 37 & 56 & 22 \\ 46 & 12 & 25 \\ 63 & 53 & 25 \end{array}$	$\begin{array}{lll} 55 & 52 & 29 \\ 36 & 24 & 32 \\ 44 & 52 & 36 \\ 62 & 20 & 15 \end{array}$
17	Sun Mars a Pegasi α Arietis	W. E. E. E.	$\begin{array}{lll} 63 & 14 & 15 \\ 28 & 51 & 57 \\ 54 & 41 & 50 \\ 96 & 23 & 49 \end{array}$	$\begin{array}{llll} 64 & 41 & 33 \\ 27 & 22 & 47 \\ 53 & 11 & 41 \\ 94 & 48 & 58 \end{array}$	66 8 31 25 54 6 51 42 5 93 14 26	$\begin{array}{lll} 67 & 35 & 10 \\ 24 & 25 & 54 \\ 50 & 13 & 1 \\ 91 & 40 & 15 \end{array}$
18	Sun ${ }_{a}$ Pegasi a Arietis	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 74 & 43 & 43 \\ 42 & 56 & 27 \\ 83 & 54 & 6 \end{array}$	$\begin{array}{rrr} 76 & 8 & 33 \\ 41 & 31 & 1 \\ 82 & 21 & 46 \end{array}$	$\begin{array}{rrrr} 77 & 33 & 6 \\ 40 & 6 & 16 \\ 80 & 49 & 43 \end{array}$	$\begin{array}{lll} 78 & 57 & 24 \\ 38 & 42 & 15 \\ 79 & 17 & 56 \end{array}$
19	Sun a Arietis Aldebaran	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{r} 855513 \\ 714246 \\ 104954 \end{array}$	$\begin{array}{rrr} 87 & 18 & 7 \\ 70 & 12 & 25 \\ 10240 & 23 \end{array}$	$\begin{array}{rr} 88 & 40 \\ 68 & 49 \\ 68 & 17 \\ 101 & 11 \end{array}$	$\begin{array}{lrl} 90 & 3 & 20 \\ 67 & 12 & 20 \\ 99 & 41 & 57 \end{array}$
20	Sun a Arietis Aldebaran	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{llll} 96 & 53 & 26 \\ 59 & 45 & 15 \\ 92 & 18 & 36 \end{array}$	$\begin{array}{lll} 98 & 15 & 2 \\ 58 & 16 & 18 \\ 90 & 50 & 20 \end{array}$	$\begin{array}{llll} 99 & 36 & 31 \\ 56 & 47 & 29 \\ 89 & 22 & 11 \end{array}$	$\begin{array}{r} 1005753 \\ 551847 \\ 8754 \end{array}$
21	Sun a Aquilæ a Arietis Aldebaran	W. W. E. E.	$\begin{array}{r} 1074323 \\ 515024 \\ 475655 \\ 8035 \quad 19 \end{array}$	109 4 18 53 0 59 46 28 48 79 7 45	$\begin{array}{rrr} 110 & 25 & 9 \\ 54 & 12 & 8 \\ 45 & 0 & 45 \\ 77 & 40 & 15 \end{array}$	$\begin{array}{rrr} 11145 & 59 \\ 55 & 23 & 51 \\ 43 & 32 & 46 \\ 76 & 12 & 48 \end{array}$
22	Sun a Aquilæ Mars a Arietis Aldebaran	W. W. W. E. E.	$\begin{array}{r} 118 \\ 29 \\ 61 \\ 29 \\ 59 \\ 28 \\ 59 \\ 44 \\ 36 \end{array} 1340$	$\begin{array}{rrr} 119 & 50 & 46 \\ 62 & 44 & 7 \\ 30 & 22 & 27 \\ 34 & 45 & 59 \\ 67 & 28 & 32 \end{array}$	121 11 36 63 58 55 31 45 18 33 18 21 66 1 11	$\begin{array}{rrr} 122 & 32 & 28 \\ 65 & 14 & 4 \\ 33 & 8 & 15 \\ 31 & 50 & 46 \\ 64 & 33 & 50 \end{array}$
23	Sun. a Aquilæ	W. W.	$\begin{array}{rrr} 129 & 17 & 37 \\ 71 & 34 & 39 \end{array}$	$\begin{array}{r} 13038 \\ 72 \\ 721 \\ 51 \end{array}$	$\begin{array}{rrr} 132 & 0 & 9 \\ 74 & 8 & 53 \end{array}$	$\begin{array}{r} 1332133 \\ 7526 \quad 22 \end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Na and Position		Noon.	III ${ }^{\text {b }}$	VI' ${ }^{\text {² }}$	IX ${ }^{\text {b }}$
1	a Arietis	W.	$70^{\circ} 122^{\prime \prime} 13^{\prime \prime}$	$71^{\circ} 5158$	$73^{\circ} 3154$	$75^{\circ} 122^{\prime \prime}$
	Aldebaran	W.	$38 \quad 20 \quad 3$	395658	413416	$\begin{array}{llll}43 & 11 & 57\end{array}$
	Jupiter	E.	$41 \quad 427$	$\begin{array}{ll}39 & 25\end{array}$	374532	$36 \quad 553$
	Regulus	E.	$\begin{array}{llll}42 & 9 & 26\end{array}$	402940	384946	$37 \quad 944$
	Saturn	E.	532831	514918	$50 \quad 956$	483027
	Spica	E.	$\begin{array}{llll}96 & 10 & 45\end{array}$	$\begin{array}{llll}94 & 30 \quad 45\end{array}$	$\begin{array}{llll}92 & 50 & 34\end{array}$	$\begin{array}{llll}91 & 10 & 13\end{array}$
2	a Arietis	W.	$\begin{array}{llll}83 & 35 & 12\end{array}$	$\begin{array}{llll}85 & 16 & 22\end{array}$	865741	883910
	Aldebaran	W.	51251	$\begin{array}{llll}53 & 4 & 28\end{array}$	$\begin{array}{llll}54 & 44 & 10\end{array}$	$\begin{array}{llll}56 & 24 & 7\end{array}$
	Saturn	E.	40115	383053	$\begin{array}{llll}36 & 50 & 37\end{array}$	$\begin{array}{llll}35 & 10 & 16\end{array}$
	Spica	E.	824551	81428	$\begin{array}{llll}79 & 22 & 56\end{array}$	774114
	Venus	E.	$\begin{array}{llll}93 & 38 & 4\end{array}$	$\begin{array}{llll}92 & 6 & 24\end{array}$	$90 \quad 3435$	$89 \quad 235$
	Sun	E.	1312825	1295449	128213	$12647 \quad 7$
3	a Arietis	W.	$\begin{array}{llll}97 & 9 & 2\end{array}$	985129	100345	1021651
	Aldebaran	W.	$64 \quad 4714$	662830	$\begin{array}{llll}68 & 9 & 57\end{array}$	695136
	Spica	E.	$\begin{array}{llll}69 & 10 & 19\end{array}$	$\begin{array}{llll}67 & 27 & 40\end{array}$	$\begin{array}{llll}65 & 44 & 51\end{array}$	$\begin{array}{lll}64 & 1 & 53\end{array}$
	Venus	E.	$81 \quad 2014$	$\begin{array}{ll}79 & 47 \\ 17\end{array}$	$\begin{array}{llll}78 & 14 & 12\end{array}$	$76 \quad 4059$
	Sun	E.	1185443	1171943	1154434	114914
4	Aldebaran	W.	$\begin{array}{llll}78 & 22 & 33\end{array}$	$\begin{array}{llll}80 & 5 & 17\end{array}$	814810	$83 \quad 3112$
	Pollux	W.	$\begin{array}{llll}36 & 20 & 7\end{array}$	$\begin{array}{lll}38 & 2 & 24\end{array}$	394457	412747
	Spica	E.	$\begin{array}{llll}55 & 24 & 49\end{array}$	534058	515659	501251
	Venus	E.	$68 \quad 5240$	671835	654423	$64 \quad 10 \quad 3$
	Sun	E.	1061012	1043354	1025728	1012052
5	Aldebaran	W.	$\begin{array}{llll}92 & 8 & 39\end{array}$	$\begin{array}{llll}93 & 52 & 35\end{array}$	$\begin{array}{llll}95 & 36 & 38\end{array}$	$97 \quad 2049$
	Pollux	W.	$\begin{array}{llll}50 & 5 & 26\end{array}$	514937	$\begin{array}{llll}53 & 33 & 59\end{array}$	$\begin{array}{llll}55 & 18 & 32\end{array}$
	Spica	E.	413011	$\begin{array}{llll}39 & 45 & 16\end{array}$	$38 \quad 0 \quad 14$	$\begin{array}{llll}36 & 15 & 7\end{array}$
	Venus	E.	$\begin{array}{llll}56 & 16 & 31\end{array}$	544128	$\begin{array}{llll}53 & 6 & 19\end{array}$	51315
	Sun	E.	$\begin{array}{llll}93 & 15 & 35\end{array}$	91385	$90 \quad 0 \quad 27$	$88 \quad 2239$
6	Pollux	W.	$64 \quad 354$	654927	$6735 \quad 9$	$69 \quad 2059$
	Jupiter	W.	$28 \quad 29$	294725	313254	$\begin{array}{llll}33 & 18 & 36\end{array}$
	Regulus	W.	$\begin{array}{llll}27 & 2 & 7\end{array}$	284738	$30 \quad 3322$	$\begin{array}{llll}32 & 19 & 18\end{array}$
	Venus	E.	$\begin{array}{llll}43 & 33 & 48\end{array}$	415811	$\begin{array}{llll}40 & 22 & 33\end{array}$	$\begin{array}{llll}38 & 46 & 54\end{array}$
	Sun	E.	$\begin{array}{llll}80 & 11 & 38\end{array}$	$78 \quad 33 \quad 2$	$76 \cdot 5418$	$75 \quad 15 \quad 28$
7	Pollux	W.	$\begin{array}{llll}78 & 12 & 4\end{array}$	$\begin{array}{llll}79 & 58 & 37\end{array}$	814516	$8332 \begin{array}{lll} & 32\end{array}$
	Jupiter	W.	$42 \quad 9 \quad 40$	$\begin{array}{llll}43 & 56 & 19\end{array}$	45436	475959
	Regulus	W.	4111126	4258,16	$\begin{array}{llll}44 & 45 & 14\end{array}$	$\begin{array}{llll}46 & 32 & 18\end{array}$
	Saturn	W.	$\begin{array}{llll}30 & 6 & 11\end{array}$	315130	$\begin{array}{rrrr}33 & 37 & 4\end{array}$	$35 \quad 2251$
	Sun	E.	665935	$65 \quad 206$	634031	$62 \quad 052$
8	Pollux	W.	$\begin{array}{llll}92 & 2651\end{array}$	$\begin{array}{llll}94 & 13 & 59\end{array}$	$96 \quad 1 \begin{array}{lll}9\end{array}$	974821
	Jupiter	W.	$56 \quad 25 \quad 52$	$\begin{array}{llll}58 & 13 & 15\end{array}$	$\begin{array}{rrrr}60 & 0 & 42\end{array}$	$\begin{array}{llll}61 & 48 & 12\end{array}$
	Regulus	W.	$\begin{array}{llll}55 & 29 & 0\end{array}$	$\begin{array}{llll}57 & 16 & 32\end{array}$	$\begin{array}{rrrr}59 & 4 & 8\end{array}$	$\begin{array}{llll}60 & 51 & 46\end{array}$
	Saturn	W.	$\begin{array}{llll}44 & 14 & 28\end{array}$	$\begin{array}{lll}46 & 1 & 11 \\ 58 & 1\end{array}$	$\begin{array}{lllr}47 & 48 & 1 \\ 50 & 21 & 37\end{array}$	493455
	Sun	E.	534138	$\begin{array}{llll}52 & 1 & 38\end{array}$	502137	484134
9	Jupiter	W.	$7046 \quad 1$	$\begin{array}{llll}72 & 33 & 35\end{array}$	$\begin{array}{llll}74 & 21 & 7\end{array}$	$\begin{array}{llll}76 & 8 & 37\end{array}$
	Regulus	W.	$\begin{array}{llll}69 & 50 & 14\end{array}$	$\begin{array}{llll}71 & 37 & 54\end{array}$	732534	$\begin{array}{llll}75 & 13 & 11\end{array}$
	Saturn	W.	$\begin{array}{lllr}58 & 30 & 9\end{array}$	$\begin{array}{llll}60 & 17 & 15\end{array}$	62421	635126
	SUN	E.	$40 \quad 2119$	384121	37126	$35 \quad 2135$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV\%.	XVIII ${ }^{\text {a }}$	XXIr.
1	a Arietis	W.	$7{ }^{\circ} 5{ }^{\circ} 1818$	783246	$80813{ }^{\prime \prime}{ }^{\prime \prime}$	$8154{ }^{1 \prime \prime}$
	Aldebaran	W.	444957	462817	$48 \quad 655$	494550
	Jupiter	E.	$3426 \quad 5$	324610	$31 \quad 6 \quad 9$	29263
	Regulus	E.	352934	334915	$32 \quad 849$	302816
	Saturn	E.	465049	45113	433110	415110
	Spica	E.	892941	874859	$\begin{array}{llll}86 & 8 & 6\end{array}$	84273
2	a Arietis	W.	902049	$92 \quad 239$	934438	952646
	Aldebaran	W.	$58 \quad 418$	594442	612520	$63 \quad 611$
	Saturn	E.	332953	314927	$\begin{array}{lll}30 & 9 & 2\end{array}$	282837
	Spica	E.	755922	741720	72359	705249
	Venus	E.	873026	$\begin{array}{llll}85 & 58 & 7\end{array}$	842539	82531
	Sun	E.	1251259	1233840	122412	1202933
3	a Arietis	W.	1035946	1054250	107264	$\begin{array}{ll}109 & 9\end{array}$
	Aldebaran	W.	713326	73 15	$74 \quad 5739$	76401
	Spica	E.	621846	603530	$5852 \quad 5$	$\begin{array}{llll}57 & 8 & 31\end{array}$
	Venus	E.	$\begin{array}{llll}75 & 7 & 36\end{array}$	$\begin{array}{lll}73 & 34 & 5\end{array}$	$72 \quad 0 \quad 25$	702637
	Sun	E.	1123345	110587	1092219	1074621
4	Aldebaran	W.	851423	865743	884113	902452
	Pollux	W.	431051	445410	463743	482129
	Spica	E.	482834	464410	445938	431459
	Venus	E.	623534	$61 \quad 059$	59 26615	575127
	Sun	E.	$9944 \quad 7$	$\begin{array}{lll}98 & 713\end{array}$	963010	945257
5	Aldebaran	W.	$\begin{array}{llll}99 & 5 & 8\end{array}$	1004934	102347	1041847
	Pollux	W.	$57 \quad 315$	584810	603315	621830
	Spica	E.	342953	324434	3059	291341
	Venus	E.	495547	482023	464455	$45 \quad 923$
	Sun	E.	864444	85640	832826	81506
6	Pollux	W.	$71 \quad 657$	7253	743916	762537
	Jupiter	W.	35 4	365033	383646	40239
	Regulus	W.	$\begin{array}{lll}34 & 5 & 25\end{array}$	$\begin{array}{llll}35 & 51 & 42 \\ 35 & \end{array}$	37388	392443
	Venus	E.	371116	353540	$\begin{array}{llll}34 & 0 & 8\end{array}$	322441
	Sun	E.	733630	715726	701815	683858
7	Pollux	W.	851851	$87 \quad 545$	885244	903946
	Jupiter	W.	491659	51.4	525116	543832
	Regulus	W.	481928	50	$\begin{array}{llll}51 & 54 & 4\end{array}$	534130
	Saturn	W.	$37 \quad 8 \quad 50$	$\begin{array}{lllll}38 & 55 & 1\end{array}$	$\begin{array}{llll}40 & 41 & 22\end{array}$	$42 \quad 2751$
	Sun	E.	60219	584122	$57 \quad 130$	552136
8						
	Jupiter	W.	633544	$\begin{array}{llllllllllllllll}65 & 23 & 16\end{array}$	671051	685826
	Regulus	W.	623926	$\begin{array}{llll}64 & 27 & 7\end{array}$	$\begin{array}{llll}66 & 1450\end{array}$	$\begin{array}{llll}68 & 2 & 31\end{array}$
	Saturn	W.	512152	$\begin{array}{llll}53 & 8 & 53\end{array}$	$54 \quad 5557$	$5643 \quad 2$
	Sun	E.	$47 \quad 130$	452126	434122	42120
9	Jupiter	W.	$\begin{array}{llll}77 & 56 & 5\end{array}$	794329	813049	83185
	Regulus	W.	$77 \quad 045$	784815	803542	82233
	Saturn	W.	653829	$\begin{array}{llll}67 & 25 & 29\end{array}$	691226	$\begin{array}{llll}70 & 59 & 19\end{array}$
	Sun	E.	334148	$32 \quad 2 \quad 7$	302233	$2843 \quad 7$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Noon.	III ${ }^{\text {h }}$	VI' ${ }^{\text {b }}$	IX ${ }^{\text {b }}$.
1.4	Sun	W.	${ }^{\circ} 44^{\prime} 02^{\prime \prime} 1$	$\stackrel{\circ}{26} 111{ }^{\prime \prime}{ }^{\prime \prime}$		
	Mars	E.	$58 \quad 0 \quad 32$	$\begin{array}{llll}56 & 2647\end{array}$	545323	532021
	a Pegasi	E.	$65 \quad 50 \quad 30$	641517	624030	$61 \quad 6 \quad 9$
	a Arietis		108355	1062459	1044623	10386
15	Son	W.	364112	$\begin{array}{llll}38 & 9 & 56\end{array}$	$\begin{array}{llll}39 & 3822\end{array}$	$41 \quad 6 \quad 29$
	Mars	E.	454037	$44 \quad 9 \quad 47$	$42 \quad 3917$	$41 \quad 911$
	a Pegasi	E.	532133	$5150 \quad 9$	$\begin{array}{llll}50 & 19 & 17\end{array}$	484859
	a Arietis		$95 \quad 145$	$\begin{array}{llll}93 & 25 & 29\end{array}$	914932	$90 \quad 13 \quad 55$
16	Sun	W.	482226	494844	511445	524029
	Mars	E.	$\begin{array}{llll}33 & 44 & 13\end{array}$	$32 \quad 1622$	304853	292150
	a Pegasi	E.	$\begin{array}{llll}41 & 26 & 39\end{array}$	$40 \quad 0 \quad 13$	383433	$37 \quad 941$
	a Arietis	E.	822035	804650	$\begin{array}{llll}79 & 13 & 23\end{array}$	774014
17	Sun	W.	59456	$\begin{array}{llll}61 & 9 & 16\end{array}$	$\begin{array}{llll}62 & 3311\end{array}$	635653
	a Arietis	E.	$69 \quad 5842$	$68 \quad 27 \quad 12$	665555	$65 \quad 2454$
	Aldebaran	E.	1022939	1005859	$99 \quad 2833$	$97 \quad 5820$
18	Sun	W.	$\begin{array}{llll}70 & 52 & 15\end{array}$	$\begin{array}{llll}72 & 14 & 46\end{array}$	$\begin{array}{llll}73 & 37 & 7\end{array}$	$\begin{array}{llll}74 & 59 & 18\end{array}$
	a Aquilæ	W.	445515	$\begin{array}{llll}45 & 11 & 31\end{array}$	$\begin{array}{llll}46 & 18 & 35\end{array}$	$47 \quad 2629$
	a Arietis	E.	$\begin{array}{llll}57 & 53 & 4\end{array}$	$\begin{array}{llll}56 & 23 & 19\end{array}$	$\begin{array}{llll}54 & 53 & 45\end{array}$	$\begin{array}{llll}53 & 24 & 21\end{array}$
	Aldebaran	E.	$\begin{array}{llll}90 & 30 & 17\end{array}$	$\begin{array}{llll}89 & 1 & 14\end{array}$	$87 \quad 32 \quad 22$	$86 \quad 3 \quad 39$
19	Sun	W.	81488	$\begin{array}{llll}83 & 9 & 33\end{array}$	843053	$\begin{array}{llll}85 & 52 & 9\end{array}$
	a Aquilæ	W.	$\begin{array}{llll}53 & 16 & 44\end{array}$	$\begin{array}{llll}54 & 28 & 34\end{array}$	554053	$\begin{array}{llll}56 & 53 & 39\end{array}$
	a Arietis	E.	455948	$\begin{array}{llll}44 & 31 & 19\end{array}$	$43 \quad 258$	413444
	Aldebaran	E.	$78 \quad 4210$	$\begin{array}{llll}77 & 14 & 15\end{array}$	754625	$\begin{array}{lllll}74 & 18 & 42\end{array}$
20	Sun	W.	92 37	$\begin{array}{llll}93 & 58 & 38\end{array}$	$\begin{array}{llll}95 & 19 & 37\end{array}$	$96 \quad 4036$
	a Aquilæ	W.	63 3 19	$\begin{array}{llll}64 & 18 & 29\end{array}$	$\begin{array}{llll}65 & 33 & 47\end{array}$	664922
	Fomalhaut	W.	$\begin{array}{llll}38 & 59 & 57\end{array}$	$\begin{array}{llll}40 & 7 & 32\end{array}$	$\begin{array}{llll}41 & 16 & 12\end{array}$	$\begin{array}{llll}42 & 25 & 54\end{array}$
	a Arietis	E.	$\begin{array}{llll}34 & 15 & 11\end{array}$	324735	31205	$\begin{array}{llll}29 & 52 & 40\end{array}$
	Aldebaran	E.	$67 \quad 115$	$65 \quad 33 \quad 56$	$64 \quad 640$	623925
21	Sun	W.	1032555	104478	106825	1072946
	a Aquilæ	W.	$\begin{array}{llll}73 & 11 & 13\end{array}$	$\begin{array}{llll}74 & 28 & 18\end{array}$	$\begin{array}{llll}75 & 45 & 36\end{array}$	$\begin{array}{ll}77 & 3\end{array} 6$
	Fomalhaut	W.	482719	494148	$\begin{array}{llll}50 & 56 & 54\end{array}$	$\begin{array}{llll}52 & 12 & 36\end{array}$
	Mars	W.	23 52	251423	263633	275856
	Aldebaran	E.	$\begin{array}{llll}55 & 23 & 32\end{array}$	$\begin{array}{llll}53 & 56 & 22\end{array}$	$\begin{array}{llll}52 & 29 & 12\end{array}$	$\begin{array}{lll}51 & 2 & 3\end{array}$
	Pollux	E.	$\begin{array}{llll}97 & 11 & 58\end{array}$	954340	$\begin{array}{llll}94 & 15 & 18\end{array}$	924651
22	Sun	W.	$\begin{array}{llll}114 & 18\end{array}$	115409	117220	1182441
	a Aquilæ	W.	83 33	845221	$\begin{array}{llll}86 & 11 & 12\end{array}$	$\begin{array}{llll}87 & 30 & 13\end{array}$
	Fomalhaut	W.	$58 \quad 393$	$\begin{array}{llll}59 & 57 & 46\end{array}$	$\begin{array}{llll}61 & 1656\end{array}$	623631
	Mars	W.	$\begin{array}{llll}34 & 53 & 58\end{array}$	$\begin{array}{llll}36 & 17 & 36\end{array}$	374127	$\begin{array}{llll}39 & 5 & 31\end{array}$
	Aldebaran	E.	$43 \quad 46 \quad 2$	421850	$\begin{array}{llll}40 & 51 & 37\end{array}$	392423
	Pollux	E.	$85 \quad 231$	$\begin{array}{llll}83 & 53 & 53\end{array}$	$82 \quad 2437$	$80 \quad 55 \quad 12$
23	Sun	W.	$\begin{array}{llll}125 & 18 & 59\end{array}$	1264225	12866	129 29 55
	Fomalhaut	W.	$\begin{array}{llll}69 & 20 & 17\end{array}$	$\begin{array}{lll}70 & 42 & 9\end{array}$	$\begin{array}{rrrr}72 & 4 & 22\end{array}$	$\begin{array}{llll}73 & 26 & 56\end{array}$
	a Pegasi	W.	$\begin{array}{llll}46 & 53 & 51\end{array}$	$\begin{array}{llll}48 & 19 & 15\end{array}$	$\begin{array}{llll}49 & 45 & 5\end{array}$	511121
	Mars	W.	$46 \quad 8 \quad 59$	$\begin{array}{llll}47 & 34 & 21\end{array}$	485957	502546
	Pollux	E.	$73 \quad 2538$	71555	$\begin{array}{llll}70 & 24 & 31\end{array}$	$68 \quad 53 \quad 40$
	Jupiter	E.	1091331	1074223	$10611 \quad 1$	1043926

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { hone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's } \mathrm{N}: \\ \text { and } \\ \text { Positio } \end{gathered}$		Midnight.	XVh.	XVIII.	XXI ${ }^{\text {. }}$
14	Sun Mars a Pegasi a Arietis	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 30 & 43 & 111 \\ 51 & 47 & 40 \\ 59 & 32 & 15 \\ 101 & 30 & 10 \end{array}$	32 13 50 15 22 57 58 50 99 52 34	33 42 48 48 43 25 56 25 54 98 15 18	$$
15	Sun Mars a Pegasi a Arietis	W. E. E. E.	$\begin{array}{lll} 42 & 34 & 17 \\ 39 & 39 & 26 \\ 47 & 19 & 16 \\ 88 & 38 & 37 \end{array}$	$\begin{array}{rrr} 44 & 1 & 46 \\ 38 & 10 & 5 \\ 45 & 50 & 9 \\ 87 & 3 & 39 \end{array}$	$\begin{array}{lll} 45 & 28 & 57 \\ 36 & 41 & 5 \\ 44 & 21 & 39 \\ 85 & 28 & 59 \end{array}$	46 55 50 35 12 27 42 53 49 83 54 38
16	Sun Mars a Pegasi a Arietis	W. E. E. E.	$\begin{array}{rrr} 54 & 5 & 56 \\ 27 & 55 & 9 \\ 35 & 45 & 40 \\ 76 & 7 & 23 \end{array}$	$\begin{array}{rrr} 55 & 31 & 6 \\ 26 & 28 & 55 \\ 34 & 22 & 36 \\ 74 & 34 & 49 \end{array}$	56 56 1 25 3 8 33 0 32 73 2 31	$\begin{array}{lll} 58 & 20 & 41 \\ 23 & 37 & 46 \\ 31 & 39 & 34 \\ 71 & 30 & 28 \end{array}$
17	Sun a Arietis Aldebaran	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lrr} 65 & 20 & 22 \\ 63 & 54 & 5 \\ 96 & 28 & 19 \end{array}$	$\begin{array}{llll} 66 & 43 & 38 \\ 62 & 23 & 31 \\ 94 & 58 & 31 \end{array}$	$\begin{array}{rrr} 68 & 6 & 42 \\ 60 & 53 & 9 \\ 93 & 28 & 56 \end{array}$	$\begin{array}{lll} 69 & 29 & 34 \\ 59 & 23 & 1 \\ 91 & 59 & 31 \end{array}$
18	Sun a Aquilæ a Arietis Aldebaran	W. W. E. E.	$\begin{array}{rrrr} \cdot & 76 & 21 & 19 \\ 48 & 35 & 11 \\ 51 & 55 & 8 \\ 84 & 35 & 4 \end{array}$	77 43 12 49 44 37 50 26 5 83 6 39	79 4.58 50 54 42 48 57 11 81 38 21	$\begin{array}{rrr} 80 & 26 & 36 \\ 52 & 5 & 26 \\ 47 & 28 & 25 \\ 80 & 10 & 13 \end{array}$
19	Sun a Aquilæ a Arietis Aldebaran	W. W. E. E.	$\begin{array}{rrr} 87 & 13 & 21 \\ 58 & 6 & 51 \\ 40 & 6 & 36 \\ 72 & 51 & 3 \end{array}$	$\begin{array}{r} 883429 \\ 592028 \\ -383835 \\ 712330 \end{array}$	$\begin{array}{ccc} 89 & 55 & 34 \\ 60 & 34 & 27 \\ 37 & 10 & 40 \\ 69 & 56 & 1 \end{array}$	$\begin{array}{lll} 91 & 16 & 37 \\ 61 & 48 & 48 \\ 35 & 42 & 52 \\ 68 & 28 & 37 \end{array}$
20	Sun a Aquilæ Fomalhaut a Arietis Aldebaran	W. W. W. E. E.	98 1 36 68 5 14 43 36 33 28 25 21 61 12 13	$\begin{array}{llr} 99 & 22 & 37 \\ 69 & 21 & 22 \\ 44 & 48 & 5 \\ 26 & 58 & 9 \\ 59 & 45 & 1 \end{array}$	$\begin{array}{rrr} 100 & 43 & 40 \\ 70 & 37 & 45 \\ 46 & 0 & 25 \\ 25 & 31 & 3 \\ 58 & 17 & 51 \end{array}$	$\begin{array}{rrr} 102 & 44 & 46 \\ 71 & 54 & 22 \\ 47 & 13 & 31 \\ 24 & 4 & 3 \\ 56 & 50 & 41 \end{array}$
21	Sun a Aquilæ Fomalhaut Mars Aldebaran Pollux	W. W. W. W. E. E.	$\begin{array}{rrr} 108 & 51 & 12 \\ 78 & 20 & 49 \\ 53 & 28 & 52 \\ 29 & 21 & 31 \\ 49 & 34 & 52 \\ 91 & 18 & 18 \end{array}$	$\begin{array}{rrr} 110 & 12 & 46 \\ 79 & 38 & 44 \\ 54 & 45 & 40 \\ 30 & 44 & 19 \\ 48 & 7 & 41 \\ 89 & 49 & 39 \end{array}$	$\begin{array}{rrr} 111 & 34 & 26 \\ 80 & 56 & 51 \\ 56 & 2 & 59 \\ 32 & 7 & 19 \\ 46 & 40 & 28 \\ 88 & 20 & 53 \end{array}$	$\begin{array}{rrr} 112 & 56 & 13 \\ 82 & 15 & 10 \\ 57 & 20 & 47 \\ 33 & 30 & 32 \\ 45 & 13 & 16 \\ 86 & 52 & 1 \end{array}$
22	Sun a Aquilæ Fomalhaut Mars Aldebaran Pollux	W. W. W. W. E. E.	$\begin{array}{rrr} 119 & 47 & 11 \\ 88 & 49 & 24 \\ 63 & 56 & 30 \\ 40 & 29 & 47 \\ 37 & 57 & 12 \\ 79 & 25 & 38 \end{array}$	$\begin{array}{rrr} 121 & 9 & 51 \\ 90 & 8 & 45 \\ 65 & 16 & 53 \\ 41 & 54 & 15 \\ 36 & 30 & 4 \\ 77 & 55 & 53 \end{array}$	$\begin{array}{rrr} 122 & 32 & 43 \\ 91 & 28 & 15 \\ 66 & 37 & 39 \\ 43 & 18 & 56 \\ 35 & 2 & 59 \\ 76 & 25 & 59 \end{array}$	$\begin{array}{r} 1235545 \\ 9247 \\ 6758 \\ 6758 \\ 4443 \\ 34 \\ 33 \\ 36 \\ 74 \end{array} 50$
23	Sun Fomalhaut a Pegasi Mars Pollux Jupiter	W. W. W. W. E. E.	$\begin{array}{rrr} 130 & 54 & 0 \\ 74 & 49 & 49 \\ 52 & 38 & 3 \\ 51 & 51 & 51 \\ 67 & 22 & 36 \\ 103 & 7 & 38 \\ \hline \end{array}$	$\begin{array}{rrr} 132 & 18 & 18 \\ 76 & 13 & 2 \\ 54 & 5 & 10 \\ 53 & 18 & 11 \\ 65 & 51 & 19 \\ 101 & 35 & 35 \\ \hline \end{array}$	$\begin{array}{rrr} 133 & 42 & 51 \\ 77 & 36 & 35 \\ 55 & 32 & 42 \\ 54 & 44 & 46 \\ -64 & 19 & 49 \\ 100 & 3 & 19 \end{array}$	135 7 38 79 0 26 57 0 38 56 11 36 62 48 6 98 30 47

GREENWICE MEAN TLME.						
Lunar distances.						
Day of the Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	III.	VI'.	IX ${ }^{\text {b }}$
24	Fomalhaut	W.	$\stackrel{\circ}{80} 22_{4}^{\prime} \quad 36$	$8{ }^{\circ} 1{ }^{4} 49 \times 4$	$8{ }^{\circ} 1813111$	$8{ }_{8}^{84} 388$
	${ }_{\boldsymbol{a}}$ Pegasi	W.	582855	595737	612641	62567
	Mars	W.	573842	5964	603341	$62 \quad 136$
	Pollux	E.	611610	59440	581136	563858
	Jupiter	E.	96581	$95 \quad 2459$	935142	-9218 8
	Regulus					$\begin{array}{llll}93 & 2716\end{array}$
25	Fomalhaut	W.	702841	$72 \quad 0 \quad 15$	73328	$75 \quad 422$
	Mars	W.	692520	705457	722450	7355
	${ }_{\text {a }}$ Arietis	W.	26596	283240	$30 \quad 639$	31414
	Pollux	E.	485218	471817	45443	$44 \quad 935$
	Jupiter	E.	842613	82510	811530	793942
	Regulus	E.	853642	$84 \quad 144$	822629	805058
26	a Pegasi			842432	855859	873343
	Mars	W.	813026	$83 \quad 224$	843439	$86 \quad 713$
	a Arietis	W.	393850	$4115 \quad 29$	425297	$44 \quad 2947$
	Pollux	E.	$\begin{array}{llll}36 & 14 & 13\end{array}$	343838	$\begin{array}{ll}33 & 255\end{array}$	
	Jupiter	E.	713618	$\begin{array}{llll}69 & 58 & 45\end{array}$	$68 \quad 2054$	664246
	Regulus	E.	724859	711142	69349	$\begin{array}{llll}67 & 56 & 19\end{array}$
	Saturn	E.	84197	82421	81438	$79 \quad 2657$
27	a Pegasi	W.	95 5138	$\begin{array}{llll}97 & 8 & 0 \\ 05 & 28 & \end{array}$	$\begin{array}{lllll}98 & 44 & 37\end{array}$	1002128 081
	Mars	W.	935416	$\begin{array}{llll}95 & 28 & 31\end{array}$	$97 \quad 3{ }^{9} \quad 3$	$\begin{array}{llll}98 & 37 & 51\end{array}$
	a Arietis	W.	524111	$54 \quad 2024$	555955	573944
	Aldebaran	W.	214257	231337	244538	261850
	Jupiter	E.	582752	56484	5588	$\begin{array}{llll}53 & 2740\end{array}$
	Regulus	E.	594253	$58 \quad 322$	562335	544332
	Saturn	E.	711422	69351	675525	$66 \quad 1533$
28	Mars	W.	1063541	1081159	1094831	1112516
	a Arietis	W.	$66 \quad 255$	674421	$69 \quad 261$	$\begin{array}{llll}71 & 756\end{array}$
	Aldebaran	W.	341757	$35 \quad 5549$	373413	$\begin{array}{llll}39 & 13 & 6\end{array}$
	Jupiter	E.	$45 \quad 219$	432034	413836	$\begin{array}{llll}39 & 56 & 26\end{array}$
	Regulus	E.	461936	44387	425625	$\begin{array}{llll}41 & 14 & 31\end{array}$
	Saturn	E.	575231	$\begin{array}{llll}56 & 11 & 13\end{array}$	542943	52481
	Spica	E.	1002122	983941	965745	951535
29		W.	794055	81248	$83 \quad 732$	84518
	Aldebaran	W.	473350	$49 \quad 15 \quad 3$	505634	523822
	Jupiter	E.	$\begin{array}{llll}31 & 23 & 5\end{array}$	2940	275651	$\begin{array}{llll}26 & 13 & 39 \\ 27 & 33\end{array}$
	Regulus	E.	324216	$\begin{array}{llll}30 & 59 & 20\end{array}$	$\begin{array}{llll}29 & 16 & 17\end{array}$	$\begin{array}{llll}27 & 33 \\ 39 & 8\end{array}$
	Saturn	E.	441650	$4234 \quad \theta$	$40 \quad 51 \quad 21$	$\begin{array}{lll}39 & 8 & 27\end{array}$
	Spica	E.	864129	84583	831426	813039
30	a Arietis	W.	933133	$\begin{array}{llll}95 & 18 & 4\end{array}$	$97 \quad 243$	984729
	Aldebaran	W.	61111	625411	643732	66213
	Saturn	E.	303313	285013	$27 \quad 720$	252438
	Spica	E.	724915	$\begin{array}{ll}71 & 432\end{array}$	691942	673445
	Venus	E.	118051	1162546	1145032	1131510
31	Aldebaran	W.	$75 \quad 045$	$7645 \quad 3$	782925	801353
	Pollux	W.	$\begin{array}{lll}33 & 1 & 49\end{array}$	344521	$\begin{array}{llll}36 & 29 & 8\end{array}$	$\begin{array}{llll}38 & 13 & 8\end{array}$
	Spica	E.	584828 1051630	$\begin{array}{rrrr}57 & 2 & 58 \\ 50 & \end{array}$	55 55 102	53 3147 100 28
	Venus	E.	1051630	1034027	102420	100288

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { hone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \mathrm{Na} \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XVI.	XVIIT ${ }^{\text {b }}$	XXIL.
24	Fomalhaut	W.	$86^{\circ} 413$	$87^{\circ} 29{ }^{\prime \prime}$	$88^{\circ} 55^{\prime} 44^{\prime \prime}$	$90^{\circ} 2153$
	a Pegasi	W.	642556	65566	672637	685728
	Mars	W.	632947	645815	662659	67561
	Pollux	E.	$\begin{array}{llll}55 & 6 & 6\end{array}$	53330	515940	$5026{ }^{5}$
	Jupiter	E.	904419	891013	873550	86110
	Regulus	E.	915342	901952	884545	871122
25	${ }^{\text {a Pegasi }}$	W.	76 76 75	$\begin{array}{llll}78 & 9 & 48\end{array}$	79431	811635
	Mars	W.	752531	$76 \quad 5619$	$78 \quad 2723$	795846
	a Arietis	W.	331552	34514	362637	$38 \quad 234$
	Pollux	E.	423454	4100	392455	374939
	Jupiter	E.	$78 \quad 3 \quad 36$	762712	745031	731333
	Regulus	E.	79159	77392	$76 \quad 238$	742557
26	${ }^{\text {a Pegasi }}$	W.	89 8 45	$\begin{array}{llll}90 & 44 & 4\end{array}$	$\begin{array}{llll}92 & 19 & 39\end{array}$	$\begin{array}{llll}93 & 55 & 31\end{array}$
	Mars	W.	$8740 \quad 3$	891311	904635	922018
	a Arietis	W.	$46 \quad 7 \quad 25$	474523	492340	$\begin{array}{llll}51 & 2 & 17\end{array}$
	Pollux	E.	295114	281519	263926	$\begin{array}{llll}25 & 3 & 39\end{array}$
	Jupiter	E.	$65 \quad 421$	$63 \quad 2539$	614640	$60 \quad 724$
	Regulus	E.	661812	643947	$\begin{array}{lll}63 & 1 & 5\end{array}$	$6122 \quad 7$
	Saturn	E.	$7749 \quad 0$	761046	743215	725327
27	a Pegasi	W.	1015832	1033549	1051318	1065058
	Mars	W.	1001254	1014813	1032348	1045937
	a Arietis	W.	591949	$61 \quad 0 \quad 12$	624050	642145
	Aldebaran	W.	27532	$2928 \quad 9$	$\begin{array}{lll}31 & 4 & 4\end{array}$	324041
	Jupiter	E.	$\begin{array}{lll}51 & 47 & 5\end{array}$	50615	482510	464351
	Regulus	E.	$\begin{array}{llll}53 & 3 & 15\end{array}$	512242	494154	$48 \quad 0 \quad 51$
	Saturn	E.	643526	62554	611427	593336
28	Mars	W.	$\begin{array}{ll}113 & 214\end{array}$	1143925	1161647	1175421
	a Arietis	W.	72505	743229	$76 \quad 154$	775753
	Aldebaran	W.	405228	423215	441225	$45 \quad 5257$
	Jupiter	E.	$\begin{array}{llll}38 & 14 & 5\end{array}$	363134	344852	$33 \quad 6 \quad 3$
	Regulus	E.	393225	$3750 \quad 7$	$\begin{array}{llll}36 & 7 & 39\end{array}$	$34 \quad 25 \quad 1$
	Saturn	E.	$\begin{array}{lll}51 & 6 & 7\end{array}$	$4924 \quad 2$	474147	$45 \quad 59 \quad 23$
	Spica	E.	933311	915034	$90 \quad 745$	882443
29	a Arietis	W.	863454	881850	$90 \quad 255$	914710
	Aldebaran	W.	542025	$56 \quad 244$	574517	$5928 \quad 3$
	Jupiter	E.	243026	224713	$21 \quad 4 \quad 4$	19214
	Regulus	E.	254954	$24 \quad 639$	$22 \quad 2327$	204021
	Saturn	E.	372529	354226	335922	321617
	Spica	E.	794641	$78 \quad 233$	$76 \quad 1816$	743350
30	a Arietis	W.	1003022	1021521	104025	1054535
	Aldebaran	W.	$68 \quad 444$	694833	$\begin{array}{ll}71 & 3230\end{array}$	$\begin{array}{llll}73 & 16 & 34\end{array}$
	Saturn	E.	23429	215959	$\begin{array}{llll}20 & 18 & 17\end{array}$	183712
	Spica	E.	654941	$64 \quad 431$	$62 \quad 1915$	603354
	Venus	E.	1113940	$\begin{array}{ll}110 & 4\end{array}$	1082818	1065227
31	Aldebaran	W.	815827	$8343 \quad 5$	852745	871227
	Pollux	W.	395721	414144	$\begin{array}{llll}43 & 2617\end{array}$	451058
	Spica	E.	51467	$50 \quad 024$	481439	$46 \quad 28 \quad 52$
	Venus	E.	985152	$97 \quad 1531$	$\begin{array}{llll}95 & 39 & 7\end{array}$	94 4

JANUAIEY, 1860.						FEIREUAEY, 1860.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	GEOCENTRIC.					Day of the. Month.	geocentric.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
	S. 14	26	33	h.	m.		S. 19	35		h.	m.
1	S. 14	26	33	19	$55 \cdot 6$	1	S. 19	35	59	19	$9 \cdot 9$
2	14	38	13	19	$54 \cdot 1$	2	19	43	59	19	$8 \cdot 5$
3	14	49	47	19	$52 \cdot 6$	8	19	51	52	19	$7 \cdot 0$
4	15	1	14	19	$51 \cdot 1$	4	19	59	36	19	$5 \cdot 6$
5	15	12	36	19	$49 \cdot 6$	5	20	7	13	19	$4 \cdot 1$
6	15	23	51	19	$48 \cdot 1$	6	20	14	41	19	$2 \cdot 7$
7	15	35	0	19	$46 \cdot 6$	7	20	22	2	19	$1 \cdot 3$
8	15	46	2	19	$45 \cdot 1$	8	20	29	14	18	$59 \cdot 8$
9	15	56	58	19	$43 \cdot 6$	9	20	36	18	18	$58 \cdot 4$
10	16	7	48	19	$42 \cdot 1$	10	20	43	14	18	$57 \cdot 0$
11	16	18	31	19	$40 \cdot 6$	11	20	50	2	18	$55 \cdot 5$
12	16	29	7	19	$39 \cdot 1$	12	20	56	41	18	$54 \cdot 1$
13	16	39	37	19	$37 \cdot 6$	13	21	3	12	18	$52 \cdot 6$
14	16	49	59	19	$36 \cdot 1$	14	21	9	35	18	$51 \cdot 2$
15	17	0	15	19	$34 \cdot 7$	15	21	15	49	18	$49 \cdot 8$
16	17	10	24	19	$33 \cdot 2$	16	21	21	56	18	$48 \cdot 3$
17	17	20	25	19	$31 \cdot 7$	17	21	27	54	18	$46 \cdot 9$
18	17	30	20	19	$30 \cdot 2$	18	21	33	43	18	$45 \cdot 5$
19	17	40	7	19	$28 \cdot 8$	19	21	39	25	18	$44 \cdot 0$
20	17	49	47	19	$27 \cdot 3$	20	21	44	58	18	$42 \cdot 6$
21	17	59	20	19	$25 \cdot 9$	21	21	50	22	18	$41 \cdot 2$
22	18	8	45	19	$24 \cdot 4$	22	21	55	38	18	$39 \cdot 7$
23	18	18	3	19	$22 \cdot 9$	23	22	0	46	18	$38 \cdot 3$
24	18	27	13	19	$21 \cdot 5$	24	22	5	45	18	$36 \cdot 9$
25	18	36	16	19	$20 \cdot 0$	25	22	10	37	18	$35 \cdot 4$
26	18	45	11	19	$18 \cdot 6$	26	22	15	20	18	$34 \cdot 0$
27	18	53	58	19	17•1	27	22	19	54	18	$32 \cdot 5$
28	19	2	38	19	15.7	28	22			18	$31 \cdot 1$
29	19	11	10	19	$14 \cdot 2$	29	22	28	40	18	$29 \cdot 6$
30	19	19	34	19	12.8						
31	19	27	50	19	$11 \cdot 3$	30	22		50	18	$28 \cdot 1$
						31	- 22		52	18	$26 \cdot 6$
32	S. 19	35	59	19	$9 \cdot 9$	32	S. 22	40		18	$25 \cdot 2$

MIATCH, 1860.						APIEL, 1860.						
MEAN TIME.						MEAN TIME.						
Day of the Month.	geocentric.					Day of the Month.	geocentrio.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian		
	Noon.					Noon.	Passage.					
	S. 22	32	110	h.	m.			$\bigcirc \stackrel{\circ}{3}^{\circ}$	${ }^{\prime} 9$	11	h.	m.
1	S. 22	32		18	$28 \cdot 1$	1	S. 23	39		17	$40 \cdot 3$	
2	22	36	52	18	$26 \cdot 6$	2	23	39	38	17	$38 \cdot 6$	
3	22	40	46	18	25.2	3	23	39	54	17	$36 \cdot 9$	
4	22	44	32	18	$23 \cdot 7$	4	23	40	6	17	$35 \cdot 2$	
5	22	48	9	18	$22 \cdot 2$	5	23	40	12	17	$33 \cdot 5$	
6	22	51	39	18	$20 \cdot 8$	6	23	40	13	17	$31 \cdot 8$	
7	22	55	1	18	$19 \cdot 3$	7	23	40	9	17	$30 \cdot 1$	
8	22	58	15	18	$17 \cdot 8$	8	23	40	1	17	$28 \cdot 4$	
9	23	1	21	18	$16 \cdot 3$	9	23	39	48	17	$26 \cdot 6$	
10	23	4	19	18	$14 \cdot 8$	10	23	39	31	17	$24 \cdot 8$	
11	23	7	9	18	$13 \cdot 3$	11	23	39	9	17	$23 \cdot 1$	
12	23	9	52	18	$11 \cdot 8$	12	23	38	44	17	$21 \cdot 3$	
13	23	12	27	18	$10 \cdot 3$	13	23	38	15	17	$19 \cdot 5$	
14	23	14	55	18	$8 \cdot 8$	14	23	37	43	17	$17 \cdot 7$	
15	23	17	14	18	$7 \cdot 3$	15	23	37	7	17	$15 \cdot 8$	
16	23	19	27	18	$5 \cdot 8$	16	23	36	28	17	$14 \cdot 0$	
17	23	21	32	18	$4 \cdot 2$	17	23	35	46	17	$12 \cdot 1$	
18	23	23	30	18	$2 \cdot 7$	18	23	35	1	17	$10 \cdot 2$	
19	23	25	21	18	$1 \cdot 1$	19	23	34	14	17	$8 \cdot 3$	
20	23	27	4	17	$59 \cdot 6$	20	23	33	25	17	$6 \cdot 4$	
21	23	28	41	17	$58 \cdot 0$	21	23	32	34	17	$4 \cdot 5$	
22	23	30	11	17	$56 \cdot 5$	22	23	31	41	17	$2 \cdot 5$	
23	23	31	34	17	$54 \cdot 9$	23	23	30	46	17	$0 \cdot 5$	
24	23	32	50	17	$53 \cdot 3$	24	23	29	50	16	$58 \cdot 5$	
25	23	34	0	17	$51 \cdot 7$	25	23	28	53	16	$56 \cdot 5$	
26	23	35	4	17	$50 \cdot 1$	26	23	27	55	16	$54 \cdot 5$	
27	23	36	1	17	$48 \cdot 5$	27	23	26	57	16	$52 \cdot 5$	
28	23	36	52	17	$46 \cdot 9$	28	23	25	58	16	$50 \cdot 4$	
29	23	37	37	17	$45 \cdot 2$	29	23	24	59	16	$48 \cdot 3$	
30	23	38	16	17	$43 \cdot 6$	30	23	24	0	16	$46 \cdot 2$	
31	23	38	49	17	$41 \cdot 9$							
						31	23	23	1	16	$44 \cdot 1$	
32	S. 23		16	17	$40 \cdot 3$	32	S. 23	22	3	16	$41 \cdot 9$	

SEPTEMEER, 1860.						OCTOBEE, 1860.					
MEAN TIME.						, MEAN TIME.					
Day of the Month.	GEOCENTRIO.					Day of the Month.	geocentric.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1 2 3	S. $\stackrel{\circ}{\circ}^{6}$	59 54 49	$\prime \prime$ 53 58 54		$\begin{aligned} & \mathrm{m} . \\ & 48 \cdot 1 \\ & 44 \cdot 9 \\ & 41 \cdot 9 \end{aligned}$	1 2 3	S. $\begin{array}{r}\circ \\ 23 \\ 23 \\ 23\end{array}$	30 20 11	11 10 58 38	h. 7 7 7	$\begin{aligned} & \mathrm{m} . \\ & 33 \cdot 1 \\ & 31 \cdot 1 \\ & 29 \cdot 1 \end{aligned}$
4	26	44	41	8	$38 \cdot 9$	4	23	2	9	7	$27 \cdot 2$
5	26	39	20	8	$36 \cdot 0$	5	22	52	31	7	$25 \cdot 3$
6	26	33	49	8	$33 \cdot 0$	6	22	42	46	7	$23 \cdot 3$
7	26	28	10	8	$30 \cdot 2$	7	22	32	51	7	$21 \cdot 4$
8	26	22	23	8	$27 \cdot 3$	8	22	22	48	7	$19 \cdot 5$
9	26	16	28	8	$24 \cdot 5$	9	22	12	36	7	$17 \cdot 7$
10	26	10	24	8	$21 \cdot 8$	10	22	2	16	7	$15 \cdot 9$
11	26	4	12	8	$19 \cdot 0$	11	21	51	46	7	$14 \cdot 1$
12	25	57	52	8	$16 \cdot 5$	12	21	41	8	7	$12 \cdot 3$
13	25	51	22	8	$13 \cdot 9$	13	21	30	21	7	$10 \cdot 5$
14	25	44	44	8	$11 \cdot 3$	14	21	19	25	7	$8 \cdot 7$
15	25	37	58	8	$8 \cdot 8$	15	21	8	21	7	$7 \cdot 0$
16	25	31	3	8	$6 \cdot 3$	16	20	57	7	7	$5 \cdot 2$
17	25	24	0	8	$3 \cdot 9$	17	20	45	45	7	$3 \cdot 5$
18	25	16	47	8	$1 \cdot 5$	18	20	34	14	7	$1 \cdot 8$
19	25			7	$59 \cdot 1$	19	20	22	35	7	0.1
20	25	1	57	7	$56 \cdot 7$	20	20	10	48	6	$58 \cdot 3$
21	24	54	19	7	$54 \cdot 4$	21	19	58	52	6	$56 \cdot 6$
22	24	46	33	7	$52 \cdot 2$	22	19	46	47	6	$55 \cdot 0$
23	24	38	38	7	$50 \cdot 0$	23	19	34	35	6	$53 \cdot 3$
24	24	30	35	7	$47 \cdot 8$	24	19	22	14	6	$51 \cdot 7$
25	24	22	23	7	$45 \cdot 6$	25	19	9		6	$50 \cdot 0$
26	24	14	2	7	$43 \cdot 4$	26	18		9	6	$48 \cdot 4$
27	24		33	7	$41 \cdot 2$	27	18	44	24	6	$46 \cdot 8$
28	23	56	55	7	$39 \cdot 1$	28	18		32	6	$45 \cdot 2$
29	23	48	9	7	$37 \cdot 1$	29	18	18	32	6	$43 \cdot 6$
30	23	39	14	7	$35 \cdot 1$	30 31	18	5 52	24 8	6	$42 \cdot 0$ $40 \cdot 4$
31	23				$33 \cdot 1$						
32	S. 23				$31 \cdot 1$	32	S. 17			6	38•8

NOVEMEER, 1860.						DECEMEER, 1860.						
mean time.						mean time.						
Day of the Month.	geocentric.					Day of the Month.	geocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian		
	Aoon.					Noon.	Passage.					
1	S. 1°	38	44		${ }_{38.8}$		1	S. $1^{\circ} 0^{\circ}$	5	${ }_{35}^{\prime \prime}$	h. 5	m. 53•1
2	17	25	13		$37 \cdot 2$	2	S. 9	49	6	5	$51 \cdot 6$	
3	17	11	34		$35 \cdot 6$	3	9	32	32	5	$50 \cdot 2$	
4	16	57	48	6	$34 \cdot 0$	4	9	15	55	5	$48 \cdot 7$	
5	16	43	54	6	$32 \cdot 5$	5	8	59	14	5	47-2	
6	16	29	53	6	$31 \cdot 0$	6	8	42	29	5	$45 \cdot 8$	
7	16	15	44	6	$29 \cdot 4$	7	8	25	41	5	44-3	
8	16	1	29	6	$27 \cdot 8$	8	8	8	49	5	$42 \cdot 8$	
9	15	47	7	6	$26 \cdot 3$	9	7	51	55	5	$41 \cdot 3$	
10	15	32	38	6	$24 \cdot 7$	10	7	34	57	5	$39 \cdot 8$	
11	15	18	2	6	$23 \cdot 2$	11	7	17	56	5	38.4	
12	15	3	20	6	$21 \cdot 7$	12	7	0	52	5	$36 \cdot 9$	
13	14	48	31	6	$20 \cdot 2$	13	6	43	45	5	35-4	
14	14	33	36	6	18.7	14	6	26	35	5	$33 \cdot 9$	
15		18	35	6	17.1	15	6	9	24	5	$32 \cdot 4$	
16	14	3	27	6	$15 \cdot 6$	16	5	52	10	5	$30 \cdot 9$	
17	13	48	14	6	$14 \cdot 1$	17	5	34	53	5	$29 \cdot 5$	
18	13	32	54		$12 \cdot 6$	18	5	17	35	5	$28 \cdot 0$	
19	13	17	29	6	$11 \cdot 1$	19	5	0	15	5	$26 \cdot 5$	
20	13	1	58	6	$9 \cdot 6$	20	4	42	53	5	$25 \cdot 0$	
21	12	46	22	6	$8 \cdot 1$	21	4	25	30	5	$23 \cdot 5$	
22	12	30	40	6	$6 \cdot 6$	22	4	8	5	5	$22 \cdot 0$	
23	12	14	52	6	$5 \cdot 0$	23	3	50	39	5	$20 \cdot 6$	
24	11	59	0	6	$3 \cdot 6$	24	3	33	12	5	$19 \cdot 1$	
25	11	43	2	6	$2 \cdot 1$	25	3	15	44	5		
26	11	26	59	6	$0 \cdot 6$	26	2	58	16	5	$16 \cdot 2$	
27	11	10	51	5	$59 \cdot 1$	27	2	40	46	5	$14 \cdot 7$	
28	10	54	39	5	$57 \cdot 6$	28	2	23	16	5	$13 \cdot 2$	
29	10	38	22		$56 \cdot 1$	29	2	5	45	5	$11 \cdot 8$	
30	10	22	1		$54 \cdot 6$	30	1	48	14	5	$10 \cdot 3$	
31						31	1	30	42	5	$8 \cdot 8$	
32	S. 9	49	6			32	S. 1	13	11	5	$7 \cdot 3$	

JANUARY, 1860.						FEBRUARY, 1860.						
mean time.						mean time.						
Day of the Month.	geocentric.					Day of the Month.	geocentrio.					
	Apparent Declination.			Meridian Passage				pparen clinatic			idian	
	Noon.						Noon.			sage.		
1	N. 22	1	${ }_{35}^{1 /}$		$\frac{\mathrm{m}}{49 \cdot 3}$		1	N. 22	$3{ }^{\prime}$	"18		$\mathrm{m}_{30 \cdot 5}$
2	22	2	57		$44 \cdot 9$	2	22	40	56		$26 \cdot 1$	
3	22	4	20		$40 \cdot 4$	3	22	41	52	10	$21 \cdot 7$	
4	22	5	42	12	$35 \cdot 9$	4	22	42	47	10	$17 \cdot 3$	
5	22	7	5	12	$31 \cdot 4$	5	22	43	40	10	$12 \cdot 9$	
6	22	8	27		$26 \cdot 9$	6	22	44	32	10	$8 \cdot 5$	
7	22	9	49		22.5	7	22	45	23	10	$4 \cdot 2$	
8	22	11	11		$17 \cdot 9$	8	22	46	12	9	$59 \cdot 9$	
9		12	32		$13 \cdot 4$	9	22	47	0	9	$55 \cdot 6$	
10	22	13	53	12	$8 \cdot 9$	10	22	47	46	9	$51 \cdot 3$	
11	22		13	12	$4 \cdot 4$	11	22	48	31	9	$47 \cdot 0$	
12	22		33		$59 \cdot 9$	12	22	49	14	9	$42 \cdot 7$	
13	22		52		55.4	13	22	49	56	9	$38 \cdot 4$	
14	22		11	11	$50 \cdot 9$	14	22	50	37	9	$34 \cdot 1$	
15	22	20	28		$46 \cdot 4$	15	22	51	16	9	$29 \cdot 8$	
16	22	21	45	11	$41 \cdot 9$	16	22	51	53	9	25.5	
17	22	23	2	11	$37 \cdot 4$	17	22	52	29	9	$21 \cdot 3$	
18.		24	17		$32 \cdot 9$	18	22	53	4	9	$17 \cdot 1$	
19	22	25	31	11	$28 \cdot 4$	19	22	53	37	9	$12 \cdot 9$	
20	22	26	45	11	$23 \cdot 9$	20	22	54	8	9	$8 \cdot 7$	
21	22	27	57		$19 \cdot 4$	21	22	54	38	9	$4 \cdot 5$	
22	22	29	9	11	$14 \cdot 9$	22	22	55	7	9	$0 \cdot 3$	
23	22	30	19	11	$10 \cdot 4$	23	22	55	34	8	$56 \cdot 1$	
24	22	31	28	11	$6 \cdot 0$	24	22	56	0	8	$51 \cdot 9$	
25	22	32	36	11	1.5	25	22	56	24	8	$47 \cdot 8$	
26	22		43	10	57.0	26	22	56	46	8	$43 \cdot 7$	
27	22		49		$52 \cdot 5$	27	22	57	8	8	$39 \cdot 6$	
28	22	35	53	10	$48 \cdot 1$	28	22	57	27	8	$35 \cdot 5$	
29	22	36	57	10	$43 \cdot 7$	29	22	57	46	8	$31 \cdot 4$	
30	22		58		$39 \cdot 3$							
31	22	38	59		$34 \cdot 9$	30	22	58	3	8	$27 \cdot 3$	
32	N. 22	39	58		$30 \cdot 5$	31 32	22 N .22	58 58	18 32	8	$\begin{aligned} & 23 \cdot 2 \\ & 19 \cdot 2 \end{aligned}$	

SEPTEMEET, 1860.						OCTOEEE, 1860.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geocentric.					Day of the Month.	geocentric.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1 2 3	N. 17 17 17	13 9 6	11 54 34	h. 22 22 22	$\begin{aligned} & \mathrm{m} \\ & 19 \cdot 7 \\ & 16 \cdot 6 \\ & 13 \cdot 5 \end{aligned}$	1 2 3	º N. 15 15 15	30 27 24	$1 \prime$ 42 30 19	h. 20 20 20	$\begin{aligned} & \mathrm{m} . \\ & 44 \cdot 9 \\ & 41 \cdot 7 \\ & 38 \cdot 5 \end{aligned}$
4	17	2	33	22	$10 \cdot 4$	4	15	21	9	20	35.2
5	16	59	3	22	$7 \cdot 3$	5	15	18	1	20	$31 \cdot 9$
6	16	55	32	22	4*2	6	15	14	54	20	$28 \cdot 6$
7	16	52	2	22	1•1	7	15	11	49	20	$25 \cdot 4$
8	16	48	32	21	$58 \cdot 0$	8	15	8	45	20	$22 \cdot 1$
9	16	45	2	21	$54 \cdot 9$	9	15	5	43	20	$18 \cdot 8$
10	16	41	33	21	51.8	10	15	2	42	20	$15 \cdot 5$
11	16	38	4	21	$48 \cdot 6$	11	14	59	43	20	$12 \cdot 2$
12	16		35	21	$45 \cdot 4$	12	14	56	46	20	$8 \cdot 9$
13	16	31	7	21	$42 \cdot 3$	13	14	53	50	20	$5 \cdot 6$
14	16	27	39	21	$39 \cdot 2$	14	14	50	56	20	$2 \cdot 3$
15	16	24	12	21	36.1	15	14	48	4	19	$59 \cdot 0$
16	16	20	46	21	$32 \cdot 9$	16	14	45	14	19	$55 \cdot 7$
17	16	17	20	21	29.7	17	14	42	26	19	$52 \cdot 4$
18	16	13	54	21	26.5	18	14	39	40	19	$49 \cdot 1$
19	16	10	29	21	$23 \cdot 3$	19	14	36	56	19	$45 \cdot 7$
20	16	7	6	21	20.1	20	14	34	14	19	$42 \cdot 3$
21	16	3	42	21	$16 \cdot 9$	21	14	31	34	19	$38 \cdot 9$
22	16	0	20	21	$13 \cdot 7$	22	14	28	57	19	35-5
23	15	56	59	21	$10 \cdot 5$	23	14	26	21	19	$32 \cdot 1$
24	15	53	38	21	$7 \cdot 3$	24	14	23	48	19	$28 \cdot 7$
25	15	50	18	21	$4 \cdot 1$	25	14	21	18	19	25-3
26	15	46	59	21	$0 \cdot 9$	26	14	18	49	19	21.9
27	15	43	42	20	57•7	27	14	16	23	19	18.5
28	15	40	25	20	$54 \cdot 5$	28	14	14	0	19	15•1
29	15	37	10	20	$51 \cdot 3$	29	14	11	39	19	$11 \cdot 6$
30	15	33	55	20	48•1	30	14			19	$8 \cdot 1$
						31	14	7	4	19	$4 \cdot 6$
31	N 15				$\begin{aligned} & 44 \cdot 9 \\ & 41 \cdot 7 \end{aligned}$	32	N. 14			19	$1 \cdot 1$
32	N. 15	27	30		$41 \cdot 7$	32	N. 14	4		19	$1 \cdot 1$

NOVEMEER, 1860.						DECEMEER, 1860.						
MEAN TIME.						MEAN TIME.						
Day of the Month.	geocentric.					Day of the Month.	amocentric.					
	Apparent Declination.			Meridian Passage.				$\begin{aligned} & \text { 4ppare } \\ & \text { clinat } \end{aligned}$			idian	
	NToon.						Noon.			sage.		
1	N. 14	4	51		m. $1 \cdot 1$		1	N. 13	22	42	h.	$\mathrm{m}_{12 \cdot 4}$
2	14	2	41		$57 \cdot 6$	2	13	22	13	17	$8 \cdot 6$	
3		0	33		$54 \cdot 1$	3	13	21	48	17	$4 \cdot 8$	
4	13	58	28		$50 \cdot 6$	4	13	21	27	17	$1 \cdot 0$	
5	13	56	26		$47 \cdot 1$	5	13	21	10	16	$57 \cdot 2$	
6		54	26		$43 \cdot 6$	6	13	20	57	16	$53 \cdot 3$	
7	13	52	30		$40 \cdot 1$	7	13	20	48	16	$49 \cdot 4$	
8	13	50	37		$36 \cdot 6$	8	13	20	43	16	$45 \cdot 5$	
9		48	47		$33 \cdot 1$	9	13	20	42	16	$41 \cdot 6$	
10	13	46	59		$29 \cdot 6$	10	13	20	45	16	$37 \cdot 7$	
11	13	45	15		$26 \cdot 0$	11	13	20	53	16	$33 \cdot 8$	
12		43	35		$22 \cdot 4$	12	13	21	4	16	$29 \cdot 9$	
13	13	41	57		$18 \cdot 8$	13	13	21	19	16	26.0	
14	13	40	23		$15 \cdot 2$	14	13	21	39	16	$22 \cdot 0$	
15		38	52		$11 \cdot 6$	15	13	22	2	16	$18 \cdot 0$	
16	13	37	25	18	$8 \cdot 0$	16	13	22	30	16	$14 \cdot 0$	
17	13	36	1	18	$4 \cdot 4$.	17	13	23	1	16	$10 \cdot 0$	
18		34	41		$0 \cdot 8$	18	13	23	37	16	$6 \cdot 0$	
19	13	33	23		$57 \cdot 2$	19	13	24	17	16	$2 \cdot 0$	
20	13	32	10	17	$53 \cdot 5$	20	13	25	0	15	58.0	
21	13	31	0		$49 \cdot 8$	21	13	25	48	15	$54 \cdot 0$	
22		29	53	17	$46 \cdot 1$	22	13	26	39	15	$50 \cdot 0$	
23	13	28	51	17	$42 \cdot 4$	23	13	27		15	$45 \cdot 9$	
24		27	51		$38 \cdot 7$	24	13	28	34	15	$41 \cdot 8$	
25	13	26	56		$35 \cdot 0$	25	13	29	37	15	$37 \cdot 7$	
26	13	26	4	17	$31 \cdot 3$	26	13	30	44	15	$33 \cdot 6$	
27		25	16		$27 \cdot 6$	27	13	31		15	$29 \cdot 5$	
28	13	24	32	17	$23 \cdot 8$	28	13	33			$25 \cdot 4$	
29	13	23	51	17	$20 \cdot 0$	29	13	34	27	15		
30	13	23	15		$16 \cdot 2$	30	13	35		15	$17 \cdot 2$	
31	13	22	42			31		37		15	$13 \cdot 1$	
32	N. 13	22	13		$8 \cdot 6$	32	N. 13	38	43	15	$8 \cdot 9$	

JANUARY, 1860.						FEBRUARY, 1860.						
mean time.						mean time.						
Day of the : Month.	geocentrio.					Day of the Month.	geocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian		
	Noon.					Noon.	Passage.					
1	N. 14	15	${ }_{3}$		${ }_{8.8}$		1	N. 1_{5}°	'	" 2	h.	
2	14	16	10		$4 \cdot 7$	2	15	1	42	12	$55 \cdot 0$	
3	14	17	18		0.6	,	15	3	24	12	$50 \cdot 8$	
4	14	18	28		$56 \cdot 5$	4	15	5	5	12	$46 \cdot 5$	
5	14	19	39		$52 \cdot 3$	5	15	6	47	12	$42 \cdot 3$	
6	14	20	52		$48 \cdot 2$	6	15	8	28	12	$38 \cdot 1$	
7	14	22	7		$44 \cdot 1$	7	15	10	10	12	$33 \cdot 8$	
8	14	23	24		$39 \cdot 9$	8	15	11	52	12	$29 \cdot 6$	
9	14	24	42		$35 \cdot 8$	9	15	13	33	12	$25 \cdot 3$	
10	14	26	1		$31 \cdot 6$	10	15	15	15	12	$21 \cdot 1$	
11	14	27	22		$27 \cdot 5$	11	15	16	56	12	$16 \cdot 8$	
12	14	28	45		$23 \cdot 3$	12	15	18	37	12	$12 \cdot 6$	
13	14	30	9		$19 \cdot 2$	13	15.	20	18	12	$8 \cdot 4$	
14	14	31	34		$15 \cdot 0$	14	15	21	59	12	$4 \cdot 1$	
15	14	33	0		$10 \cdot 8$	15	15	23	39	11	$59 \cdot 9$	
16	14	34	28	14	$6 \cdot 7$	16	15	25	18	11	$55 \cdot 6$	
17	14	35	57	14	$2 \cdot 5$	17	15	26	57	11	$51 \cdot 4$	
18		37	27		$58 \cdot 3$	18	15	28	36	11	$47 \cdot 2$	
19	14	38	59		$54 \cdot 1$	19	15	30	14	11	$42 \cdot 9$	
20	14	40	31	13	$49 \cdot 9$	20	15	31	51	11	$38 \cdot 7$	
21	14	42	5		$45 \cdot 7$	21	15	33	28	11	$34 \cdot 4$	
22	14	43	39	13	$41 \cdot 5$	22	15	35	4	11	$30 \cdot 2$	
23	14	45	14	13	$37 \cdot 3$	23	15	36	39	11	$25 \cdot 9$	
24	14	46	50		$33 \cdot 1$	24	15	38	13	11	$21 \cdot 7$	
25	14	48	27		$28 \cdot 8$	25	15	39	46	11	$17 \cdot 5$	
26	14	50	4		$24 \cdot 6$	26	15	41	18	11	$13 \cdot 2$	
27	14	51	43		$20 \cdot 4$	27	15	42	49	11	$9 \cdot 0$	
28	14	53	21	13	16.2	28	15	44	19	11	$4 \cdot 8$	
29	14	55	1	13	11•9	29	15	45	48	11	$0 \cdot 6$	
30	14	56	41		$7 \cdot 7$							
31	14	58	21	13	$3 \cdot 5$	30	15	47	16	10	$56 \cdot 3$	
						31 32	15 N. 15	48 50	42 08	10 10	$52 \cdot 1$ $47 \cdot 9$	
32	N. 15	0	2		$59 \cdot 3$	32	N. 15			10	$47 \cdot 9$	

MARCH, 1860.						APRIL, 1860.						
MEAN TIME.						MEAN TIME.						
Day of the Month.	azocentric.					$\begin{gathered} \text { Day of } \\ \text { the } . \\ \text { Month. } \end{gathered}$	geocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian Passage.		
	Noon.					Noon.						
1	N. ${ }^{\circ} 5$	$4{ }^{\prime} 7$	$1{ }^{\prime \prime}$		m.		1	N. 16	19	54	h.	$\frac{\mathrm{m}}{47 \cdot 7}$
2	15	48	42	10	$52 \cdot 1$	2	16	20	28	8	$43 \cdot 7$	
3	15	50	8	10	$47 \cdot 9$	3	16	21	0	8	$39 \cdot 6$	
4	15	51	32	10	$43 \cdot 7$	4	16	21	30	8	$35 \cdot 6$	
5	15	52	54	10	$39 \cdot 5$	5	16	21	58	8	$31 \cdot 6$	
6	15	54	16	10	$35 \cdot 3$	6	16	22	24	8	$27 \cdot 6$	
7	15	55	36	10	$31 \cdot 1$	7	16	22	47	8	23.5	
8	15	56	54	10	$26 \cdot 9$	8	16	23	9	8	$19 \cdot 5$	
9	15	58	11	10	$22 \cdot 7$	9	16	23	29	8	$15 \cdot 5$	
10	15	59	27	10	$18 \cdot 5$	10	16	23	47	8	11.5	
11	16	0	41	10	$14 \cdot 3$	11	16	24	2	8	7.5	
12	16	1	54	10	$10 \cdot 1$	12	16	24	16	8	3.5	
13	16	3	5	10	$5 \cdot 9$	13	16	24	27	7	$59 \cdot 5$	
14	16	4	14	10	$1 \cdot 7$	14	16	24	37	7	$55 \cdot 5$	
15	16	5	22	9	$57 \cdot 6$	15	16	24	44	7	$51 \cdot 5$	
16	16	6	28	9	$53 \cdot 4$	16	16	24	49	7	47-6	
17	16	7	32	9	$49 \cdot 3$	17	16	24	53	7	$43 \cdot 6$	
18	16	8	34	9	$45 \cdot 2$	18	16	24	54	7	$39 \cdot 6$	
19	16	9	35	9	$41 \cdot 0$	19	16	24	53	7	$35 \cdot 7$.	
20	16	10	34	9	$36 \cdot 9$	20	16	24	50	7	31.8	
21	16	11	31	9	$32 \cdot 8$	21	16	24	45	7	$27 \cdot 8$	
22	16	12	27	9	28.6	22	16	24	38	7	$23 \cdot 9$	
23	16	13	20	9	$24 \cdot 5$	23	16		28	7	$20 \cdot 0$	
24	16	14	12	9	$20 \cdot 4$	24	16	24	17	7	$16 \cdot 1$	
25	16	15	1	9	$16 \cdot 3$	25	16	24	4	7	$12 \cdot 2$	
26	16	15	49	9	$12 \cdot 2$	26	16	23	48	7	$8 \cdot 3$	
27	16	16	35	9	$8 \cdot 1$	27	16	23	31	7	$4 \cdot 4$	
28	- 16	17	19	9	$4 \cdot 0$	28	16	23	11	7	0.5	
29	16	18	1	8	$59 \cdot 9$	29	16	22	50	6	56.7	
30	16	18	41	8	$55 \cdot 9$	30	16	22	26	6	$52 \cdot 8$	
31	16		18	8	$51 \cdot 8$							
						31	16	22	1	6	$49 \cdot 0$	
32	N. 16	19	54		$47 \cdot 7$	32	N. 16	21	33	6	$45 \cdot 2$	

MAY, 1860.						JUNE, 1860.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geocentric.					Day of the Month.	GEOCENTRIC.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1 2 3	N. 16 16 16	$2 \dot{1}$ 21 21	11 1 33 4		$\begin{aligned} & \mathrm{m} . \\ & 49 \cdot 0 \\ & 45 \cdot 2 \\ & 41 \cdot 3 \end{aligned}$	1 2 3	N. 0 15 15	53 51 50	11 11 47 22	h.	$\begin{aligned} & \mathrm{m} \\ & 52 \cdot 7 \\ & 49 \cdot 0 \\ & 45 \cdot 4 \end{aligned}$
4	16	20	32		$37 \cdot 5$	4	15	48	55	4	$41 \cdot 7$
5	16	19	59		$33 \cdot 7$	5	15	47	26	4	$38 \cdot 1$
6	16	19	23		$29 \cdot 9$	6	15	45	56	4	$34 \cdot 5$
7	16	18	46	6	26.0	7	15	44	24	4	$30 \cdot 8$
8	16	18	7		$22 \cdot 2$	8	15	42	51	4	$27 \cdot 2$
9	16	17	25		$18 \cdot 4$	9	15	41	16	4	$23 \cdot 6$
10	16	16	42	6	$14 \cdot 6$	10	15	39	40	4	$20 \cdot 0$
11	16	15	57	6	$10 \cdot 8$	11	15	38	2	4	$16 \cdot 3$
12	16	15	10	6	$7 \cdot 0$	12	15	36	23	4	$12 \cdot 7$
13	16	14	22	6	$3 \cdot 2$	13	15	34	42	4	9•1
14	16	13	31	5	$59 \cdot 5$	14	15	33	0	4	$5 \cdot 5$
15	16	12	39	5	$55 \cdot 7$	15	15	31	17	4	$1 \cdot 9$
16	16	11	44	5	$51 \cdot 9$	16	15	29	32	3	$58 \cdot 3$
17	16	10	48	5	$48 \cdot 2$	17	15	27	45	3	$54 \cdot 7$
18	16	9	50	5	$44 \cdot 4$	18	15	25	58	3	$51 \cdot 1$
19	16	8	50	5	$40 \cdot 7$	19	15	24	9	3	$47 \cdot 5$
20	16	7	48	5	37.0	20	15	22	18	3	$43 \cdot 9$
21	16	6	45	5	$33 \cdot 3$	21	15	20	26	3	$40 \cdot 4$
22	16	5	39	5	$29 \cdot 5$	22	15	18	33	3	36.8
23	16	4	32	5	$25 \cdot 8$	23	15	16	39	3	33.3
24	16	3	23		$22 \cdot 1$	24	15	14	43	3	$29 \cdot 7$
25	16	2	13	5	$18 \cdot 4$	25	15	12	46	3	26.2
26	16	1	0	5	$14 \cdot 7$	26	15	10	48	3	$22 \cdot 7$
27	15	59	46	5	$11 \cdot 0$	27	15	8	49	3	$19 \cdot 1$
28	15	58	31	5	7-3	28	15	6	48	3	15.6
29	15	57	13	5	$3 \cdot 7$	29	15	4		3	$12 \cdot 1$
30	15	55	54		$0 \cdot 0$	30	15	2	44	3	$8 \cdot 6$
31	15	54	34		$56 \cdot 3$	31	15	0		3	$5 \cdot 0$
32	N. 15 -	53			$52 \cdot 7$	32	N. 14	58		3	1.5

JULY, 1860.						AUGUST, 1860.						
mean trme.						mean time.						
Day of the Month.	giocentric.					Day of the Month.	geocentric.					
	Apparent Declination			Meridian Passage.				${ }^{\text {ppparer }}$ clinati			ridian	
	Noon.						Noon.					
1	N. 1°	'	40		${ }_{5}^{\text {m. }}$		1	N. 13	48	47	h.	${ }_{16.8}$
2	14	58	35	3	$1 \cdot 5$	2	13	46	17	1	$13 \cdot 4$	
3	14	56	29	2	$58 \cdot 0$	3	13	43	45	1	$9 \cdot 9$	
4	14	54	21	2	$54 \cdot 5$	4	13	41	13	1	$6 \cdot 5$	
5	14	52	13	2	$50 \cdot 9$	5	13	38	41	1	$3 \cdot 1$	
6	14	50	4	2	47-4	6	13	36	8	0	$59 \cdot 6$	
7	14	47	53	2	$43 \cdot 9$	7	13	33	35	0	$56 \cdot 2$	
8	14	45	42	2	$40 \cdot 4$	8	13	31	1	0	$52 \cdot 7$	
9		43	29	2	$36 \cdot 9$	9	13	28	27	0	$49 \cdot 3$	
10		41	16	2	$33 \cdot 4$	10	13	25	53	0	$45 \cdot 8$	
11	14	39	1	2	$29 \cdot 9$	11	13	23	18	0	$42 \cdot 3$	
12		36	46	2	26.4	12	13	20	43	0	$38 \cdot 9$	
13		34	30	2	$22 \cdot 9$	13	13	18		0	35.4	
14	14	32	12	2	$19 \cdot 4$	14	13	15	32	0	$32 \cdot 0$	
15		29	54	2	$15 \cdot 9$	15	13	12	56	0	$28 \cdot 5$	
16		27	35	2	$12 \cdot 4$	16	13	10	19	0	$25 \cdot 1$	
17	14	25	15	2	$8 \cdot 9$	17	13	7	43	0	$21 \cdot 7$	
18		22	54	2	$5 \cdot 4$	18	13	5	6	0	$18 \cdot 2$	
19		20	33	2	$1 \cdot 9$	19	13	2	29	0	14.8	
20	14	18	10	1	$58 \cdot 4$	20	12	59	52	0	$11 \cdot 3$	
21	14	15	47	1	$54 \cdot 9$	21	12	57	15	0	$7 \cdot 8$	
22	14	13	23	1	$51 \cdot 4$	22	12	54	38	0		
23°	14	10	59	1	$48 \cdot 0$	23	12	52	1	$\left\{{ }_{28}\right.$		
24	14	8	33	1	$44 \cdot 5$	24	12	49	24	23	$54 \cdot 0$	
25	14	6		1	$41 \cdot 0$	25	12	46	46	23	50.6	
26	14	3	41	1	$37 \cdot 6$	26	12	44	9	23	$47 \cdot 2$	
27	14	1	13	1	$34 \cdot 1$	27	12	41	32	23	$43 \cdot 7$	
28	13	58	45	1	$30 \cdot 7$	28	12	38	55	23	$40 \cdot 3$	
29	13	56	17	1	$27 \cdot 2$	29	12	36	17	23	$36 \cdot 9$	
30	13	53	47	1	$23 \cdot 7$	30	12	33	40	23	$33 \cdot 4$	
31		51	18		$20 \cdot 3$	31	12.	31	4	23	$30 \cdot 0$	
32	N. 13	48	47		16.8	32	N. 12	28	27	23	26.5	

SEPTEMEER, 8860.						OCTOEER, 1860.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	GEOOENTRIO.					Day of the Month.	geocentrio.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1	N. $1{ }^{\circ}$	28	27	h.	$\begin{aligned} & \mathrm{m} . \\ & 26 \cdot 5 \end{aligned}$	1	N. $11{ }^{\circ}$	13		h.	m. $42 \cdot 4$
2	12	25	50	23	$23 \cdot 1$	2	11	10	53	21	$38 \cdot 9$
3	12	23	14	23	$19 \cdot 6$	3	11	8		21	$35 \cdot 4$
4	12		38	23	$16 \cdot 1$	4	11	6		21	$31 \cdot 9$
5	12	18	1	23	$12 \cdot 7$	5	11	4	0	21	$28 \cdot 3$
6	12	15	26	23	$9 \cdot 2$	6	11	1	45	21	$24 \cdot 8$
7	12	12	50	23	5•8	7	10	59		21	$21 \cdot 3$
8	12		15	23	$2 \cdot 3$	8	10	57		21	$17 \cdot 8$
9	12	7	40	22	$58 \cdot 8$	9	10	55	5	21	14.3
10	12	5	6	22	$55 \cdot 4$	10	10	52	53	21	$10 \cdot 7$
11	12	2	31	22	$51 \cdot 9$	11	10	50	44	21	$7 \cdot 2$
12	11	59	58	22	$48 \cdot 5$	12	10	48	35	21	$3 \cdot 7$
13	11	57	24	22	$45 \cdot 0$	13	10	46	27	21	$0 \cdot 1$
14	11	54	52	22	$41 \cdot 5$	14	10	44	21	20	$56 \cdot 6$
15	11	52	19	22	$38 \cdot 1$	15	10	42	17	20	$53 \cdot 0$
16	11	49	48	22	34.6	16	10	40	13	20	$49 \cdot 5$
17	11	47	16	22	$31 \cdot 2$	17	10	38	12	20	$45 \cdot 9$
18	11	44	46	22	$27 \cdot 7$	18	10	36	11	20	$42 \cdot 3$
19	11	42	16	22	24.2	19	10	34	12	20	$38 \cdot 8$
20	11	39	46	22	$20 \cdot 8$	20	10	32	14	20	$35 \cdot 2$
21	11	37	18	22	$17 \cdot 3$	21	10	30	18	20	$31 \cdot 6$
22	11	34	50	22	$13 \cdot 8$	22	10	28	24	20	$28 \cdot 1$
23	11	32	22	22	$10 \cdot 4$	23	10	26	31	20	$24 \cdot 5$
24 :	11	29	56	22	6.9	24	10	24	39	20	$20 \cdot 9$
25	11	27	30	22	$3 \cdot 4$	25	10	22	49	20	17•3
26	11	25	5	21	$59 \cdot 9$	26	10	21	1	20	$13 \cdot 7$
27	11	22	41	21	$56 \cdot 4$	27	10	19	15	20	$10 \cdot 1$
28	11	20	18	21	. $22 \cdot 9$	28	10	17	30	20	$6 \cdot 5$
29	11	17	55	21	$49 \cdot 4$	29	10	15	47	20	2.9
30	11	15	34	21	$45 \cdot 9$	30	10	14	5	19	$59 \cdot 2$
31 32	N. 11	13			$\begin{aligned} & 42 \cdot 4 \\ & 38 \cdot 9 \end{aligned}$	32	N. 10	10	48	19	$52 \cdot 0$

NOVEMBER, 1860.						DECEMBER, 1860.					
mean time.						mean time.					
Day of the Month.	amocentric.					Day of the Month.	geocentric.				
	Apparent Declination.			Meridian Passage.			Apparent Declination.		Meridian		
	Noon.					Noon.	Passage.				
1	N. 10°	10			$\frac{\mathrm{m} .0}{52 \cdot 0}$		1	N. $\stackrel{0}{9} 9^{97}$	$\stackrel{11}{45}$	h.	m. $0 \cdot 6$
2	10	9	11	19	$48 \cdot 3$	2	9 37	15	17	$56 \cdot 8$	
3		7	37			3	9	46	17	53.0	
4		6		19	$41 \cdot 0$	4	986	20	17	49•1	
5	10	4	34	19	$37 \cdot 4$	5	935	57	17	$45 \cdot 3$	
6		3	6	19	$33 \cdot 8$	6	935	36	17	41.5	
7	10	1	39	19	$30 \cdot 1$	7	935	17	17	$37 \cdot 6$	
8	10	0	14	19	26.5	8	935	1	17	33-8	
9		58	52	19	$22 \cdot 8$	9	934	48	17	$29 \cdot 9$	
10	9	57	31	19	$19 \cdot 1$	10	934	37	17	$26 \cdot 1$	
11	9	56	12	19	$15 \cdot 4$	11	934	28	17	$22 \cdot 2$	
12		54	56	19	$11 \cdot 8$	12	934	23	17	$18 \cdot 3$	
13	9	53	41	19	$8 \cdot 1$	13	934	19	17	14.5	
14	9	52	29	19	$4 \cdot 4$	14	934	19	17	$10 \cdot 6$	
15		51	19	19	$0 \cdot 7$	15	934	20	17	$6 \cdot 7$	
16	9	50	11	18	$57 \cdot 0$	16	934	25	17	$2 \cdot 8$	
17	9	49	5	18	$53 \cdot 3$	17	934	32	16	$58 \cdot 9$	
18		48	2	18	$49 \cdot 6$	18	$9 \quad 34$	41	16	$55 \cdot 0$	
19	9	47	1	18	45•8	19	934	53	16	$51 \cdot 0$	
20	9	46	2	18	$42 \cdot 1$	20	935	7	16	47-1	
21		45	5	18	38.4	21	935	24	16	$43 \cdot 2$	
22	9	44	10	18	34-6	22	935	44	16	$39 \cdot 2$	
23	9	43	18	18	$30 \cdot 9$	23	936	6	16	$35 \cdot 3$	
24	9	42	28	18	$27 \cdot 1$	24	936	30	16	$31 \cdot 3$	
25	9	41	41	18	23.4	25	936	57	16	$27 \cdot 4$	
26	9	40	56	18	$19 \cdot 6$	26	937	26	16	$23 \cdot 4$	
27	9	40	13	18	$15 \cdot 8$	27	$9 \quad 37$	58	16	$19 \cdot 4$	
28	9	39	32	18	$12 \cdot 0$	28	938	32	16	$15 \cdot 4$	
29	9	38	54	18	$8 \cdot 2$	29	939	9	16	$11 \cdot 4$	
30	9	38	19		$4 \cdot 4$	30	$9 \quad 39$	48	16	$7 \cdot 4$	
31	9	37				31	940	29	16	$3 \cdot 4$	
32	N. 9	37	15			32	N. 941		15	$59 \cdot 4$	

NAUTICAL ALMANAC FOR THE YEAR
 1861.

ECLIPSES OF THE SUN AND MOON.

In the year 1861 there will be three Eclipses of the Sun, one of the Moon, and a Transit of Mercury over the Sun's disk.
I.-An Annular Eclipse of the $S U N$, January 10, 1861, invisible at Greenwich.

Beging on the Earth generally January $10^{\mathrm{d}} 12^{\mathrm{h}} 34^{\mathrm{m} \cdot 9}$, Mean Time at Greenwich, in Longitude $75^{\circ} 12^{\prime} \mathrm{E}$. of Greenwich, and Latitude $19^{\circ} 32^{\prime} \mathrm{S}$.
II.-An Annular Eclipse of the SUN, July 7, 1861, invisible at Greenwich.
ELEMENTS.

Begins on the Earth generally July $7^{\mathrm{d}} 11^{\mathrm{h}} 17^{\mathrm{m}} 8$, Mean Time at Greenwich, in Longitude $100^{\circ} 6^{\prime}$ E. of Greenwich, and Latitude $3^{\circ} 54^{\prime} \mathrm{N}$.
III.-A Partial Eclipse of the MOON, Dec. 16, 1861, partly visible at Greenwich.

ELEMENTS.
Greenwich Mean Time of 8 in R.A. Dec. $\begin{array}{llll}\text { d. } \\ 16 & \stackrel{\text { h. }}{20} & \frac{m}{11} & 8 \\ 16\end{array}$ (1)'s Right Ascension 5408
(1)'s Declination N. ${ }_{2}^{\circ}{ }^{4} 1_{11}^{2 \prime 2}$
(8)'s Declination
S. 232244

Longitude $88^{\circ} 10^{\prime} \mathrm{W}$. of Greenwich. Latitude $24^{\circ} 24^{\prime} \mathrm{N}$.
IV.-A Total Eclipse of the SUN, December 30-31, 1861, visible (as a partial one) at Greenwich.

ELEMENTS.
 ©'s and (1)'s Right Ascension 184319

Begins on the Earth generally December $30^{\mathrm{d}} 23^{\mathrm{h}} 14^{\mathrm{m}} 8$, Mean Time at Greenwich, in Longitude $74^{\circ} 1^{\prime} \mathrm{W}$. of Greenwich, and Latitude $9^{\circ} 1^{\prime} \mathrm{N}$.

A Transit of Mercury over the Sun's disk, Nov. 11, 1861, partly visible at Greenwich. ELEMENTS.
 ©'s and ४̧'s Right Ascension 15103
¢̧'s Declination
S. ${ }^{\circ}{ }^{\circ}{ }^{\prime} 3^{\prime}{ }^{\prime \prime} 40$
(6)'s Declination
S. 174443

Longitude $97^{\circ} 20^{\prime}$ E. of Greenwich.
Latitude $17^{\circ} 49^{\prime} \mathrm{S}$.

PHASES OF THE MOON FOR 1861.

Jandary.

JANUARY, 1861.						FEBRUARY, 1861.					
		THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be Apparent Time.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$			THE SUN'S Apparent Deolination.	Diff. for 1 hr .	Equation to be added to Apparent Time.	Dief:
Tues.	1	S. 228598	113	m. s. 3 58	$\begin{array}{r} \mathrm{s} . \\ 1 \end{array}$	Fri.	1	S. $17{ }^{\circ} 1047$	43	$\begin{array}{cc}\text { m. s. } \\ 13 & 55\end{array}$	s.
Wed.	2	22547	14	426	1	Sat.	2	164327	44	142	0
Thur.	3	224819	15	454	1	Sun.	3	162550	44	$14 \quad 8$	0
Fri.	4	22424	16	521	1	Mon.	4	$\begin{array}{lll}16 & 755\end{array}$	45	1414	0
Sat.	5	223522	17	548	1	Tues.	5	154944	46	1419	0
Sun.	6	222813	18	615	1	Wed.	6	153117	46	1423	0
Mon.	7	222038	20	641	1	Thur.	7	151233	47	1426	0
Tues.	8	221236	21	76	1	Fri.	8	145335	48	1429	0
Wed.	9	$\begin{array}{lll}22 & 4 & 7\end{array}$	22	731	1	Sat.	9	143421	48	1430	0
Thur.	10	215513	23	756	0	Sun.	10	141452	49	1431	0
Fri.	11	214553	24	820	0	Mon.	11	135510	49	1431	0
Sat.	12	21368	25	848	0	Tues.	12	133513	50	1430	0
Sun.	13	212558	26	96	0	Wed.	13	13154	50	1429	0
Mon.	14	211523	27	928	,	Thur.	14	125442	51	1427	0
Tues.	15	$21 \quad 424$	28	949	0	Fri.	15	$1234 \quad 7$	51	1424	0 .
Wed.	16	20530	29	10.10	0	Sat.	16	121320	52	1420	0
Thur.	17	204113	30	1030	0	Sun.	17	115222	52	1416	0
Fri.	18	$20 \quad 29 \quad 2$	31	1049	0	Mon.	18	113113	53	1411	0
Sat.	19	201628	32	117	0	Tues.	19	$11 \begin{array}{lll}11 & 95\end{array}$	53	$14 \quad 5$	0
Sun.	20	$20 \quad 331$	33	1125	0	Wed.	20	104823	54	1358	0
Mon.	21	195012	34	1142	,	Thur.	21	102643	54	1351	0
Tues.	22	193631	35	1158	0	Fri.	22	$10 \quad 453$	54	1343	0
Wed.	23	192228	36	1213	0	Sat.	23	94254	55	1335	0
Thar.	24	$19 \quad 8 \quad 4$	36	1228	0	Sun.	24	$92{ }^{2} \mathbf{4 6}$	55	1326	0
Fri.	25	185319	37	1241	0	Mon.	25	858.30	56	1316	0
Sat.	26	18. 3813	38	1254	0	Tues.	26	8367	56	136	0
Sun.	27	182247	39	136	0	Wed.	27	81335	56	1255	0
						Thur.	28	75056	56	1244	0
Mon.	28	$\begin{array}{lll}18 & 7 & 2\end{array}$	40	1318	0						
Tues.	29	175056	41	1328	0	Fri.	29	S. 72810		1232	
Wed.	30	173432	41	1338	0						
Thur.	31	171748	42	1347	0						
Fri.	32	S. $17 \quad 047$		1355							

1861. AT GREENWICH APPARENT NOON. 1861.											
MARCM, 1861.						APRIL, 1861.					
		THE SUN'S Apparent Declination.	Diff. for 1 hr .	$\begin{aligned} & \text { Equation } \\ & \text { of Time, } \\ & \text { to be } \\ & \text { added to } \\ & \text { Apparent } \\ & \text { Pime. } \end{aligned}$	$\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} . \end{gathered}$			THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Tome, to be added to subbt.from Apparent Time.	Diff for cr.
Fri.	1	S. $7^{7} 28^{\prime} 101$	57	${ }_{12}^{\text {m. s. }} 32$	s. 0	Mon.	1	N. 483858	57	$\begin{array}{cc}\text { m. s. } \\ 3 & 58\end{array}$	s.
Sat.	2	$\begin{array}{llll}7 & 518\end{array}$	57	1219	0	Tues.	2	M 5	57	335	0
Sun.	3	64220	57	127	0	Wed.	3	5251	57	317	0
Mon.	4	61916	57	1153	0	Thur.	4	54754	56	259	0
Tues.	5	5566	58	1140	0	Fri.	5	61042	56	241	0
Wed.	6	53252	58	1126	0	Sat.	6	63323	56	224	0
Thur.	7	$5 \quad 933$	58	1111	0	Sun.	7	65558	56	27	0
Fri.	8	44610	58	1056	0	Mon.	8	71825	55	150	0
Sat.	9	42243	58	1041	0	Tues.	9	74045	55	133	0
Sun.	10	35913	58	1025	0	Wed.	10	$8 \quad 258$	55	117	0
Mon.	11	33540	58	$10 \quad 9$	0	Thur.	11	$825 \quad 2$	54	10	0
Tues.	12	3125	59	953	0	Fri.	12	84658	54	045	0
Wed.	13	24827	59	937	0	Sat.	13	9845	54	029	0
Thur.	14.	22448	59	920	0	Sun.	14	93022	53	014	0
Fri.	15.	$\begin{array}{llll}2 & 1 & 7\end{array}$	59	93	0	Mon.	15	95150	53	00	0
Sat.	16	13725	59	846	0	Tues.	16	10139	52	015	0
Sun.	17	11343	59	828	0	Wed.	17	103417	52	029	0
Mon.	18	0501	59	810	0	Thur.	18	$\begin{array}{lll}10 & 55 & 15\end{array}$	51	043	0
Tues.	19	02619	59	753	0	Fri.	19	$\begin{array}{llll}11 & 16 & 1\end{array}$	51	057	0
Wed.	20	S. $0 \quad 2 \quad 237$	59	734	0	Sat.	20	$\begin{array}{llll}11 & 36 & 37\end{array}$	51	110	0
Thur.	21	N. 0213	59	716	0	Sun.	21	$\begin{array}{llll}11 & 57 & 1\end{array}$	50	122	0
Fri.	22	04443	59	658	0	Mon.	22	$\begin{array}{llll}12 & 17 \\ 14\end{array}$	50	135	0
Sat.	23	$1 \begin{array}{lll}1 & 8 & 21\end{array}$	59	639	0	Tues.	23	123714	49	147	0
Sun.	24	13157	58	621	0	Wed.	24	$1257 \quad 2$	48	158	0
Mon.	25	15530	58		0	Thur.	25	$\begin{array}{lll}13 & 16 & 37\end{array}$	48		0
Tues.	26	2192	58	544	0	Fri.	26	$13 \quad 35 \quad 59$	47	219	0
Wed.	27	24230	58	525	0	Sat.	27	$\begin{array}{llll}13 & 55 & 8\end{array}$	47	229	0
Thur.	28	3555	58	57	0	Sun.	28	14143	46	239	0
Fri.	29	32917	58	448	0	Mon.	29	$\begin{array}{llll}14 & 32 & 45\end{array}$	46	248	0
Sat.	30	35235	58	430	0	Tues.	30		45	256	0
Sun. Mon.	31 32	41548 N. 413858	57	411 3	0	Wed.	31	N. 15		2 3	

IIAY, 1861.						TUNE, 186 I.					
		THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt. from Apparent Time.	$\begin{aligned} & \text { Diff. } \\ & \text { for } \\ & 1 \mathrm{hr} . \end{aligned}$		Day of the Month.	THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt. from added to Apparent Time.	Diff:
Wed.	1	N. $150981{ }^{\circ}$	44	$\begin{array}{cr}\text { m. } & \text { s. } \\ 3 & 4\end{array}$	S. 0	Sat.	1	N. $22{ }^{\circ} \mathrm{5}$ ¢ 49	19	m. 2 2	s.
Thur.	2	152722	44	311	0	Sun.	2	221343	18	220	0
Fri.	3	15454	43	318	0	Mon.	3	222112	17	210	0
Sat.	4	$16 \quad 231$	42	324	0	Tues.	4	$\begin{array}{llll}22 & 28 & 19\end{array}$	16	20	0
Sun.	5	161942	42	329	0	Wed.	5	$\begin{array}{llll}22 & 35 & 1\end{array}$	15	150	0
Mon.	6	$\begin{array}{llll}16 & 36 & 37\end{array}$	41	334	0	Thur.	6	224120	14	139	0
Tues.	7	$16 \quad 5316$	40	338	0	Fri.	7	$\begin{array}{llll}22 & 47 & 16\end{array}$	13	128	0
Wed.	8	$17 \quad 937$	40	342	0	Sat.	8	$\begin{array}{llll}22 & 52 & 47\end{array}$	12	117	0
Thur.	9	172542	39	345	0	Sun.	9	$\begin{array}{llll}22 & 57 & 54\end{array}$	11	15	0
Fri.	10	174128	38	348	0	Mon.	10	$\begin{array}{lll}23 & 2 & 37\end{array}$	10	053	0
Sat.	11	175658	37	350	0	Tues.	11	$23 \quad 655$	9	041	0
Sun.	12	$\begin{array}{ll}18 & 12\end{array}$	37	352	0	Wed.	12	231050	8	029	0
Mon.	13	$18 \quad 27$ 1	36	352	0	Thur.	13	$\begin{array}{llll}23 & 1419\end{array}$	7	017	0
Tues.	14	184136	35	353	0	Fri.	14	$\begin{array}{llll}23 & 17 & 24\end{array}$	6	04	0
Wed.	15	185551	34	353	0	Sat.	15	$23 \quad 20 \quad 5$	5	07	0
Thur.	16	$\begin{array}{llll}19 & 9 & 47\end{array}$	34	352	0	Sun.	16	$\begin{array}{ll}23 & 2220\end{array}$	4	020	0
Fri.	17	192323	33	351	0	Mon.	17	$23 \quad 2411$	3	033	0
Sat.	18	193640	32	349	0	Tues.	18	232538	2	046	0
Sun.	19	194937	31	346	0	Wed.	19	$\begin{array}{llll}23 & 26 & 39\end{array}$	1	059	0
Mon.	20	$20 \quad 213$	30	343	0	Thur.	20	$\begin{array}{llll}23 & 27 & 16\end{array}$	0	112	0
Tues.	21	$20 \quad 1429$	29	340	0	Fri.	21	$23 \quad 2728$	0	125	0
Wed.	22	$20 \quad 2624$	28	336	0	Sat.	22	$23 \quad 2715$	1	138	0
Thur.	23	203759	28	332	0	Sun.	23	232638	2	150	0
Fri.	24	204912	27	327	0	Mon.	24	$23 \quad 2536$	3	23	0
Sat.	25	$21 \quad 0 \quad 4$	26	321	0	Tues.	25	23 24 9	4	216	0
Sun.	26	211034	25	315	0	Wed.	26	$\begin{array}{llll}23 & 22 & 17\end{array}$	5	228	0
Mon.	27	212042	24	39	0	Thur.	27	$\begin{array}{lll}23 & 20 & 1\end{array}$	6	241	0
Tues.	28	213029	23	32	0	Fri.	28	$\begin{array}{llll}23 & 17 & 20\end{array}$	7	253	0
Wed.	29	213953	22	254	0	Sat.	29	$\begin{array}{llll}23 & 14 & 14\end{array}$	8	35	0
Thur.	30	$21 \quad 48 \quad 54$	21	246	0	Sun.	30	$23 \quad 1044$	9	317	0
Fri.	31	215733	20	238	0	Mon.	31	N. 23650		329	
Sat.	32	N. 22549		229							

1861. AT GREENWICH APPARENT NOON. 1861.

SEPTEMEER, 1861.						OCTOBERE, 186					
		THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt.from Apparent Time.	$\left.\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} \end{gathered} \right\rvert\,$			THE SUN'S Apparent Declination.	Diff. for 1 hr.	Equation of Time, to be subt.from Apparent time.	Diff.
				m. s.	s.					m. s.	s.
Sun.	1	N. 81233	54	011	0	Tues.	1	S. 316167	58	1023	0
Mon.	2	75039	55	030	0	Wed.	2	34015	58	1042	0
Tues.	3	72838	55	049	0	Thur.	3	$4 \quad 3 \quad 31$	58	110	0
Wed.	4	$7 \quad 6 \quad 30$	55	19	0	Fri.	4	$4 \quad 2643$	57	1118	0
Thur.	5	64414	55	128	0	Sat.	5	44953	57	1136	0
Fri.	6	62152	56	148	0	Sun.	6	51258	57	1154	0
Sat.	7	$\begin{array}{llll}5 & 59 & 23\end{array}$	56	28	0	Mon.	7	$\begin{array}{lll}5 & 36 & 0\end{array}$	57	1211	0
Sun.	8	$5 \quad 3649$	56	228	0	Tues.	8	$5 \begin{array}{llll}5 & 58 & 57\end{array}$	57	1227	0
Mon.	9	5149	56	249	0	Wed.	9	62150	56	1243	0
Tues.	10	$\begin{array}{llll}4 & 51 & 24\end{array}$	57	$3 \quad 9$	0	Thur.	10	$\begin{array}{llll}6 & 44 & 37\end{array}$	56	1259	0
Wed.	11	42834	57	330	0	Fri.	11	$\begin{array}{llll}7 & 7 & 19\end{array}$	56	1314	0
Thur.	12	4540	57	351	0	Sat.	12	72955	56	1329	0
Fri.	13	34241	57	412	0	Sun.	13	$7 \quad 52 \quad 25$	55	1344	0
Sat.	14	31938	57	433	0	Mon.	14	81448	55	1357	0
Sun.	15	25632	57	454	0	Tues.	15	8374	55	1411	0
Mon.	16	23323	58	516	0	Wed.	16	85912	55	1424	0
Tucs.	17	21010	58	537	0	Thur.	17	92113	54	1436	0
Wed.	18	14655	58	$5 \quad 58$	0	Fri.	18	9436	54	1447	0
Thur.	19	12337	58	619	0	Sat.	19	$10 \quad 4 \quad 51$	53	1458	0
Fri.	20	$1 \begin{array}{lll}1 & 0 & 18\end{array}$	58	640	0	Sun.	20	102626	53	$15 \quad 9$	0
Sat.	21	03657	58	71	0	Mon.	21	104753	53	1518	0
${ }^{\text {Sun }}$.	22	N. 01334	58	722	0	Tues.	22	$\begin{array}{llll}11 & 9 & 10\end{array}$	52	$15 \quad 27$	0
Mon.	23	S. $0 \quad 949$	58	743	0	Wed.	23	$\begin{array}{llll}11 & 30 & 16\end{array}$	52	1536	0
Tues.	24	0 3	58	84	0	Thur.	24	115113	51	1543	0
Wed.	25	05638	58	824	0	Fri.	25	$\begin{array}{llll}12 & 11 & 59\end{array}$	51	$\begin{array}{ll}15 & 50\end{array}$	0
Thur.	26	1203	58	845	0	Sat.	26	$\begin{array}{llll}12 & 32 & 33\end{array}$	50	$15 \quad 56$	0
Fri.	27	14328	58	$9 \quad 5$	0	Sun.	27	125256	50	$16 \quad 2$	0
Sat.	28	$2 \quad 6 \quad 52$	58	925	0	Mon.	28	$\begin{array}{lll}13 & 13 & 8\end{array}$	49	160	0
Sun.	29	$2 \begin{array}{llll}2 & 30 & 15\end{array}$	58	944	0	Tues.	29	$\begin{array}{lllr}13 & 33 & 6\end{array}$	49	1610	0
Mon.	30	25337	58	$10 \quad 4$	0	Wed.	30	$\begin{array}{llll}13 & 52 & 52\end{array}$	48	1613	0
Mon.						Thur.	31	141225	48	1616	0
Tues.	31	S. 3161657		1023		Fri.	32	S. 143144		1617	

1861.		AT	REE	NWICH	H	APPA	REI	T NOON.	*	18	61.
NOVEMEER, 1861.						DECEMBER, 1861.					
		THE SUN'S Apparent Decliuation.	Diff. for 1 hr .	Equation of Time, to be subt.from Apparent Time.	$\left.\begin{gathered} \text { Diff. } \\ \text { for } \\ 1 \mathrm{hr} \end{gathered} \right\rvert\,$			THE SUN'S Apparent Declination.	Diff. for 1 hr .	Equation of Time, to be subt.from added to Apparent Aime.	Diff.
Fri.	1	S. $14{ }^{\circ} 31{ }^{1} 4{ }^{\prime \prime}$	47	m. s.	$\begin{gathered} \text { s. } \\ 0 \end{gathered}$	Sun.	1		22	m. 10 10	s.
Sat.	2	145049	47	1618	0	Mon.	2	$\begin{array}{lll}22 & 1 & 1\end{array}$	21	1017	0
Sun.	3	$\begin{array}{lll}15 & 9 & 39\end{array}$	46	1617	0	Tues.	3	$\begin{array}{lll}22 & 9 & 36\end{array}$	20	953	1
Mon.	4	152815	45	1617	0	Wed.	4	221745	19	929	1
Tues.	5	154635	45	1615	0	Thur.	5	222529	18	94	1
Wed.	6	$16 \quad 439$	44	1612	-	Fri.	6	223245	17	838	1
Thur.	7	162227	43	169	0	Sat.	7	223936	15	12	1
Fri.	8	163958	43	164	0	Sun.	8	2246 0	14	746	1
Sat.	9	$16 \quad 5713$	42	1559	0	Mon.	9	225156	13	719	1
Sun.	10	171410	41	1553	0	Tues.	10	225726	12	652	1
Mon.	11	173049	40	1547	0	Wed.	11	$23 \quad 229$	11	624	1
Tues.	12	174710	40	1539	0	Thur.	12	$23 \quad 74$	10	556	1
Wed.	13	$\begin{array}{lll}18 & 313\end{array}$	39	1531	0	Fri.	13	231111	9	528	1
Thnr.	14	181856	38	1521	0	Sat.	14	231451	8	459	1
Fri.	15	183421	37	1511	0	Sun.	15	$2318 \quad 3$	6	430	1
Sat.	16	184925	36	151	0	Mon.	16	232047	5	41	1
Sun.	17	19410	36	1449	,	Tues.	17	23233	4	332	1
Mon.	18	:19 1834	35	1436	0	Wed.	18	$23 \quad 2451$	3	32	1
Tues.	19	193237	34	1423	0	Thur.	19	232611	2	232	1
Wed.	20	194619	33	$14 \quad 9$	0	Fri.	20	23272	0	23	1
Thar.	21	195939	32	1354	-	Sat.	21	232726	0	133	1
Fri.	22	201238	31	1338	0	Sun.	22	232721	1	13	1
Sat.	23	20 20	30	1321	0	Mon.	23	232647	2	033	1
Sun.	24	203728	29	134	-	Tues.	24	232545	3	$0 \quad 3$	1
Mon.	25	204918	28	1245	0	Wed.	25	232415	4	026	1
Tues.	26	$21 \quad 046$	27	1226	0	Thur.	26	232217	6	056	1
Wed.	27	211149	26	127	-	Fri.	27	231950	7	126	1
Thur.	28	212229	25	1146	0	Sat.	28	$\begin{array}{llll}23 & 1655\end{array}$	8		1
Fri.	29	213244	24	1125	0	Sun.	29	231332	9	225	1
Sat.	30	214235	23	113	-	Mon.	30	$23 \quad 941$	10	254	1
Sun.	31	S. 21521		1040		Tues. Wed.	31 32	$\begin{array}{rrrr}23 & 5 & 23 \\ \text { S. } 23 & 0 & 36\end{array}$	11	$\begin{array}{ll} 3 & 23 \\ & \\ 3 & 51 \end{array}$	1

THE MOON'S RIGHT ASCENSION AND DECLINATION.

JANUARY, 1861.				FEIREART, 1861.			
MEAN TIME.				MEAN TIME.			
RIGHT ASCENSION.		dellination.		RIGHt ASCENSİN.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
	h. m. s.	N ${ }^{\circ}$ ' " ${ }^{\prime}$	- ${ }^{\circ}{ }^{\prime \prime}$		h. m. s.	S 104711	S 18540
1	$10 \quad 5536$	N. 5120	N. 222318	1	$\begin{array}{llll}14 & 14 & 38\end{array}$	S. 164711	S. 1854
2	114637	S. 05756	S. 34739	2	$\begin{array}{llll}15 & 12 & 9\end{array}$	21515	$22 \quad 3852$
3	$12 \quad 3818$	$7 \quad 453$	94648	3	$\begin{array}{llll}16 & 11 & 17\end{array}$	$24 \quad 76$	$25 \quad 142$
4	$\begin{array}{lll}13 & 31 & 36\end{array}$	124935	151449	4	$17 \quad 1058$	254139	$25 \quad 5424$
5	$\begin{array}{llll}14 & 27 & 15\end{array}$	$17 \quad 5237$	$19 \quad 5218$	5	$18 \quad 950$	254451	251636
6	$15 \quad 25 \quad 25$	215451	$23 \quad 2040$	6	$19 \quad 633$	242040	231541
7	$\begin{array}{lll}16 & 25 & 32\end{array}$	243857	$25 \quad 2424$	7	$\begin{array}{llll}20 & 0 & 16\end{array}$	$2140 \quad 2$	$20 \quad 456$
8	$\begin{array}{llll}17 & 26 & 15\end{array}$	255235	$\begin{array}{llll}25 & 54 & 39\end{array}$	8	$20 \quad 5048$	17586	$16 \quad 0 \quad 24$
9	182552	253147	245156	9	213825	133118	111823
10	$19 \quad 2252$	$\begin{array}{llll}23 & 42 & 19\end{array}$	$\begin{array}{llll}22 & 26 & 4\end{array}$	10	$22 \quad 2344$	83519	61348
11	201626	$20 \quad 37 \quad 54$	185310	11	$23 \quad 734$	S. 3245	S. 055941
12	21668	163620	143131	12	$23 \quad 5043$	N. 15023	N. 41240
13	$\begin{array}{llll}21 & 53 & 28\end{array}$	115538	93822	13	0344	65733	$\begin{array}{lll}9 & 13 & 15\end{array}$
14	223811	65145	S. 42827	14	11823	114747	$13 \quad 5234$
15	232133	S. 137.57	N. 0469	15	$2 \quad 428$	161136	$18 \quad 059$
16	$0 \quad 430$	N. $3 \quad 3457$	$5 \quad 55 \quad 30$	16	25254	195859	$2128 \quad 2$
17	04759	83739	105033	17	3445	225856	$24 \quad 220$
18	13255	132117	152221	18	4381	245938	253155
19	2205	173623	$\begin{array}{llll}19 & 20 & 51\end{array}$	19	53413	254924	$\begin{array}{lll}25 & 45 & 42\end{array}$
20	$\begin{array}{llll}3 & 10 & 9\end{array}$	21125	223423	20	63145	$\begin{array}{llll}25 & 18 & 32\end{array}$	243549
21	$4 \quad 3 \quad 23$	$\begin{array}{llll}23 & 55 & 47\end{array}$	244940	21	72932	232156	215956
22	45931	253345	$25 \quad 533$	22	$8 \quad 2637$	$20 \quad 057$	$18 \quad 245$
23	55741	$\begin{array}{llll}25 & 53 & 7\end{array}$	25336	23	$\begin{array}{llll}9 & 22 & 34\end{array}$	$15 \quad 2417$	$\begin{array}{llll}12 & 5613\end{array}$
24	$6 \quad 5634$	24457	234359	24	$1017 \quad 23$	94724	$6 \quad 5824$
25	75451	22. 86	20280	25	$\begin{array}{llll}11 & 11 & 37\end{array}$	N. 3313	N. 003156
26	85135	$\begin{array}{lll}18 & 9 & 5\end{array}$	$15 \quad 5556$	26	1260	S. 30028	S. $5 \quad 5756$
27	$9 \quad 46 \quad 29$	$\begin{array}{lll}13 & 2 & 47\end{array}$	102516	27	13120	92122	$12 \quad 522$
28	$10 \quad 39 \quad 54$	$\begin{array}{lll}7 & 9 & 12\end{array}$	N. 417729	28	135815	S. $15 \quad 6 \quad 12$	S. $17 \quad 25 \quad 44$
29	1113231	N. 005052	S. $2 \quad 4 \quad 29$				
30	$12 \quad 2517$	S. 52913	81753				
31	13196	S. 112851	S. $14 \quad 1 \quad 4$				

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
MARECH, 1861.				APrimL, 1861.			
MEAN TIME.				MEAN TIME.			
RIght Ascension.		declination.		RIGHt ASCENSION.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
	h. m. s.	$\bigcirc{ }^{\circ}{ }^{\prime \prime}$	$\bigcirc{ }^{\circ}{ }^{\prime \prime}$		h. m. s.	48	- 047
1	$14 \quad 5657$	S. 195155	S. 213747	1	183926	S. 244842	S. $24 \quad 047$
2	$\begin{array}{llll}15 & 57 & 1\end{array}$	231953	242538	2	193452	224342	21235
3	$\begin{array}{llll}16 & 57 & 25\end{array}$	25186	254055	3	202635	19325	174645
4	$17 \quad 5644$	254246	$\begin{array}{lll}25 & 23 & 49\end{array}$	4	211458	15310	132815
5	185345	243834	234221	5	$22 \quad 0 \quad 44$	105547	84155
6	194740	221643	204945	6	224444	55935	S. $3 \quad 3957$
7	$2038 \quad 20$	1852	17131	7	$23 \quad 2751$	S. 055340	N. 12658
8	$2126 \quad 5$	14407	123256	8	01055	N. 41145	$6 \quad 2854$
9	221133	95540	7386	9	05443	$9 \quad 6 \quad 53$	11160
10	$2255 \quad 28$	S. 45156	S. 22935	10	13956	134143	$\begin{array}{llll}15 & 38 & 3\end{array}$
11	$23 \quad 38 \quad 39$	N. $\begin{array}{llll}0 & 19 & 12\end{array}$	N. 24119	11	2275	174545	192417
12	02154	$\begin{array}{ll}5 & 2659\end{array}$	7448	12	$\begin{array}{lll}3 & 16 & 28\end{array}$	21757	222335
13	1557	102113	122847	13	$4 \quad 8 \quad 5$	$\begin{array}{llll}23 & 37 & 15\end{array}$	$\begin{array}{lll}24 & 25 & 8\end{array}$
14	15129	145148	16458	14	$\begin{array}{llll}5 & 1 & 31\end{array}$	$25 \quad 326$	$\begin{array}{llll}25 & 19 & 32\end{array}$
15	2393	184830	202245	15	$5 \quad 564$	$\begin{array}{llll}25 & 18 & 30\end{array}$	$25 \quad 0 \quad 15$
j 6	32858	$\begin{array}{llll}22 & 0 & 39\end{array}$	$\begin{array}{llll}23 & 10 & 51\end{array}$	16	65053	$\begin{array}{llll}24 & 17 & 57\end{array}$	$23 \quad 2442$
17	42116	$2417 \quad 24$	$24 \quad 5842$	17	74515	$\begin{array}{lll}22 & 1 & 34\end{array}$	203444
18	$\begin{array}{llll}5 & 15 & 34\end{array}$	$25 \quad 2826$	25 36	18	83847	183335	163624
19	$6 \quad 1111$	$\begin{array}{lll}25 & 25 & 13\end{array}$	$\begin{array}{llll}24 & 57 & 19\end{array}$	19	931313	$\begin{array}{llll}14 & 2 & 2\end{array}$	113923
20	$\begin{array}{llll}7 & 7 & 16\end{array}$	$24 \quad 230$	225740	20	102358	83828	N. 55645
21	$8 \quad 3 \quad 2$	$21 \quad 1943$	193925	21	111650	N. 237752	S. 01446
22	8584	172132	15944	22	12115	S. 34051	$\begin{array}{llll}6 & 34 & 17\end{array}$
23	95225	$\begin{array}{llll}12 & 18\end{array}$	9410	23	$13 \quad 736$	$9 \quad 5430$	123646
24	104629	62415	N. 333039	24	$14 \quad 70$	15368	175414
25	1141	N. $0 \quad 0 \quad 17$	S. 25916	25	$\begin{array}{lll}15 & 9 & 12\end{array}$	$\begin{array}{llll}20 & 17 & 31\end{array}$	215954.
26	$\begin{array}{lllll}12 & 36 & 49\end{array}$	S. 62937	$9 \quad 2254$	26	$\begin{array}{llll}16 & 13 & 14\end{array}$	$23 \quad 3340$	$\begin{array}{llll}24 & 30 & 17\end{array}$
27	133436	123813	151220	27	$17 \quad 17 \quad 16$	$25 \quad 8 \quad 45$	$\begin{array}{llll}25 & 17 & 19\end{array}$
28	143437	$\begin{array}{llll}17 & 57 & 39\end{array}$	$\begin{array}{llll}20 & 0 & 35\end{array}$	28	$\begin{array}{lll}18 & 19 & 12\end{array}$	$25 \quad 0 \quad 9$	$24 \quad 2358$
29	$\begin{array}{llll}15 & 36 & 28\end{array}$	$22 \quad 30$	$\begin{array}{llll}23 & 25 & 26\end{array}$	29	$\begin{array}{llll}19 & 17 & 33\end{array}$	$\begin{array}{llll}23 & 18 & 1\end{array}$	22^{-446}
30	163859	243624	251331	30	201141	S. $20 \quad 20 \quad 25$	S. $18 \quad 3918$
31	$17 \quad 4029$	S. 253024	S. $25 \quad 2234$				

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
MIAY, 1861.				उUNE, 1861.			
mean time.				mean time.			
RIGEt ASCension.		declination.		RIGHT ASCENSİN.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	$\begin{array}{ccc}\text { h. } & \text { m. } \\ 21 & \text { s. } \\ \text { 21 }\end{array}$	S. ${ }^{\circ} 16{ }^{\prime} 27{ }^{\prime \prime}$	S. 14 2 27×2	1	$\begin{array}{cccc}\text { h. } & \text { m. } & \text { s. } \\ 23 & 47 & 27\end{array}$		N. ${ }^{\circ} \mathrm{H}$
2	214849	115652	9 94436	2	$03057{ }^{\text { }}$	N. 6477	- 85926
3	223329	$7 \quad 353$	S. 44524	3	11526	113012	13320
4	231651	S. 20014	N. 01942	4	$\begin{array}{lll}2 & 139\end{array}$	154747	173435
5	$23 \quad 59.52$	N. 344	52114	5	25010	192943	$\begin{array}{llll}20 & 56 & 30\end{array}$
6	04324	75953	10107	6	34110	222450	$\begin{array}{lll}23 & 2614\end{array}$
7	1. 2815	123758	143648	7	43426	242132	245236
8	2151	164820	183052	8	5 5 215	$25 \quad 936$	$\begin{array}{llll}25 & 6 & 39\end{array}$
9	$\begin{array}{lll}3 & 4 & 4\end{array}$	$20 \quad 20 \quad 3$	21410	9	62436	244214	$\begin{array}{llll}24 & 3 & 52\end{array}$
10	35528	$\begin{array}{lll}23 & 134\end{array}$	235545	10	$\begin{array}{lll}7 & 19 & 25\end{array}$	$\begin{array}{llll}22 & 57 & 57\end{array}$	$\begin{array}{llll}21 & 45 & 26\end{array}$
11	44849	244153	$25 \quad 452$	11	81257	$\begin{array}{lll}20 & 1 & 3\end{array}$	$\begin{array}{llll}18 & 18 & 3\end{array}$
12	54319	251211	$25 \begin{array}{lll}25 & 1 & 7\end{array}$	12	$\begin{array}{ll}9 & 459\end{array}$	$16 \quad 0 \quad 39$	$13 \quad 5233$
13	6383	242729	234144	13	95545	$\begin{array}{llll}11 & 9 & 6\end{array}$	84212
14	7326	$22 \quad 2746$	$21 \quad 90$	14	104553	N. 54030	N. 31139
15	8251	191751	$\begin{array}{lll}17 & 29 & 35\end{array}$	15	113621	S. $0 \quad 952$	S. 25316
16	91644	$\begin{array}{llll}15 & 618\end{array}$	125324	16	$\begin{array}{llll}12 & 28 & 8\end{array}$	$\begin{array}{lll}6 & 5 & 26\end{array}$	8457
17	10	10 4 1	73239	17	$\begin{array}{llll}13 & 22 & 17\end{array}$	$\begin{array}{llll}11 & 47 & 32\end{array}$	$\begin{array}{llll}14 & 14 & 9 \\ 18 & 58\end{array}$
18	$10 \quad 5837$	N. 42513	N. 14130	18	141933	$16 \quad 554$	$\begin{array}{llll}18 & 58 & 10\end{array}$
19	115031	S. 13536	S. 42319	19	$15 \quad 205$	$\begin{array}{lll}21 & 4 & 58\end{array}$	$\begin{array}{llll}22 & 34 & 1\end{array}$
20	124425	73944	102150	20	$\begin{array}{llll}16 & 23 & 7\end{array}$	235458	244117
21	$\begin{array}{llll}13 & 41 & 14\end{array}$	13258	$15 \quad 5019$	21	$\begin{array}{llll}17 & 26 & 57\end{array}$	$25 \quad 831$	$\begin{array}{llll}25 & 7 & 58\end{array}$
22	144125	$\begin{array}{llll}18 & 26 & 26\end{array}$	202230	22	$\begin{array}{llll}18 & 29 & 26\end{array}$	$\begin{array}{llll}24 & 40 & 3\end{array}$	$\begin{array}{llll}23 & 54 & 31\end{array}$
23	154435	$\begin{array}{ll}22 & 1719\end{array}$	233313	23	192846	$\begin{array}{llll}22 & 37 \\ 10\end{array}$	$\begin{array}{llll}21 & 13 & 38\end{array}$
24	164916	$\begin{array}{llll}24 & 35 & 36\end{array}$	$\begin{array}{ll}25 & 417\end{array}$	24	20244	$\begin{array}{ll}19 & 1656\end{array}$	$17 \quad 2520$
25	$\begin{array}{llll}17 & 53 & 19\end{array}$	$\begin{array}{lll}25 & 9 & 29\end{array}$	245017	25	$\begin{array}{llll}21 & 15 & 24\end{array}$	$\begin{array}{llll}15 & 1 & 14 \\ 10 & 10\end{array}$	125111
26	$18 \quad 5435$	$\begin{array}{ll}24 & 1 \\ 21\end{array}$	225954	26	$\begin{array}{llll}22 & 3 & 24 \\ \end{array}$	$10 \quad 10 \quad 30$	75024
27	195147	$21 \quad 2612$	195137	27	224859	S. 51158	S. 23826
28	204439	174450	154710	28	$23 \quad 3310$	N. 010	N. 233238
29	213342	131832	$11 \begin{array}{lll}11 & 6 & 35\end{array}$	29	$\begin{array}{llll}0 & 16 & 57\end{array}$	51713	$\begin{array}{r}7 \\ 7 \\ \mathrm{~F} \\ \hline\end{array}$
30	$\begin{array}{llll}22 & 19 & 50\end{array}$	82525	$\begin{array}{llll}6 & 6 & 7\end{array}$	30	1116	N. 1088	N. 121356
31	$23 \quad 4 \quad 4$	S. 31939	S. 055826				

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
IULY, 186 ¢.				AUGUST, 1861.			
MEAN TIME.				MEAN TIME.			
right ascension.		declination.		RIGHT ASCENSION.		declination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	$\begin{array}{rcc}\text { h. } & \mathrm{m} . & \mathrm{s} . \\ 1 & 46 & 56\end{array}$	N. 14\circ 34 18	N. $16{ }^{\circ} 26{ }^{\prime \prime}{ }^{\prime \prime}$	1	$\begin{array}{rrrr}\text { h. m. } & \text { s. } \\ 4 & 52 & 40\end{array}$	N. $24 \begin{array}{ccc}\circ & 45 & 110\end{array}$	N. 25\circ 1 $\prime \prime$ 182
2	1 2 3439	$\begin{array}{r}N .1434 \\ 1828 \\ \hline\end{array}$	N. 20 20 134	2	$\begin{array}{llll}4 & 52 & 40 \\ 5 & 47 & 51\end{array}$	$N .24$ 45 10 25 8 3	N. 25 24 24 5385
3	32448	213826	224758	3	64341	241411	$23 \quad 2311$
4	41725	$\begin{array}{llll}23 & 53 & 52\end{array}$	243441	4	$7 \quad 3914$	$\begin{array}{llll}22 & 1 & 56\end{array}$	$2036 \quad 3$
5	5123	$25 \quad 3 \quad 52$	251131	5	83348	183531	163841
6	$6 \quad 747$	245939	243133	6	9276	$14 \quad 457$	114323
7	$\begin{array}{lll}7 & 3 & 32\end{array}$	$\begin{array}{llll}23 & 37 & 0\end{array}$	$\begin{array}{llll}22 & 33 & 9\end{array}$	7	$\begin{array}{llll}10 & 19 & 23\end{array}$	84452	$6 \quad 6 \quad 24$
8	75820	205738	192053	8	111111	N. $253 \quad 4$	N. 0635
9	85140	$\begin{array}{lll}17 & 9 & 19\end{array}$	15456	9	$12 \quad 319$	S. $3 \quad 10 \quad 42$	S. $5 \quad 5548$
10	$\begin{array}{llll}9 & 43 & 32\end{array}$	$12 \quad 2435$	95922	10	$12 \quad 5039$	$\begin{array}{lll}9 & 5 & 48\end{array}$	113955
11	$10 \quad 3421$	$6 \quad 5849$	N. 42024	11	135154	143117	164453
12	112455	N. 18857	S. $1 \begin{array}{llll} & 34 & 37\end{array}$	12	144929	$19 \quad 6 \quad 35$	205043
13	121611	S. 44717	72741	13	$\begin{array}{llll}15 & 49 & 14\end{array}$	$\begin{array}{llll}22 & 3251\end{array}$	233958
14	$\begin{array}{llll}13 & 9 & 5\end{array}$	$\begin{array}{llll}10 & 31 & 29\end{array}$	125956	14	$\begin{array}{llll}16 & 50 & 14\end{array}$	$\begin{array}{llll}24 & 35 & 1\end{array}$	$\begin{array}{llll}25 & 0 & 18\end{array}$
15	$\begin{array}{llll}14 & 4 & 28\end{array}$	154411	$17 \quad 5127$	15	1751	25444	244714
16	$\begin{array}{lll}15 & 2 & 42\end{array}$	$\begin{array}{lll}20 & 5 & 10\end{array}$	214158	16	$18 \quad 5013$	$24 \quad 2 \quad 25$	$\begin{array}{lll}23 & 5 & 18\end{array}$
17	$\begin{array}{llll}16 & 3 & 29\end{array}$	$\begin{array}{llll}23 & 14 & 36\end{array}$	241250	17	194634	21376	20648
18	$17 \quad 5 \quad 39$	$\begin{array}{llll}24 & 5616\end{array}$	251047	18	$20 \quad 3939$	$18 \quad 359$	$16 \quad 830$
19	$18 \quad 728$	$\begin{array}{lll}25 & 1 & 31\end{array}$	243149	19	212938	134051	112826
20	$\begin{array}{llll}19 & 7 & 10\end{array}$	$\begin{array}{llll}23 & 32 & 14\end{array}$	222243	20	$\begin{array}{llll}22 & 17 & 3\end{array}$	84523	62336
21	$20 \quad 334$	204024	185856	21	$23 \quad 240$	S. $\begin{aligned} & 3 \\ & 33\end{aligned}$	S. 18859
22	$\begin{array}{llll}20 & 56 & 20\end{array}$	164418	14408	22	$23 \quad 4720$	N. 144054	N. 4235
23	214547	$\begin{array}{lll}12 & 4 & 1\end{array}$	9460	23	$\begin{array}{llll}0 & 3149\end{array}$	646 1	$\begin{array}{lll}9 & 0 & 5\end{array}$
24	223236	$\begin{array}{llll}6 & 58 & 10\end{array}$	S. 43351	24	11655	113149	13.3335
25	$\begin{array}{llll}23 & 17 & 41\end{array}$	S. 14226	N. 0420	25	$\begin{array}{llll}2 & 3 & 16\end{array}$	154825	$17 \quad 3347$
26	$\begin{array}{llll}0 & 1 & 59\end{array}$	N. 313028	$5 \quad 501$	26	25124	192642	205123
27	04621	8304	$10 \quad 4024$	27	34136	221720	$2317 \quad 3$
28	$\begin{array}{lll}1 & 31 & 39\end{array}$	$\begin{array}{lll}13 & 7 & 9\end{array}$	$\begin{array}{lll}15 & 4 & 12\end{array}$	28	43348	24110	244139
29	$2 \begin{array}{llll}2 & 18 & 34\end{array}$	$17 \quad 1249$	185223	29	52740	$2459 \quad 7$	$\begin{array}{llll}24 & 57 & 17\end{array}$
30	$\begin{array}{llll}3 & 7 & 38\end{array}$	$20 \quad 3745$	215521	30	62229	243454	$23 \quad 5832$
31	3593	N. 2311157	N. $24 \quad 251$	31	71731	N. $22 \quad 54 \quad 55$	N. 214351

THE MOON'S RIGHT ASCENSION AND DECLINATION.

SEPTEMEEP, 1861.				OCTOEERE, 1861.			
MEAN TLME.				MEAN TIME.			
RIGHT ASCENSION.		declination.		RIGHT ASCENSION.		DECLINATION.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
1	$\begin{array}{rrrr}\text { h. } & \text { m. } & \text { s. } \\ 8 & 12 & 7\end{array}$	N. 20 ¢ 010	N. 18 ¢ 16	1	$\begin{array}{ccc}\text { h. m. } & \text { s. } \\ 10 & 28 & 45\end{array}$	N. ${ }^{\circ} 7838111$	N. ${ }^{\circ} 4 c^{\prime} 58{ }^{\prime \prime}$
2	$\begin{array}{llll}9 & 5 & 57\end{array}$	$\begin{array}{llll}15 & 56 & 36\end{array}$	134448	2	112153	N. 14323	S. 1528
3	9595	105511	82145	3	$12 \quad 16 \quad 27$	S. 42664	$7 \quad 13 \quad 57$
4	$10 \quad 5157$	N. $\begin{array}{llll}5 & 11 & 19\end{array}$	N. 22440	4	$\begin{array}{lll}13 & 13 & 13\end{array}$	102631	13131
5	1114514	S. 055544	S. 34544	5	$\begin{array}{llll}14 & 12 & 36\end{array}$	155129	18111
6	123941	$7 \quad 3 \quad 49$	94620	6	151428	201425	214749
7	133558	$12 \quad 49 \quad 1$	151259	7	$\begin{array}{llll}16 & 17 & 47\end{array}$	$\begin{array}{llll}23 & 13 & 6\end{array}$	$\begin{array}{lll}24 & 248\end{array}$
8	$\begin{array}{llll}14 & 34 & 27\end{array}$	174727	194232	8	$17 \quad 2057$	$\begin{array}{llll}24 & 34 & 19\end{array}$	24388
9	$\begin{array}{lllll}15 & 34 & 53\end{array}$	213731	$22 \quad 5519$	9	$18 \quad 229$	241641	233752
10	163623	$24 \quad 241$	24387	10	$19 \quad 20 \quad 6$	$22 \quad 2943$	$\begin{array}{llll}21 & 15 & 10\end{array}$
11	$\begin{array}{llll}17 & 37 & 32\end{array}$	245417	244631	11	201418	192943	174753
12	183651	24131	$23 \quad 2520$	12	21456	$\begin{array}{lll}15 & 35\end{array}$	13349
13	$\begin{array}{llll}19 & 33 & 17\end{array}$	$\begin{array}{lll}22 & 8 & 2\end{array}$	204641	13	$21 \quad 5240$	$11 \begin{array}{lll}11 & 3 & 11\end{array}$	85015
14	$20 \quad 26 \quad 25$	18541	176638	14	$2238 \quad 20$	$6 \quad 852$	S. 3503
15	211626	144748	12423	15	232250	S. 1454	N. 11431
16	$22 \quad 3 \quad 54$	$10 \quad 5 \quad 50$	74851	16	$\begin{array}{llll}0 & 6 & 59\end{array}$	N. 357529	$\begin{array}{lll}6 & 12 & 43\end{array}$
17	224933	S. $5 \quad 310$	S. 24114	17	05134	84758	105421
18	$\begin{array}{llll}23 & 34 & 12\end{array}$	N. $0 \quad 6 \quad 51$	N. 2286	18	13713	131626	$15 \quad 922$
19	$\begin{array}{llll}0 & 18 & 38\end{array}$	$\begin{array}{llll}5 & 12 & 19\end{array}$	72747	19	22423	$17 \quad 1248$	184739
20	1332	$10 \quad 220$	12716	20	31320	$\begin{array}{llll}20 & 27 & 2\end{array}$	213920
21	14932	$14 \quad 2640$	$\begin{array}{llll}16 & 16 & 33\end{array}$	21	4358	224938	233523
22	2376	$\begin{array}{llll}18 & 15 & 30\end{array}$	194554	22	45557	241218	242826
23	$\begin{array}{lll}3 & 26 & 27\end{array}$	$\begin{array}{llll}21 & 19 & 18\end{array}$	22260	23	54840	$24 \quad 296$	241350
24	41735	$23 \quad 293$	$\begin{array}{lll}24 & 8 & 13\end{array}$	24	64128	$\begin{array}{llll}23 & 37 & 4\end{array}$	$\begin{array}{llll}22 & 50 & 14\end{array}$
25	$\begin{array}{lll}5 & 10 & 10\end{array}$	243648	244521	25	73348	213643	$\begin{array}{llll}20 & 19 & 38\end{array}$
26	$\begin{array}{llll}6 & 3 & 39\end{array}$	243624	241226	26	$8 \quad 2524$	$\begin{array}{llll}18 & 31 & 46\end{array}$	$\begin{array}{llll}16 & 47 & 4\end{array}$
27	65723	$23 \quad 2433$	$22 \quad 2737$	27	$\begin{array}{llll}9 & 16 & 23\end{array}$	$14 \quad 2836$	$12 \quad 20 \quad 1$
28	75051	$\begin{array}{lll}21 & 1 & 17\end{array}$	$\begin{array}{llll}19 & 32 & 37\end{array}$	28	$10 \quad 711$	$\begin{array}{llll}9 & 36 & 1\end{array}$	$7 \quad 823$
29	84347	$17 \quad 3016$	$\begin{array}{llll}15 & 3247\end{array}$	29	$\begin{array}{llll}10 & 58 & 32\end{array}$	N. 45820	N. 12454
30	93617	N. 125852	N. 103711	30	$11 \begin{array}{lll}11 & 519\end{array}$	S. 114848	S. 43359
				31	124630	S. 74735	S. 102716

THE MOON'S RIGHT ASCENSION AND DECLINATION.							
NOVEMEER, 1861.				DECEMEERE, 1861.			
mean time.				mean time.			
right ascension.		declenation		Right ascension.		deculination.	
Day.	Midnight.	Noon.	Midnight.	Day.	Midnight.	Noon.	Midnight.
	h. m. s.	- 1			h. m. s.	- 16	
1	134449	S. 132721	S. 154916	1	162530	S. 231638	S. 24013
2	144631	182040	201153	2	173131	242248	$\begin{array}{llll}24 & 17 & 17\end{array}$
3	$15 \quad 50 \quad 56$	215957	$23 \quad 922$	3	183542	234235	225055
4	165623	$24 \quad 333$	$2425 \quad 5$	4	$\begin{array}{llll}19 & 36 & 13\end{array}$	212611	$\begin{array}{lll}19 & 57 \\ 1\end{array}$
5	$18 \quad 038$	$2422 \quad 5$	235625	5	203217	175419	155832
6	191945	$23 \quad 051$	215433	6	212410	133044	111840
7	195842	201624	$\begin{array}{llll}18 & 39 & 3\end{array}$	7	221238	83653	61656
8	205126	$1630 \quad 3$	143120	8	225844	S. 32953	S. 11830
9	214034	$12 \quad 218$	9 50	9	2343 31	N. 1378	N. 35459
10	$22 \quad 27 \quad 2$	71025	S. 45226	10	02758	63355	8443
11	231150	S. 2888	N. 01046	11	11258	111133	$\begin{array}{llll}13 & 10 & 5\end{array}$
12	235556	N. 25325	$5 \quad 8 \quad 42$	12	15914	152130	$\begin{array}{lll}17 & 4 & 22\end{array}$
13	04013	74432	95158	13	24715	185448	$\begin{array}{llll}20 & 17 & 45\end{array}$
14	12526	12160	141116	14	3 3713	$2142 \quad 2$	224041
15	$\begin{array}{lll}2 & 12 & 9\end{array}$	$1618 \quad 20$	175659	15	42858	233350	$\begin{array}{llll}24 & 4 & 14\end{array}$
16	$3{ }^{3} \quad 043$	194141	20597	16	52156	24226	242126
17	3518	22167	$23 \quad 759$	17	61517	$\begin{array}{lll}24 & 141\end{array}$	232855
18	4433	$23 \quad 5231$	241518	18	$\begin{array}{llll}7 & 8 & 9\end{array}$	223134	212747
19	53549	242358	241533	19	75957	195520	182334
20	62837	234654	$\begin{array}{lll}23 & 7 & 0\end{array}$	20	85025	162027	$1425 \quad 5$
21	72046	$22 \quad 149$	205159	21	93946	11574	94316
22	81153	$\begin{array}{lll}19 & 13 & 1\end{array}$	$17 \begin{array}{lll}17 & 36\end{array}$	22	102832	65645	N. 43011
23	$\begin{array}{lll}9 & 1 & 57\end{array}$	$\begin{array}{llll}15 & 27 & 38\end{array}$	132751	23	111730	N. 13327	S. 1117
24	95120	105445	83636	24	$\begin{array}{ll}12 & 740\end{array}$	S. $4 \quad 311$	63617
25	104043	54449	N. 313138	25	1300	93340	115840
26	1131	N. 0	S. 22756	26	$13 \quad 55 \quad 34$	14418	164838
27	$12 \quad 2318$	S. $5 \quad 3510$	81159	27	$14 \quad 5443$	19419	204349
28	$\begin{array}{llll}13 & 18 & 33\end{array}$	111225	133818	28	$15 \quad 5715$	222010	232126
29	141728	$1619 \quad 7$	182222	29	$\begin{array}{lll}17 & 154\end{array}$	$24 \quad 740$	242326
30	15208	S. 20298	S. 215732	30 31	$\begin{array}{ccc}18 & 6 & 34 \\ 19 & 9 & 3\end{array}$	$\begin{array}{rrr} 24 & 13 & 57 \\ \text { S. } 22 & 39 & 13 \end{array}$	$\left\lvert\, \begin{array}{rrr} 23 & 42 & 32 \\ \text { S. } 21 & 25 & 20 \end{array}\right.$

1861.			JANUARY.			1861.	
AT GREENWICH MEAN NOON.							
		THE MOON'S					
		Longitude.		Latitude.		$\frac{\text { Age. }}{\text { Noon. }}$	Meridian Passage.
		Noon.	Midnight.	Noom.	Midnight.		
Tues.	1		$\stackrel{\circ}{\circ} \mathrm{Cll}$ ' "	S. 3 ¢ $411_{1}^{\prime \prime} 44$	S. 4 7 71	$\stackrel{\mathrm{d} .}{20 \cdot 0}$	$\begin{array}{cc} \mathrm{h} . \mathrm{m}_{16} & { }_{17} \end{array}$
Wed.	2	1712041	1782643	43021	448.39	$21 \cdot 0$	$17 \quad 6 \cdot 3$
Thur.	3	1853248	1923839	$5 \quad 232$	51147	$22 \cdot 0$	$17 \cdot 56 \cdot 0$
Fri.	4	1994359	2064831	51617	51558	$23 \cdot 0$	$1847 \cdot 7$
Sat.	5	$21352 \quad 2$	2205413	51053	$\begin{array}{llll}5 & 1 & 8\end{array}$	$24 \cdot 0$	$1942 \cdot 2$
Sun.	6	2275450	2345335	44656	42832	$25 \cdot 0$	$20 \quad 39 \cdot 4$
Mon.	7	2415013	2484427	$\begin{array}{llll}4 & 616\end{array}$	34032	$26 \cdot 0$	$2138 \cdot 3$
Tues.	8	25536	2622437	31146	24029	$27 \cdot 0$	$2237 \cdot 1$
Wed.	9	269104	275525	$\begin{array}{llll}2 & 7 & 9\end{array}$	13220	$28 \cdot 0$	$2333 \cdot 8$
Thur.	10	2823032	$289 \quad 512$	S. 05634	S. 02022	$29 \cdot 0$	¢
Fri.	11	$\begin{array}{llll}295 & 36 & 1\end{array}$	$302 \quad 254$	N. 01544	N. 051517	0.4	$\begin{array}{ll}0 & 27 \cdot 1\end{array}$
Sat.	12	3082552	3144456	12550	15858	$1 \cdot 4$	116.5
Sun.	13	$\begin{array}{llll}321 & 0 & 14\end{array}$	3271157	$\begin{array}{ll}2 & 3019\end{array}$	25936	$2 \cdot 4$	$2 \quad 2 \cdot 2$
Mon.	14	$\begin{array}{llll}333 & 20 & 18\end{array}$	3392536	32631	35051	$3 \cdot 4$	$245 \cdot 0$
Tues.	15	3452811	3512828	41225	4314	$4 \cdot 4$	$325 \cdot 9$
Wed.	16	3572652	32355	44640	$459 \quad 6$	$5 \cdot 4$	$\begin{array}{ll}4 & 6 \cdot 1\end{array}$
Thur.	17	$\begin{array}{lll}9 & 20 & 5\end{array}$	$\begin{array}{llll}1515 & 57\end{array}$	$\begin{array}{llll}5 & 819\end{array}$	51414	$6 \cdot 4$	$446 \cdot 5$
Fri.	18	21125	$\begin{array}{llll}27 & 9 & 4\end{array}$	51648	51559	$7 \cdot 4$	$528 \cdot 1$
Sat.	19	$33 \quad 729$	$\begin{array}{lll}39 & 756\end{array}$	51145	$\begin{array}{lll}5 & 4 & 7\end{array}$	$8 \cdot 4$	$612 \cdot 0$
Sun.	20	45111	$\begin{array}{llll}51 & 17 & 17\end{array}$	4533	43835	$9 \cdot 4$	$658 \cdot 9$
Mon.	21	$57 \quad 2716$	634130	42046	35942	$10 \cdot 4$	$749 \cdot 3$
Tues.	22	$70 \quad 024$	762422	33528	$\begin{array}{lll}3 & 813\end{array}$	$11 \cdot 4$	$843 \cdot 0$
Wed.	23	825344	892841	23811	$\begin{array}{llll}2 & 5 & 39\end{array}$	$12 \cdot 4$	${ }^{9} 39 \cdot 1$
Thur.	24	$96 \quad 921$	1025544	13056	N. 05428	$13 \cdot 4$	$1036 \cdot 3$
Fri.	25	1094744	$\begin{array}{llll}116 & 45 & 6\end{array}$	N. 0161643	S. 02145	14.4	$\begin{array}{ll}11 & 32 \cdot 8 \\ 12 & 27.6\end{array}$
Sat.	26	12347	1305418	S. 1 0 19 2 15 10	13822	$15 \cdot 4$	$12 \quad 27 \cdot 6$
Sun.	27	$\begin{array}{lll}138 & 5 & 3\end{array}$	$\begin{array}{llll}145 & 19 & 1\end{array}$	$\begin{array}{llll}2 & 15 & 10\end{array}$	2504	$16 \cdot 4$	$1320 \cdot 3$
Mon.	28	1523525	1595327	32222	$\begin{array}{llll}3 & 51 & 29\end{array}$	$17 \cdot 4$	$1411 \cdot 5$
Tues.	29	1671217	174315	41651	4381	$18 \cdot 4$	$15 \quad 1 \cdot 8$
Wed.	30	181497	$\begin{array}{llll}189 & 5 & 38\end{array}$	45437	$\begin{array}{llll}5 & 6 & 24 \\ 5 & 15\end{array}$	$19 \cdot 4$	$15 \quad 52 \cdot 5$
Thur.	31	$19620 \quad 2$	2033147	51314	5156	$20 \cdot 4$	$1644 \cdot 4$
Fri.	32	2104027	2174543	S. 51212	S. $5 \quad 4 \quad 17$	$21 \cdot 4$	$1738 \cdot 4$

1861.			FEBRUARY.			1861.	
AT GREENWICH MEAN TTME.							
		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noom.	Widnight.	Noon.	Midnight.	Noon.	
Fri.	1	$2{ }^{\circ} 1040{ }^{\prime \prime}$				$\stackrel{\text { d. }}{21}{ }_{2}$	h. 17 38. 18 38.4
Sat.	2	2244722	2314515	45159	43528	$22 \cdot 4$	$1834 \cdot 5$
Sun.	3	2383918	2452931	4156	$\begin{array}{llll}3 & 51 & 17\end{array}$	$23 \cdot 4$	$1932 \cdot 2$
Mon.	4	2521558	2585843	32425	25459	$24 \cdot 4$	$2030 \cdot 1$
Tues.	5	2653754	2721338	22325	15014	$25 \cdot 4$	2126.5
Wed.	6	$27846 \quad 2$	2851514	11552	S. 04050	26.4	$2220 \cdot 0$
Thur.	7	2914121	298428	S. $0 \quad 5 \quad 34$	$\begin{array}{llll}\text { N. } 0129 & 27\end{array}$	27.4	$2310 \cdot 0$
Fri.	8	3042443	3104210	N. 1	1377	$28 \cdot 4$	2356.6
Sat.	9	3165654	$\begin{array}{llll}323 & 9 & 0\end{array}$	$2 \quad 858$	2392	$29 \cdot 4$	d
Sun.	10	3291834	3352543	$\begin{array}{llll}3 & 7 & 0\end{array}$	33236	0.7	$040 \cdot 3$
Mon.	11	3413035	3473319	35534	41545	$1 \cdot 7$	$121 \cdot 9$
Tues.	12	353348	3593315	43258	$447 \quad 5$	$2 \cdot 7$	$2 \quad 2.5$
Wed.	13	53058	112734	4580	$5 \quad 541$	$3 \cdot 7$	$242 \cdot 8$
Thur.	14	172327	23191	5103	5115	$4 \cdot 7$	$323 \cdot 8$
Fri.	15	291442	35111	5848	$5 \quad 312$	$5 \cdot 7$	$4 \quad 6.5$
Sat.	16	41828	$\begin{array}{llll}47 & 7 & 37\end{array}$	45419	44210	$6 \cdot 7$	$451 \cdot 6$
Sun.	17	$\begin{array}{lll}53 & 9 & 3\end{array}$	591322	42651	4825	$7 \cdot 7$	539.6
Mon.	18	$65 \quad 2111$	$\begin{array}{llll}71 & 33 & 5\end{array}$	34658	32239	$8 \cdot 7$	$630 \cdot 7$
Tues.	19	774940	841130	25535	22559	$9 \cdot 7$	724.5
Wed.	20	90397	971256	$154 \quad 7$	12014	$10 \cdot 7$	819.9
Thur.	21	1035319	1104032	N. $04444{ }^{\prime}$	$\begin{array}{llll}\text { N. } 0 & 8 & 2\end{array}$	$11 \cdot 7$	$915 \cdot 9$
Fri.	22	1173441	1243542	S. 02922	S. 1665	$12 \cdot 7$	$1011 \cdot 2$
Sat.	23	1314323	1385718	14358	21950	$13 \cdot 7$	$11 \quad 5 \cdot 2$
Sun.	24	1461650	1534110	25350	32515	$14 \cdot 7$	1158.0
Mon.	25	161921	1684016	35323	41738	$15 \cdot 7$	$1250 \cdot 1$
Tues.	26		$18345 \quad 21$	43728	45228	$16 \cdot 7$	$1342 \cdot 4$
Wed.	27	19117	1984636	$5 \quad 221$	$5 \quad 659$	$17 \cdot 7$	$1435 \cdot 8$
Thur.	28	2061257	$213 \quad 3512$	$\begin{array}{llll}5 & 6 & 25\end{array}$	$5 \quad 0 \quad 44$	$18 \cdot 7$	1531.1
Fri.	29	2205238	228442	S. 45012	S. 43512	$19 \cdot 7$	1628.3

1861.			APRIL.			1861.	
AT GREENWICH MEAN TIME.							
		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noon.	Midnight.	Noon.	Midnight.	Noon.	
Mon.	1			S. $1^{\circ} 2^{\prime} 5^{\prime \prime} 58$		$\stackrel{\text { d. }}{20} 9$	$\begin{array}{cc}\text { h. } \\ 18 & \mathrm{~m} . \\ 18.8\end{array}$
Tues.	2	2853241	2915943	S. 01721	N. 01645	$21 \cdot 9$	19 4.1
Wed.	3	2982136	3043852	N. $0 \quad 5012$	12236	$22 \cdot 9$	19 52.3
Thur.	4	$310 \quad 52 \quad 4$	$317 \quad 144$	15339	$223 \quad 2$	$23 \cdot 9$	$2037 \cdot 1$
Fri.	5	323823	3291230	25029	31546	$24 \cdot 9$	$2119 \cdot 4$
Sat.	6	3351431	3411450	33841	3591	$25 \cdot 9$	$22 \quad 0.1$
Sun.	7	3471346	3531140	41636	43118	$26 \cdot 9$	$2240 \cdot 3$
Mon.	8	359845	$5 \quad 517$	44259	45133	$27 \cdot 9$	$2320 \cdot 8$
Tues.	9	11128	165728	45656	4594	$28 \cdot 9$	¢
Wed.	10	225326	284934	45758	45337	$0 \cdot 2$	$0 \quad 2.4$
Thur.	11	34460	404255	4464	43522	$1 \cdot 2$	$045 \cdot 9$
Fri.	12	464031	$\begin{array}{llll}52 & 39 & 1\end{array}$	42138	$4 \quad 457$	$2 \cdot 2$	131.7
Sat.	13	583841	643950	34529	32323	$3 \cdot 2$	$220 \cdot 1$
Sun.	14	704247	$\begin{array}{lllll}76 & 47 & 56\end{array}$	25852	$232 \quad 7$	$4 \cdot 2$	$310 \cdot 6$
Mon.	15	825542	89633	$2 \quad 323$	13256	$5 \cdot 2$	$4 \quad 2 \cdot 8$
Tues.	16	$95 \quad 211$	1013935	N. 112	N. 0282	$6 \cdot 2$	455.5
Wed.	17	$108 \quad 249$	1143114	S. $0 \quad 545$	S. 03956	$7 \cdot 2$	$547 \cdot 9$
Thur.	18	$\begin{array}{llll}121 & 5 & 23\end{array}$	1274541	1145	14746	$8 \cdot 2$	$639 \cdot 5$
Fri.	19	1343234	1412620	22028	25140	9•2	730.2
Sat.	20	148278	1553459	32048	3 47 17	$10 \cdot 2$	$820 \cdot 4$
Sun.	21	1624940	1701049	41033	4300	$11 \cdot 2$	$910 \cdot 9$
Mon.	22	1773746	185941	4459	45532	$12 \cdot 2$	$10 \quad 2 \cdot 9$
Tues.	23	1924527	2002350	$5 \quad 048$	$5 \quad 045$	$13 \cdot 2$	10 57.2
Wed.	24	208326	2154247	45518	44433	$14 \cdot 2$	$1154 \cdot 8$
Thur.	25	$223 \quad 2027$	$23055 \quad 2$	42845	$4 \quad 818$	$15 \cdot 2$	$1255 \cdot 6$
Fri.	26	2382518	2455010	34342	$\begin{array}{llll}3 & 15 & 33\end{array}$	$16 \cdot 2$	1358.4
Sat.	27	2538849	2602037	24431	21117	$17 \cdot 2$	$15 \quad 0 \cdot 9$
Sun.	28	2672512	2742224	13631	S. 10051	$18 \cdot 2$	$\begin{array}{ll}16 & 0.9\end{array}$
Mon.	29	2811214	2875455	S. 02454	N. 01047	$19 \cdot 2$	$1656 \cdot 6$
Tues.	30	2943047	301015	N. 04546	11936	$20 \cdot 2$	$1747 \cdot 6$
Wed.	31	3072351	313427	N. 15155	N. 22225	$21 \cdot 2$	$1834 \cdot 4$

1861.			M AY.			1861.	
AT GREENWICH MEAN TTME.							
		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noom.	Midnight.	Noon.	Midnight.	Noon.	
Wed.	1	${ }_{30}^{\circ} \mathrm{O}$				$\stackrel{\text { d. }}{21}{ }_{2}$	$\begin{array}{cc} \text { h. } \quad \text { m. } \\ 18 & 34 \cdot 4 \end{array}$
Thur.	2	3195539	$\begin{array}{llll}326 & 5 & 4\end{array}$	25049	31654	$22 \cdot 2$	$1917 \cdot 9$
Fri.	3	3321056	3381351	34027	$\begin{array}{llll}4 & 1 & 19\end{array}$	$23 \cdot 2$	19 59.3
Sat.	4	3441421	3501258	41922	43427	$24 \cdot 2$	$2039 \cdot 6$
Sun.	5	3561010	$2 \quad 625$	44630	45523	$25 \cdot 2$	$2119 \cdot 8$
Mon.	6	$8 \quad 26$	135734	$\begin{array}{lll}5 & 1 & 5\end{array}$	$5 \quad 331$	$26 \cdot 2$	$22 \quad 1 \cdot 0$
Tues.	7	19538	25495	$\begin{array}{lll}5 & 2 & 42\end{array}$	45835	$27 \cdot 2$	$2243 \cdot 9$
Wed.	8	314540	37434	45115	44042	$28 \cdot 2$	23 29.2
Thur.	9	434129	49416	4271	41020	$29 \cdot 2$	δ
Fri.	10	55425	614434	35047	32831	0.5	$017 \cdot 0$
Sat.	11	674845	735448	$3 \quad 345$	23643	1.5	$17 \cdot 2$
Sun.	12	$80 \quad 256$	861323	2741	13655	$2 \cdot 5$	159.2
Mon.	13	922623	984216	N. 1444	N. 03129	$3 \cdot 5$	251.9
Tues.	14	$\begin{array}{lll}105 & 119\end{array}$	1112355	S. $0 \quad 2 \quad 28$	S. 03644	$4 \cdot 5$	$344 \cdot 2$
Wed.	15	$117 \quad 502 \pm$	124219	11055	14434	$5 \cdot 5$	$435 \cdot 3$
Thur.	16	1305632	1373653	21715	24829	$6 \cdot 5$	$525 \cdot 0$
Fri.	17	1442231	1511340	31747	34439	$7 \cdot 5$	$613 \cdot 8$
Sat.	18	1581029	165130	4835	4297	$8 \cdot 5$	$7 \quad 2 \cdot 3$
Sun.	19	$172 \quad 21 \quad 9$	1793441	44545	4585	$9 \cdot 5$	$751 \cdot 6$
Mon.	20	1865311	$19416 \quad 3$	$5 \quad 544$	$5 \quad 824$	$10 \cdot 5$	$843 \cdot 0$
Tues.	21	2014232	2091143	$5 \quad 556$	45813	$11 \cdot 5$	$937 \cdot 5$
Wed.	22	2164234	2241355	44521	42732	$12 \cdot 5$	$1035 \cdot 7$
Thur.	23	2314434	2391822	$4 \begin{array}{lll}4 & 5\end{array}$	33834	$13 \cdot 5$	$1137 \cdot 3$
Fri.	24	2463910	254056	$3 \quad 826$	23523	$14 \cdot 5$	$1240 \cdot 8$
Sat.	25	2611748	$\begin{array}{ll}268 & 29\end{array}$	$\begin{array}{lll}2 & 0 & 7\end{array}$	12320	15.5	1343.4
Sun.	26	$27534 \quad 5$	2823237	S. 04544	$\begin{array}{llll}\text { S. } 0 & 7 & 59 \\ \text { S1 } & 5\end{array}$	$16 \cdot 5$	$1442 \cdot 7$
Mon.	27	2892426	296933	N. 02918	N. $1 \quad 5 \quad 37$	$17 \cdot 5$	$1537 \cdot 4$
Tues.	28	302484	3092017	14027	21326	$18 \cdot 5$	$1627 \cdot 3$
Wed.	29	$\begin{array}{llll}315 & 46 & 30\end{array}$	$322 \quad 713$	24413	$\begin{array}{ll}312 & 31\end{array}$	$19 \cdot 5$	$1713 \cdot 2$
Thur.	30	3282254	334347	3388	$\begin{array}{lll}4 & 0 & 53\end{array}$	$20 \cdot 5$	$1756 \cdot 1$
Fri.	31	3404125	346450	42037	43714	21.5	$18 \quad 37 \cdot 2$
Sat.	32	$\begin{array}{llll}35246 & 37\end{array}$	3584541	N. 45040	N. 50050	$22 \cdot 5$	$19 \quad 17 \cdot 7$

$1861 .$			JUNE.				1861.
AT GREENWICH MEAN TIME.							
		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noon.	Midnight.	Noon.	Midnight.	Noon.	
Sat.	1		${ }^{\circ} \mathrm{C}$	N. 41 50 10	N. $\mathrm{S}^{\circ} \mathrm{O}$	${ }_{22 \cdot}^{\text {d. }}$	$\begin{array}{cc}\mathrm{h} . & \mathrm{m} . \\ 19 & 17 \cdot 7\end{array}$
Sun.	2	4438	103932	$5 \quad 742$	5 51115	$23 \cdot 5$	19 58.6
Mon.	3	163523	22319	51127	$\begin{array}{lll}5 & 819\end{array}$	$24 \cdot 5$	$2040 \cdot 8$
Tues.	4	282716	342410	$\begin{array}{llll}5 & 1 & 53\end{array}$	45210	$25 \cdot 5$	$2125 \cdot 3$
Wed.	5	402211	462139	43915	42313	$26 \cdot 5$	$22 \quad 12 \cdot 3$
, Thur.	6	522252	$58 \quad 264$	$4 \quad 411$	34217	$27 \cdot 5$	$23 \quad 2 \cdot 1$
Fri.	7	643128	$\begin{array}{llll}70 & 39 & 14\end{array}$	31743	25042	28.5	23 54.1
Sat.	8	764933	$83 \quad 231$	22127	15018	29.5	o
Sun.	9	891816	$95 \quad 3656$	11733	N. 04335	0.9	$047 \cdot 3$
Mon.	10	1015835	1082319	N. 08846	S. 02627	$1 \cdot 9$	140.4
Tues.	11	1145117	1212232	S. 11140	13624	$2 \cdot 9$	$232 \cdot 4$
Wed.	12	1275714	1343527	21010	24229	$3 \cdot 9$	$322 \cdot 7$
Thur.	13	$\begin{array}{llll}141 & 17 \\ 18\end{array}$	148253	31254	34054	$4 \cdot 9$	411.5
Fri.	14	1545216	1614529	$4{ }^{4} 63$	42753	$5 \cdot 9$	459.4
Sat.	15	1684230	1754318	4460	$5 \quad 0 \quad 2$	$6 \cdot 9$	$547 \cdot 3$
Sun.	16	1824741	1895529	$\begin{array}{llll}5 & 9 & 39\end{array}$	51436	$7 \cdot 9$	636.3
Mon.	17	197623	2041959	51440	5947	$8 \cdot 9$	$727 \cdot 7$
Tues.	18	2113547	2185312	45956	44512	$9 \cdot 9$	$822 \cdot 5$
Wed.	19	2261135	2333012	42549	425	$10 \cdot 9$	$921 \cdot 0$
Thur.	20	2404816	248459	33425	$\begin{array}{llll}3 & 3 & 20\end{array}$	$11 \cdot 9$	$1022 \cdot 4$
Fri.	21	2551935	2623119	22926	15321	$12 \cdot 9$	1124.9
Sat.	22	2693928	2764327	S. 11546	S. 03721	$13 \cdot 9$	$12 \mathrm{2F} \cdot 9$
Sun.	23	2834245	2903657	N. 01112	N. 03918	$14 \cdot 9$	$1323 \cdot 3$
Mon.	24	2972548	$\begin{array}{llll}304 & 9 & 6\end{array}$	11621	15150	$15 \cdot 9$	1416.3
Tues.	25	3104650	$31719 \quad 2$	22519	25625	16.9	$15 \quad 4.8$
Wed.	26	3234553	330788	32450	35020	$17 \cdot 9$	$1549 \cdot 8$
Thur.	27	3362436	3423712	41242	43150	$18 \cdot 9$	$1632 \cdot 4$
Fri.	28	3484553	354519	44738	5 502	$19 \cdot 9$	1713.6
Sat.	29	05331	$6 \quad 53 \quad 34$	590	51432	$20 \cdot 9$	$1754 \cdot 6$
Sun.	30	125151	184855	51638	51520	$21 \cdot 9$	1836.5
Mon.	31	244522	304145	N. 51040	N. 5240	$22 \cdot 9$	$1920 \cdot 0$

at GREENWICH MEAN TTME.

Day of the Week.		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noon.	Midnight.	Noon.	Midnight.	Noon.	
		$\bigcirc 1 \prime$	$\bigcirc{ }^{\circ} 11$	\bigcirc	5	d.	h. m.
Mon.	1	244522	304145	N. 51040	N. $5 \quad 240$	$22 \cdot 9$	19 20.0
Tues.	2	$\begin{array}{llll}36 & 38 & 36\end{array}$	$\begin{array}{llll}42 & 36 & 27\end{array}$	45125	4370	$23 \cdot 9$	20 6.0
Wed.	3	483547	$5437 \quad 5$	41930	3592	24.9	$2054 \cdot 7$
Thur.	4	604045	$\begin{array}{llll}66 & 47 & 11\end{array}$	$\begin{array}{llll}3 & 35 & 46\end{array}$	$\begin{array}{lrrr}3 & 9 & 52\end{array}$	$25 \cdot 9$	$2146 \cdot 0$
Fri.	5	725641	$79 \quad 934$	24134	2114	26.9	$2239 \cdot 1$
Sat.	6	$85 \quad 263$	914618	13842	N. 1448	27-9	23 33.0
Sun.	7	$98 \quad 1025$	1043829	N. 02944	S. $0 \quad 6 \quad 3$	28.9	δ
Mon.	8	1111029	1174623	S. 0428	1181	$0 \cdot 4$	026.4
Tues.	9	124264	131924	15310	2274	$1 \cdot 4$	118.3
Wed.	10	$\begin{array}{llll}137 & 5613\end{array}$	1444618	25910	32858	$2 \cdot 4$	28.5
Thur.	11	1513924	$\begin{array}{llll}158 & 35 & 17\end{array}$	35558	41941	$3 \cdot 4$	$257 \cdot 3$
Fri.	12	1653340	1723416	43942	45539	$4 \cdot 4$	$345 \cdot 5$
Sat.	13	1793647	1864056	$\begin{array}{llll}5 & 7 & 14\end{array}$	$\begin{array}{llll}5 & 14 & 13\end{array}$	$5 \cdot 4$	$434 \cdot 0$
Sun.	14	1934625	2005256	51626	51350	$6 \cdot 4$	$524 \cdot 1$
Mon.	15	20800	215746	$5 \quad 624$	45416	$7 \cdot 4$	$616 \cdot 7$
Tues.	16	2221529	2292255	$\begin{array}{llll}4 & 37 & 35\end{array}$	$\begin{array}{llll}4 & 16 & 37\end{array}$	$8 \cdot 4$	$7 \quad 12 \cdot 4$
Wed.	17	2362945	$\begin{array}{lllll}243 & 35 & 38\end{array}$	35144	32320	$9 \cdot 4$	$811 \cdot 2$
Thur.	18	2504010	2574259	25154	21759	$10 \cdot 4$	9 11.8
Fri.	19	2644342	2714158	1429	$\begin{array}{cccc}\text { S. } 1 & 5 & 0\end{array}$	11.4	$10 \quad 12 \cdot 2$
Sat.	20	$\begin{array}{llll}278 & 37 & 24\end{array}$	2852939	$\begin{array}{llll}\text { S. } 0 & 27 & 9\end{array}$	N. 01047	$12 \cdot 4$	$11 \quad 10 \cdot 3$
Sun.	21	2921825	299326	N. 04814	12439	$13 \cdot 4$	$12 \quad 4 \cdot 8$
Mon.	22	3054427	$\begin{array}{lll}312 & 21 & 19\end{array}$	15930	23222	$14 \cdot 4$	$125^{5 \cdot} 3$
Tues.	23	$\begin{array}{llll}318 & 5354\end{array}$	$\begin{array}{llll}325 & 22 & 9\end{array}$	$3 \quad 250$	33035	$15 \cdot 4$	$1342 \cdot 1$
Wed.	24	331466	$\begin{array}{llll}338 & 5 & 51\end{array}$	35521	41656	$16 \cdot 4$	$14.26 \cdot 1$
Thur.	25	3442133	3503326	$\begin{array}{llll}4 & 35 & 11\end{array}$	4500	$17 \cdot 4$	$\begin{array}{ll}15 & 8 \cdot 3\end{array}$
Fri.	26	3564148	2470	51120	$\begin{array}{lrrr}5 & 9 & 9\end{array}$	$18 \cdot 4$	$1549 \cdot 8$
Sat.	27	84929	144940	51328	51419	$19 \cdot 4$	$1631 \cdot 5$
Sun.	28	20484	$\begin{array}{llll}26 & 45 & 14\end{array}$	51146	$\begin{array}{llll}5 & 5 & 51\end{array}$	$20 \cdot 4$	$\begin{array}{ll}17 & 14.4\end{array}$
Mon.	29	324141	$\begin{array}{llll}38 & 38 & 2\end{array}$	45641	44420	$21 \cdot 4$	$17 \quad 59 \cdot 2$
Tues.	30	443452	$\begin{array}{llll}50 & 32 & 47\end{array}$	42855	$\begin{array}{llll}4 & 10 & 32\end{array}$	$22 \cdot 4$	$1846 \cdot 4$
Wed.	31	$\begin{array}{llll}56 & 32 & 21\end{array}$	623411	34921	$3 \quad 2530$	$23 \cdot 4$	$1936 \cdot 2$
Thur.	32	683848	744647	N. $2 \quad 59 \quad 9$	N. 23030	$24 \cdot 4$	$20 \quad 28 \cdot 3$

1861.			SEPTEMBER.			1861.	
AT GREENWICH MEAN TIME.							
		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noon.	Midnight.	Noon.	Midnight.	Noon.	
Sun.	1	 114 31 $\prime \prime$ 1	$\stackrel{\circ}{20}^{121} 11{ }^{\prime \prime} 8$	S. ${ }^{\circ}$ ' 6113		$\stackrel{\text { d. }}{26}{ }_{2}$	
Mon.	2	1275749	134516	21356	24553	$27 \cdot 0$	$2239 \cdot 4$
Tues.	3	1415048	1485632	31548	3436	$28 \cdot 0$	23 30.2
Wed.	4	$\begin{array}{lll}156 & 7 & 47\end{array}$	1632351	$\begin{array}{lll}4 & 712\end{array}$	42733	$29 \cdot 0$	δ
Thur.	5	$\begin{array}{llll}170 & 43 & 52\end{array}$	$178 \quad 650$	44340	45510	$0 \cdot 6$	$020 \cdot 9$
Fri.	6	1853143	1925724	$5 \quad 146$	$\begin{array}{llll}5 & 3 & 17\end{array}$	$1 \cdot 6$	$112 \cdot 6$
Sat.	7	2002250	2074658	45941	4514	$2 \cdot 6$	26.0
Sun.	8	$\begin{array}{llll}215 & 8 & 54\end{array}$	2222752	43739	41946	$3 \cdot 6$	$3 \begin{array}{ll}3 & 1 \cdot 7\end{array}$
Mon.	9	2294312	236 -54 27	35749	33216	$4 \cdot 6$	359.8
Tues.	10	24417	$251 \quad 332$	$\begin{array}{llll}3 & 3 & 40\end{array}$	23232	$5 \cdot 6$	459.6
Wed.	11	$\begin{array}{llll}258 & 1 & 9\end{array}$	26454	15928	1250	$6 \cdot 6$	559.4
Thur.	12	2714242	2782659	S. 04941	S. 0143	$7 \cdot 6$	$657 \cdot 6$
Fri.	13	$\begin{array}{lll}285 & 713\end{array}$	2914340	N. 02123	N. 05611	$8 \cdot 6$	$752 \cdot 7$
Sat.	14	2981633	$30446 \quad 7$	12954	$\begin{array}{lll}2 & 2 & 7\end{array}$	$9 \cdot 6$	$844 \cdot 2$
Sun.	15	3111236	3173610	23228	$\begin{array}{llll}3 & 0 & 37\end{array}$	$10 \cdot 6$	$932 \cdot 1$
Mon.	16	$\begin{array}{lll}323 & 57 & 0\end{array}$	$\begin{array}{llll}330 & 15 & 13\end{array}$	$\begin{array}{llll}3 & 2616\end{array}$	34910	$11 \cdot 6$	$10 \quad 17 \cdot 2$
Tues.	17	$\begin{array}{llll}336 & 30 & 55\end{array}$	3424412	$4{ }^{4} 987$	42555	$12 \cdot 6$	$11 \quad 0 \cdot 3$
Wed.	18	348559	$\begin{array}{llll}355 & 348\end{array}$	43928	44939	$13 \cdot 6$	$1142 \cdot 2$
Thur.	19	11014	71433	45625	45946	$14 \cdot 6$	$1223 \cdot 9$
Fri.	20	131651	$\begin{array}{llll}19 & 17 & 17\end{array}$	45943	45620	$15 \cdot 6$	$13 \quad 6 \cdot 0$
Sat.	21	25161	$\begin{array}{llll}31 & 1317\end{array}$	44941	43953	$16 \cdot 6$	$1349 \cdot 5$
Sun.	22	$37 \quad 921$	$\begin{array}{llll}43 & 4 & 32\end{array}$	$427 \quad 3$	41122	$17 \cdot 6$	$1434 \cdot 6$
Mon.	23	485914	$54 \quad 5352$	3 52	3323	$18 \cdot 6$	$1521 \cdot 7$
Tues.	24	604855	664453	3848	24325	$19 \cdot 6$	$1610 \cdot 8$
Wed.	25	724222	784157	$\begin{array}{llll}2 & 16 & 7\end{array}$	$\begin{array}{r}1478 \\ \hline\end{array}$	$20 \cdot 6$	$17 \quad 1 \cdot 4$
Thur.	26	844418	$\begin{array}{llll}90 & 50 & 2\end{array}$	$\begin{array}{r}11642 \\ \hline\end{array}$	N. 04506	$21 \cdot 6$	$1752 \cdot 8$
Fri.	27.	965950	1031422	N. 01238	S. 02023	$22 \cdot 6$	$1844 \cdot 3$
Sat.	28	1093417	116	S. 0 53 38	12643 26	$23 \cdot 6$	$\begin{array}{ll}19 & 35 \cdot 5 \\ 20\end{array}$
Sun.	29	$\begin{array}{ll}122 & 32\end{array}$	1291155	$\begin{array}{llll}15911 \\ 3 & 0\end{array}$	2 2 3036	$24 \cdot 6$	$2026 \cdot 0$
Mon.	30	$\begin{array}{llll}135 & 58 & 33\end{array}$	1425240	$3 \quad 025$	3289	$25 \cdot 6$	21 16.2
Tues.	31	1495415	$\begin{array}{llll}157 & 3 & 6\end{array}$	S. 35312	S. 4151	$26 \cdot 6$	$22 \quad 6 \cdot 6$

1861.			OCTOBER.			1861.	
AT GREENWICH MEAN TIME.							
		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noon.	Midnight.	Noon.	Midnight.	Noon.	
Tues.	1	$\stackrel{\circ}{149} 54{ }^{\prime \prime} 15$	\circ 157 ' 15 1			${ }_{26 \cdot 6}^{\text {d. }}$	
Wed.	2	1641847	1714039	4335	44651	$27 \cdot 6$	2258.1
Thur.	3	179749	1863911	45556	45959	$28 \cdot 6$	2351.6
Fri.	4	1941332	2014931	45849	45221	0.2	d
Sat.	5	2092543	$217 \quad 048$	44042	$424 \quad 7$	$1 \cdot 2$	$047 \cdot 9$
Sun.	6	2243329	$232 \quad 237$	$4 \quad 259$	33747	$2 \cdot 2$	$147 \cdot 1$
Mon.	7	2392717	2464642	$\begin{array}{llll}3 & 9 & 6\end{array}$	23735	$3 \cdot 2$	$248 \cdot 6$
Tues.	8	254022	$261 \quad 757$	2354	12841	$4 \cdot 2$	$350 \cdot 6$
Wed.	9	$\begin{array}{lll}268 & 9 & 19\end{array}$	275429	S. 05236	S. 01615	$5 \cdot 2$	$451 \cdot 1$
Thur.	10	2815337	2883659	N. 01950	N. 0558	$6 \cdot 2$	548.3
Fri.	11	2951455	3014748	12912	$\begin{array}{llll}2 & 139\end{array}$	$7 \cdot 2$	$641 \cdot 3$
Sat.	12	308163	314405	2327	$\begin{array}{lll}3 & 0 & 18\end{array}$	$8 \cdot 2$	$730 \cdot 3$
Sun.	13	321020	$\begin{array}{llll}327 & 17 & 11\end{array}$	32558	34851	$9 \cdot 2$	815.9
Mon.	14	3333059	339425	$4 \quad 847$	42538	$10 \cdot 2$	$8 \quad 59 \cdot 2$
Tues.	15	3455047	3515720	43916	44935	$11 \cdot 2$	$941 \cdot 0$
Wed.	16	358158	$4 \quad 452$	45632	$\begin{array}{llll}5 & 0 & 7\end{array}$	$12 \cdot 2$	$1022 \cdot 4$
Thur,	17	$\begin{array}{lll}10 & 613\end{array}$	$16 \quad 6 \quad 9$	$\begin{array}{llll}5 & 0 & 19\end{array}$	45710	$13 \cdot 2$	$11{ }^{11} 4 \cdot 1$
Fri.	18	$22 \quad 451$	$28 \quad 26$	45045	4419	$14 \cdot 2$	$1147 \cdot 0$
Sat.	19	33594	395456	42830	41256	$15 \cdot 2$	$1231 \cdot 6$
Sun.	20	455011	51457	35438	33347	$16 \cdot 2$	$1318 \cdot 1$
Mon.	21	573956	633459	31035	24517	$17 \cdot 2$	$14 \quad 6 \cdot 5$
Tues.	22	693036	752712	2186	14918	18.2	$1456 \cdot 3$
Wed.	23	812513	87258	1198	N. 04753	$19 \cdot 2$	$1546 \cdot 9$
Thur.	24	$\begin{array}{llll}93 & 27 & 30\end{array}$	993253	N. 01552	S. 01637	$20 \cdot 2$	$1637 \cdot 4$
Fri.	25	1054152	111554	S. 04917	12144	21.2	17 27.3
Sat.	26	118136	1243634	15338	22434	$22 \cdot 2$	$1816 \cdot 4$
Sun.	27	$\begin{array}{llll}131 & 6 & 3\end{array}$	137423	2548	32151	$23 \cdot 2$	$19 \quad 4 \cdot 9$
Mon.	28	144251	1511516	34718	$\begin{array}{llll}4 & 857\end{array}$	$24^{\cdot 2}$	1953.5
Tues.	29	1581258	$\begin{array}{llll}165 & 18 & 9\end{array}$	42920	44457	$25 \cdot 2$	$20 \quad 42 \cdot 9$
Wed.	30	$\begin{array}{llll}172 & 30 & 37\end{array}$	1794957	45620	$\begin{array}{llll}5 & 3 & 5\end{array}$	$26 \cdot 2$	$2134 \cdot 3$
Thur.	31	$\begin{array}{llll}187 & 15 & 31\end{array}$	1944625	5452	$\begin{array}{llll}5 & 1 & 26\end{array}$	$27 \cdot 2$	22 28.8
Fri.	32	2022134	2095942	S. 45241	S. 43840	$28 \cdot 2$	$23 \quad 27 \cdot 0$

at GREENWICH MEAN TIME.

		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian
		Noon.	Midnight.	Noon.	Midnight.	Noon.	Passage.
		$1 / 1$	- ' "	- ' "	- '"	d.	h. m.
Fri.	1	2022134	2095942	S. 45251	S. 433840	$28 \cdot 2$	$23 \quad 27 \cdot 0$
Sat.	2	$\begin{array}{llll}217 & 39 & 25\end{array}$	2251916.	41936	35549	$29 \cdot 2$	d
Sun.	3	2325749	2403342	32750	25617	$0 \cdot 8$	028.8
Mon.	-4	248541	$\begin{array}{llll}255 & 32 & 43\end{array}$	22152	14520	$1 \cdot 8$	$132 \cdot 8$
Tues.	5	2625359	$\begin{array}{llll}270 & 8 & 53\end{array}$	S. 17727	S. 02858	$2 \cdot 8$	$236 \cdot 6$
Wed.	6	2771659	$28418 \quad 9$	N. 0	N. 0473	$3 \cdot 8$	$337 \cdot 6$
Thar.	7	2911220	2975943	12325	1580	$4 \cdot 8$	$434 \cdot 1$
Fri.	8	3044033	3111513	23025	$3 \quad 0 \quad 19$	$5 \cdot 8$	$525 \cdot 9$
Sat.	9	317448	$324 \quad 7 \quad 47$	32727	3,5137	$6 \cdot 8$	$613 \cdot 5$
Sun.	10	$\begin{array}{llll}330 & 2641\end{array}$	$\begin{array}{llll}336 & 41 & 20\end{array}$	41237	43022	$7 \cdot 8$	$657 \cdot 8$
Mon.	11	3425215	3485954	44445	45544	$8 \cdot 8$	$740 \cdot 1$
Tues.	12	$\begin{array}{lll}355 & 4 & 47\end{array}$	17818	$\begin{array}{llll}5 & 3 & 16\end{array}$	$5 \quad 723$	$9 \cdot 8$	$821 \cdot 5$
Wed.	13	$\begin{array}{llll}7 & 7 & 53\end{array}$	$13 \quad 653$	$5 \begin{array}{lll}5 & 8 & 4\end{array}$	$5 \quad 5 \quad 22$	$10 \cdot 8$	$9 \quad 2.9$
Thur.	14	$\begin{array}{ll}19 & 4 \\ 39\end{array}$	25128	45920	4505	11.8	$945 \cdot 3$
Fri.	15	$30 \quad 5736$	365320	43742	42219	$12 \cdot 8$	$1029 \cdot 2$
Sat.	16	424850	$48 \quad 4422$	$4 \quad 4 \quad 6$	34313	$13 \cdot 8$	$1115 \cdot 2$
Sun.	17	$5440 \quad 5$	$\begin{array}{llll}60 & 36 & 14\end{array}$	$\begin{array}{llll}3 & 19 & 53\end{array}$	$2 \begin{array}{llll}2 & 54 & 19\end{array}$	$14 \cdot 8$	$\begin{array}{ll}12 & 3 \cdot 2\end{array}$
Mon.	18	66330	723036	22646	15731	$15 \cdot 8$	$1252 \cdot 8$
Tues.	19	$78 \quad 2918$	842921	12650	N. 055	$16 \cdot 8$	$\begin{array}{ll}13 & 43.4\end{array}$
Wed.	20	9031	963442	N. 02225	S. 01038	$17 \cdot 8$	$\begin{array}{ll}14 & 33 \cdot 9\end{array}$
Thur.	21	1024042	1084924	S. 04350	11648	$18 \cdot 8$	$1523 \cdot 7$
Fri.	22	$115 \quad 114$	$\begin{array}{lll}121 & 16 & 39\end{array}$	14910	22033	$19 \cdot 8$	$\begin{array}{ll}16 & 12 \cdot 3\end{array}$
Sat.	23	$\begin{array}{lll}127 & 36 & 5\end{array}$	$134 \quad 0 \quad 0$	25034	$\begin{array}{llll}3 & 18 & 49\end{array}$	$20 \cdot 8$	$16 \quad 59 \cdot 7$
Sun.	24	1402851	$147 \quad 3 \quad 4$	34454	$4 \quad 824$	$21 \cdot 8$	$1746 \cdot 6$
Mon.	25	15343	160290	42854	44559	$22 \cdot 8$	$\begin{array}{ll}18 & 33 \cdot 7\end{array}$
Tues.	26	1672116	$\begin{array}{llll}174 & 19 & 56\end{array}$	45916	$5 \quad 8 \quad 21$	$23 \cdot 8$	$19 \quad 22 \cdot 1$
Wed.	27	1812459	1883614	$\begin{array}{llll}5 & 12 & 54\end{array}$	51240	$24 \cdot 8$	$2013 \cdot 0$
Thur.	28	$\begin{array}{llll}195 & 53 & 19\end{array}$	2031544	$\begin{array}{llll}5 & 7 & 24\end{array}$	$457 \quad 2$	$25 \cdot 8$	$21 \quad 7 \cdot 6$
Fri.	29	2104244	2181325	44133	4217	$26 \cdot 8$	22 6.4
Sat.	30	2254645	2332133	3560	32639	$27 \cdot 8$	$23 \quad 9 \cdot 1$
Sun.	31	2405635	2483035	S. 25336	S. 21733	28.8	d

1861.			DECEMBER.			1861.	
AT GREENWICH MEAN TIME.							
		THE MOON'S					
		Longitude.		Latitude.		Age.	Meridian Passage.
		Noom.	Midnight.	Noom.	Midnight.	Noom.	
Sun.	1					${ }_{28.8}^{\text {d. }}$	$\text { h. m. } \frac{\mathrm{m}}{\mathrm{~d}}$
Mon.	2	$256 \quad 220$	2633041	13914	S. $0 \quad 5927$	$0 \cdot 4$	$014 \cdot 0$
Tues.	3	2705438	2781319	S. $019 \quad 2$	N. 02115	$1 \cdot 4$	$118 \cdot 1$
Wed.	4	285563	2923222	N. 1041	13835	$2 \cdot 4$	218.8
Thur.	5	2993157	3062441	21426	24744	$3 \cdot 4$	314.8
Fri.	6	3131036	3194951	3187	34518	$4 \cdot 4$	$4 \quad 5 \cdot 8$
Sat.	7	3262244	$\begin{array}{llll}332 & 49 & 38\end{array}$	496	42920	$5 \cdot 4$	$452 \cdot 8$
Sun.	8	3391058	3452716	44558	45856	$6 \cdot 4$	536.8
Mon.	9	351392	3574649	$\begin{array}{llll}5 & 815\end{array}$	51355.	$7 \cdot 4$	$619 \cdot 1$
Tues.	10	35113	95245	$516 \quad 2$	51438	$8 \cdot 4$	$\begin{array}{ll}7 & 0.8\end{array}$
Wed.	11	155159	214925	$5{ }_{5}^{5} 948$	$\begin{array}{llll}5 & 1 & 39\end{array}$	$9 \cdot 4$	742.9
Thur.	12	274535	334056	45018	43552	$10 \cdot 4$	$826 \cdot 2$
Fri.	13	393554	$45 \quad 3054$	41830	35821	$11 \cdot 4$	$911 \cdot 4$
Sat.	14	512618	572228	33537	31031	$12 \cdot 4$	958.8
Sun.	15	631940	691812	24314	2144	$13 \cdot 4$	$1048 \cdot 1$
Mon.	16	751819	812013	14316	1119	14.4	1138.8
Tues.	17	87248	$93 \quad 3015$	N. 03812	N. 0416	$15 \cdot 4$	$1230 \cdot 0$
Wed.	18	993843	1054945	S. 02946	S. $1 \quad 3 \quad 43$	16.4	$1320 \cdot 6$
Thur.	19	$112 \quad 329$	$\begin{array}{llll}118 & 20 & 6\end{array}$	$\begin{array}{llll}137 & 9\end{array}$	$2 \quad 940$	17.4	$1410 \cdot 0$
Fri.	20	1243946	$131 \quad 241$	24052	31020	$18 \cdot 4$	1457.9
Sat.	21	$\begin{array}{llll}137 & 29 & 1\end{array}$	1435857	33739	$4 \quad 226$	$19 \cdot 4$	$1544 \cdot 7$
Sun.	22	$\begin{array}{llll}150 & 3242\end{array}$	1571025	42417	44250	$20 \cdot 4$	$1630 \cdot 9$
Mon.	23	1635216	1703822	45744	$5 \quad 841$	$21 \cdot 4$	$1717 \cdot 6$
Tues.	24	1772851	1842345	51523	51738	$22 \cdot 4$	$\begin{array}{ll}18 & 5 \cdot 8\end{array}$
Wed.	25	191232	1982638	51514	$\begin{array}{llll}5 & 8 & 4\end{array}$	$23 \cdot 4$	1856.7
Thur.	26	2053422	2124556	4567	43926	$24 \cdot 4$	$1951 \cdot 4$
Fri.	27	$220 \quad 059$	227191	4189	35234	$25 \cdot 4$	$2050 \cdot 2$
Sat.	28	2343926	242131	3231	24958	26.4	2152.4
Sun.	29	2492430	2564732	2142	13550	$27 \cdot 4$	$2256 \cdot 0$
Mon.	30	$264 \quad 944$	2713011	S. 0566	S. 01536	$28 \cdot 4$	2358.6
Tues.	31	278481	$286 \quad 24$	N. 02454	N. 1441	$29 \cdot 4$	¢
Wed.	32	2931235	3001756	N. 143	N. 21922	0.9	$057 \cdot 7$

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathbf{X V}$.	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
1	Aldebaran	W.		$97^{\circ} 415{ }^{\prime \prime}$	$99826{ }^{\prime \prime}$	$101^{\circ} 11^{\prime} 431$
	Pollux	W.	535630	554144	57271	591221
	Spica	E.	373918	$35 \quad 5331$	$34 \quad 745$	32223
	Antares	E.	831646	813031	794415	775759
	Venus	E.	855917	842239	82460	81921
	Sun	E.	117199	1154032	$\begin{array}{lll}114 & 154\end{array}$	1122316
2	Pollux	W.	$67 \quad 5922$	694448	713014	$\begin{array}{llll}73 & 15 & 39\end{array}$
	Jupiter	W.	32381	342357	$\begin{array}{llll}36 & 9 & 55\end{array}$	375555
	Antares	E.	69645	672032	653421	634812
	Venus	E.	$\begin{array}{lll}73 & 6 & 8\end{array}$	712932	695258	681625
	Sun	E.	$\begin{array}{llll}104 & 10 & 8\end{array}$	1023132	1005258	991425
3	Pollux	W.	$82 \quad 226$	834743	853256	87188
	Jupiter	W.	464611	483214	501816	52 2
	Regulus	W.	$45 \quad 211$	464745	483319	501851
	Saturn	W.	$\begin{array}{llll}34 & 0 & 8\end{array}$	354445	372927	391413
	Antares	E.	545753	531156	$\begin{array}{ll}5126 & 2\end{array}$	494011
	Venus	E.	601414	583756	57 1 41	552530
	Sun	E.	$91 \quad 210$	892350	874532	$86 \quad 717$
4	Jupiter	W.	605348	$\begin{array}{lll}02 & 39 & 34\end{array}$	642518	
	Regulus	W.	$\begin{array}{llll}59 & 5 & 56\end{array}$	$\begin{array}{llll}60 & 51 & 13\end{array}$	623626	642136
	Saturn	W.	475831	494323	512815	$\begin{array}{llll}53 & 13 & 5\end{array}$
	Antares	E.	405143	$\begin{array}{lll}39 & 612\end{array}$	372045	353523
	Venus	E.	472533	454947	4414	423832
	Sun	E.	775650	$\begin{array}{llll}76 & 18 & 54\end{array}$	74413	$73 \quad 315$
5	Jupiter				$78 \quad 2853$	$8013 \quad 59$
	Regulus	W.	$73 \quad 6 \quad 26$	$\begin{array}{ll}74 & 51 \\ 11\end{array}$	763551	782026
	Saturn	W.	615639		652543	67108
	Venus	E.	344215	$\begin{array}{llll}33 & 7 & 23\end{array}$	313240	$2958 \quad 8$
	Sun	E.	$6455 \quad 23$	$63 \quad 18 \quad 2$	614047	
6	Jupiter	W.	885811	904244	922710	$\begin{array}{llll}94 & 11 & 29\end{array}$
	Regulus	W.	$87 \quad 156$	884555	902948	921334
	Saturn	W.	$75 \quad 514$	773458	791846	$81 \quad 228$
	Spica	W.	$\begin{array}{llll}33 & 1 & 9\end{array}$	344448	362823	381154
	Sun	E.	515913	502238	484611	47950
7	Jupiter	W.	1025113	1043445	106189	108 1023
	Saturn	W.	$8939 \quad 9$	91226	$\begin{array}{llll}93 & 4 & 54\end{array}$	94 17
	Spica	W.	464758	$48 \quad 3051$	501335	$51 \quad 5612$
	Sun	E.	$3910 \quad 0$	373426	35591	342345
13	Sun	W.				374029
	Mars	E.	391050	374423	$\begin{array}{llll}36 & 18 & 13\end{array}$	345221
	a Arietis	E.	682022	664814	$65 \quad 1619$	634439
	Aldebaran	E.	1005259	992141	975036	961944
14	Sun	W.	443941	$\begin{array}{llll}46 & 2 & 56\end{array}$	472559	484852
	Mars	E.	274729	$26 \quad 23 \quad 29$	245950	233633
	a Arietis	E.	$\begin{array}{lll} 56 & 9 & 34 \end{array}$	$54 \quad 3912$	$\begin{array}{llll}53 & 9 & 1\end{array}$	$5139 \quad 2$
	Aldebaran	E.	884824	871842	854912	841953

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXI.
15	Sun a Arietis Aldebaran	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 55 & 40 & 1 \prime \prime \\ 44 & 11 & 54 \\ 76 & 55 & 48 \end{array}$	$\begin{array}{llrr}57 & 2 & 51 \\ 42 & 43 & 0 \\ 75 & 27 & 27\end{array}$	$\begin{array}{llll} 58 & 24 & 42 \\ 41 & 14 & 15 \\ 73 & 59 & 14 \end{array}$	$\begin{array}{llr} 59 & 46 & 2{ }^{\prime \prime} \\ 39 & 45 & 40 \\ 72 & 31 & 9 \end{array}$
16	Sun Fomalhant a Arietis Aldebaran	W. W. E. E.	$\begin{array}{lll} 66 & 33 & 34 \\ 40 & 26 & 24 \\ 32 & 25 & 4 \\ 65 & 12 & 34 \end{array}$	$\begin{array}{lll} 67 & 54 & 46 \\ 41 & 35 & 24 \\ 30 & 57 & 25 \\ 63 & 45 & 10 \end{array}$	$\begin{array}{lll} 69 & 15 & 54 \\ 42 & 45 & 21 \\ 29 & 29 & 54 \\ 62 & 17 & 52 \end{array}$	70 37 0 43 56 12 28 2 34 60 50 38
17	Sun Fomalhaut Aldebaran Pollux	W. W. E. E.	77 22 6 50 1 27 53 35 37 95 21 55	78 43 7 51 16 22 52 8 47 93 53 53	$\begin{array}{rrr} 80 & 4 & 9 \\ 52 & 31 & 49 \\ 50 & 42 & 1 \\ 92 & 25 & 49 \end{array}$	$\begin{array}{llll} 81 & 25 & 13 \\ 53 & 47 & 46 \\ 49 & 15 & 18 \\ 90 & 57 & 43 \end{array}$
18	Sun Fomalhant a Pegasi Aldebaran Pollux	W. W. W. E. E.	88 11 22 60 14 12 37 25 29 42 2 25 83 36 25	89 32 50 61 32 42 38 46 29 40 35 59 82 7 56	$\begin{array}{rrr} 90 & 54 & 24 \\ 62 & 51 & 33 \\ 40 & 8 & 4 \\ 39 & 9 & 37 \\ 80 & 39 & 21 \end{array}$	$\begin{array}{rrr} 92 & 16 & 5 \\ 64 & 10 & 46 \\ 41 & 30 & 11 \\ 37 & 43 & 20 \\ 79 & 10 & 39 \end{array}$
19	Sun Fomalhaut a Pegasi Mars Pollux Jupiter	W. W. W. W. E. E.	$\begin{array}{rrr} 99 & 634 \\ 70 & 51 & 54 \\ 48 & 27 & 55 \\ 29 & 8 & 29 \\ 71 & 45 & 14 \\ 105 & 28 & 12 \end{array}$	$\begin{array}{rrr} 100 & 29 & 8 \\ 72 & 13 & 5 \\ 49 & 52 & 45 \\ 30 & 32 & 6 \\ 70 & 15 & 42 \\ 103 & 57 & 24 \end{array}$	$\begin{array}{rrr} 101 & 51 & 54 \\ 73 & 34 & 34 \\ 51 & 17 & 59 \\ 31 & 56 & 1 \\ 68 & 46 & 0 \\ 102 & 26 & 26 \end{array}$	$\begin{array}{rrr} 103 & 14 & 51 \\ 74 & 56 & 22 \\ 52 & 43 & 36 \\ 33 & 20 & 14 \\ 67 & 16 & 8 \\ 100 & 55 & 15 \end{array}$
20	Sun Fomalhaut a Pegasi Mars Pollux Jupiter	W. W. W. W. E. E.	$\begin{array}{rrr} 110 & 12 & 51 \\ 81 & 49 & 50 \\ 59 & 57 & 21 \\ 40 & 25 & 35 \\ 59 & 43 & 46 \\ 93 & 16 & 4 \end{array}$	$\begin{array}{rrr} 111 & 37 & 10 \\ 83 & 13 & 24 \\ 61 & 25 & 12 \\ 41 & 51 & 32 \\ 58 & 12 & 39 \\ 91 & 43 & 30 \end{array}$	$\begin{array}{rrr} 113 & 1 & 45 \\ 84 & 37 & 16 \\ 62 & 53 & 25 \\ 43 & 17 & 47 \\ 56 & 41 & 19 \\ 90 & 10 & 41 \end{array}$	$\begin{array}{rrrr} 114 & 26 & 35 \\ 86 & 1 & 24 \\ 64 & 22 & 0 \\ 44 & 44 & 21 \\ 55 & 9 & 44 \\ 88 & 37 & 36 \end{array}$
21	Sun a Pegasi Mars Pollux Jupiter Regulus Saturn	W. W. W. E. E. E. E.	$\begin{array}{rrr} 121 & 35 & 4 \\ 71 & 50 & 18 \\ 52 & 1 & 53 \\ 47 & 28 & 9 \\ 80 & 47 & 51 \\ 84 & 11 & 54 \\ 94 & 43 & 56 \end{array}$	$\begin{array}{rrr} 123 & 1 & 41 \\ 73 & 21 & 3 \\ 53 & 30 & 23 \\ 45 & 55 & 5 \\ 79 & 12 & 59 \\ 82 & 37 & 51 \\ 93 & 9 & 45 \end{array}$	$\begin{array}{rrr} 124 & 28 & 37 \\ 74 & 52 & 10 \\ 54 & 59 & 13 \\ 44 & 21 & 45 \\ 77 & 37 & 48 \\ 81 & 3 & 29 \\ 91 & 35 & 14 \end{array}$	$\begin{array}{rrr} 125 & 55 & 52 \\ 76 & 23 & 39 \\ 56 & 28 & 24 \\ 42 & 48 & 10 \\ 76 & 2 & 18 \\ 79 & 28 & 48 \\ 90 & 0 & 24 \end{array}$
22	Sun ${ }^{a}$ Pegasi Mars Pollux Jupiter Regulus Saturn	W. W. W. E. E. E. E.	$\begin{array}{rrr} 133 & 17 & 14 \\ 84 & 6 & 33 \\ 63 & 59 & 39 \\ 34 & 56 & 39 \\ 67 & 59 & 40 \\ 71 & 30 & 16 \\ 82 & 1 & 6 \end{array}$	$\begin{array}{rrr} 134 & 46 & 34 \\ 85 & 40 & 14 \\ 65 & 31 & 0 \\ 33-21 & 41 \\ 66 & 22 & 6 \\ 69 & 53 & 31 \\ 80 & 24 & 11 \end{array}$	136 16 15 87 14 17 67 2 43 31 46 33 64 44 10 68 16 24 78 46 55	137 46 18 88 48 41 68 34 48 30 11 16 63 5 53 66 38 56 77 9 17
23	Mars a Arietis Jupiter Regulus	W. W. E. E.	$\begin{array}{llr} 76 & 20 & 57 \\ 53 & 57 & 54 \\ 54 & 48 & 59 \\ 58 & 26 & 5 \end{array}$	77 55 19 55 37 18 53 8 31 56 46 25	79 30 4 57 17 6 51 27 41 55 6 23	81 5 11 58 57 17 49 46 29 53 25 59

GREENWIOH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { mone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nan } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathbf{X V}{ }^{\text {b }}$.	XVIII ${ }^{\text {b }}$	XXI ${ }^{\text {b }}$
23	Saturn	E.	$68{ }^{\circ} 55^{\prime \prime} 42$	$67^{\circ} 15{ }^{\prime} 53$	$65^{\circ} 35431$	$63^{\circ} 55^{\prime} 111$
24	Mars	W.	$89 \quad 626$	904347	922129	935932
	a Arietis	W.	67241	$69 \quad 629$	704919	723231
	Aldebaran	W.	353615	371521	$3855 \quad 5$	403524
	Jupiter	E.	411516	39321	374828	$\begin{array}{lll}36 & 4 & 36\end{array}$
	Regulus	E.	445840	431610	413320	395011
	Saturn	E.	552715	534439	$52 \quad 144$	501830
25	Mars	W.	1021448	1035449	105356	1071541
	a Arietis	W.	811338	825850	844420	86307
	Aldebaran	W.	$\begin{array}{lll}49 & 4 & 47\end{array}$	$5048 \quad 2$	523142	541545
	Jupiter	E.	272115	253557	235030	22458
	Regulus	E.	3110	292513	274012	25550
	Satarn	E.	41383	395312	$\begin{array}{llll}38 & 8 & 9\end{array}$	362255
26	Mars	W.	1154228	1172431	$\begin{array}{llll}119 & 6 & 46\end{array}$	1204912
	a Arietis	W.	$95 \quad 23$ 7	971026	$98 \quad 5757$	1004541
	Aldebaran	W.	6318	64479	663324	681954
	Saturn	E.	27354	254928	$24 \quad 4 \quad 1$	221850
	Spica	E.	705747	691016	672232	653437
27	Aldebaran	W.	$77 \quad 1530$	$\begin{array}{llll}79 & 3 & 8\end{array}$	805053	823845
	Pollux	W.	351521	$37 \quad 223$	384943	403716
	Spica	E.	563230	544340	525444	$51 \quad 543$
	Antares	E.	1021320	1002415	98354	$\begin{array}{llll}96 & 45 & 47\end{array}$
28	Aldebaran	W.	$\begin{array}{llll}91 & 39 & 13\end{array}$	932726	951539	$97 \begin{array}{lll}97 & 3 & 51\end{array}$
	Pollux	W.	493739	$5126 \quad 5$	531434	55.38
	Spica	E.	415952	401039	382127	363218
	Antares	E.	873821	854845	83598	$82 \quad 932$
29	Pollux	W.	$64 \quad 5 \quad 55$	655424	674249	693110
	Jupiter	W.	$\begin{array}{lll}31 & 26 & 7\end{array}$	331534	$\begin{array}{llll}35 & 5 & 0\end{array}$	365425
	Spica	E.	$\begin{array}{llll}27 & 27 & 50\end{array}$	25 71	$\begin{array}{llll}23 & 51 & 5 \\ 69 & 23 & 26\end{array}$	$\begin{array}{llll}22 & 3 & 3 \\ 67 & 34 & 17\end{array}$
	Antares	E.	$\begin{array}{lll}73 & 2 & 0\end{array}$	711240	$\begin{array}{llll}69 & 23 & 26\end{array}$	$\begin{array}{llll}67 & 34 & 17\end{array}$
	Venus	E.	1101719	1083715	1065716	1051723
30	Pollux	W.	783125	80196	$\begin{array}{llll}82 & 6 & 39\end{array}$	$8354 \quad 2$
	Jupiter	W.	$46 \quad 0 \quad 30$	474925	493812	512651
	Regulus	W.	413031	431829	$45 \quad 620$	4654
	Antares	E.	$\begin{array}{llll}58 & 3017\end{array}$	564154	545340	$\begin{array}{llll}53 & 5 & 35\end{array}$
	Venus	E.	$96 \quad 5939$	952031	934132	$\begin{array}{llll}92 & 2 & 42\end{array}$
	Sun	E.	1215533	1201446	118349	1165341
31	Pollux	W.	924825	943444	$\begin{array}{llll}96 & 20 & 52\end{array}$	$\begin{array}{llll}98 & 6 & 47\end{array}$
	Jupiter	W.	$60 \quad 2748$	621528	$64 \quad 2 \quad 58$	655016
	Regulus	W.	$55 \quad 5016$	57370	$\begin{array}{llll}59 & 23 & 33\end{array}$	$\begin{array}{ll}61 & 9 \\ 55\end{array}$
	Saturn	W.	$46 \quad 5 \quad 13$	475147	-493813	512430
	Antares	E.	$44 \quad 749$	$\begin{array}{lll}42 & 20 & 49\end{array}$	$\begin{array}{llll}40 & 34 & 1\end{array}$	$\begin{array}{ll}38 & 47 \\ 78\end{array}$
	Venus	E.	83518	821322	80 0548	785826
	Sun	E.	1083357	1065433	1051521	1033621

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month	Star's N and Positio		Midnight.	XVh.	XVIII.	XXI'
1	Pollux		$106^{\circ} 5314$	$108^{\circ} 37{ }^{\text {5 }}$ 2	$110^{\circ} 22^{1} 16$	112° '6 $26^{\prime \prime}$
	Jupiter	W.	744350	762957	781550	$80 \quad 131$
	Regulus	W.	695847	714357	732854	$\begin{array}{llll}75 & 13 & 38\end{array}$
	Saturn	W.	601324	615838	634341	652832
	Antares	E.	295733	281214	$2627 \quad 7$	244213
	Venus	E.	705440	691833	674238	$66 \quad 657$
	Sun	E.	952427	934642	$\begin{array}{llll}92 & 9 & 10\end{array}$	903150
2	Jupiter	W.	884645	$\begin{array}{llll}90 & 31 & 10\end{array}$	$\begin{array}{llll}92 & 15 & 21\end{array}$	$\begin{array}{llll}93 & 59 & 19\end{array}$
	Regulus	W.	$8354{ }^{8} 9$	$\begin{array}{llll}85 & 37 & 36\end{array}$	872051	$89 \quad 353$
	Saturn	W.	$74 \quad 949$	$\begin{array}{llll}75 & 53 & 28\end{array}$	773654	$\begin{array}{llll}79 & 20 & 8\end{array}$
	Spica	W.	295357	$\begin{array}{llll}31 & 36 & 58\end{array}$	$\begin{array}{llll}33 & 1951\end{array}$	$\begin{array}{llll}35 & 2 & 33\end{array}$
	Venus	E.	581143	$\begin{array}{llll}56 & 37 & 19\end{array}$	$\begin{array}{llll}55 & 3 & 8\end{array}$	532910
	a Aquilæ	E.	$\begin{array}{ll}73 & 24 \\ 23\end{array}$	715437	$\begin{array}{llll}70 & 25 & 19\end{array}$	685628
	Sun	E.	822830	805229	$\begin{array}{llll}79 & 16 & 42\end{array}$	7741
3	Jupiter	W.	1023558	1041840	10618	1074325
	Regulus	W.	97 75	991734	100596	1024026
	Saturn	W.	875312	893511	911658	925832
	Spica	W.	433325	$4515 \quad 2$	465627	483741
	Venus	E.	454234	$44 \quad 953$	423725	415
	a Aquilæ	E.	$61 \quad 4019$	601455	$58 \quad 5013$	572616
	Sun	E.	694628	681211	$66 \quad 38 \quad 6$	$65 \quad 4 \quad 14$
4	Jupiter	W.	1161136	$\begin{array}{llll}117 & 52 & 37\end{array}$	1193325	$\begin{array}{lll}121 & 14 & 1\end{array}$
	Regulus	W.	$111 \quad 357$	112442	1142354	116 1235
	Saturn	W.	1012318	103339	1044347	1062343
	Spica	W.	$57 \quad 058$	5841	602056	$62 \quad 0 \quad 38$
	Venus	E.	$\begin{array}{llll}33 & 2655\end{array}$	315553	$\begin{array}{llll}30 & 25 & 3\end{array}$	285425
	a Aquilæ	E.	$\begin{array}{llll}50 & 39 & 17\end{array}$	492051	$48 \quad 3 \quad 35$	464732
	Sun	E.	5718	$5545 \quad 26$	54132	524049
5	Saturn	W.	1144016	1161858	$\begin{array}{lll}117 & 57 & 27\end{array}$	1193544
	Spica	W.	$70 \quad 1615$	715448	$\begin{array}{ll}73 & 3310\end{array}$	751120
	Antares	W.	243041	$26 \quad 921$	274749	29267
	Venus	E.	$\begin{array}{llll}21 & 2413\end{array}$	195447	182532	165628
	Sun	E.	$45 \quad 250$	433151	$42 \quad 14$	403029
6	Spica	W.	$\begin{array}{llll}83 & 19 & 25\end{array}$	845628	863320	88101
	Antares	W.	373448	391159	404859	$42 \quad 2547$
	Sun	E.	$\begin{array}{llll}33 & 0 & 37\end{array}$	313116	$\begin{array}{llll}30 & 2 & 8\end{array}$	283313
11	Sun	W.	$\begin{array}{llll}24 & 35 & 17\end{array}$	$\begin{array}{llll}25 & 57 & 31\end{array}$	$\begin{array}{llll}27 & 19 & 39\end{array}$	284142
	Mars	E.	384342	371922	$\begin{array}{llll}35 & 55 & 13\end{array}$	343115
	a Arietis	E.	$48 \quad 531$	463554	$45 \quad 6 \quad 26$	$43 \quad 37 \quad 8$
	Aldebaran	E.	804657	$\begin{array}{llll}79 & 17 & 53\end{array}$	774858	$76 \quad 2012$
12	Sun	W.	$\begin{array}{llll}35 & 30 & 30\end{array}$	365159	381324	393443
	Mars	E.	27 34 24	261140	244910	232656
	a Arietis	E.	$\begin{array}{llll}36 & 13 & 7\end{array}$	344449	$\begin{array}{llll}33 & 1641\end{array}$	314843
	Aldebaran	E.	685821	673023	$66 \quad 231$	$64 \quad 34.47$
	Pollux	E.	$11055 \quad 28$	1092651	1075819	1062951
13	Sun	W.	462020	474118	$49 \quad 213$	50236

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of Month.	$\begin{gathered} \text { Star's Name } \\ \text { 'and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathbf{X V}$.	XVIIIr.	XXI.
13	Aldebaran	E.	$57^{\circ} 174.17$	$55^{\circ} 50{ }^{\prime} 4{ }^{\prime \prime}$	$54^{\circ} 23^{\prime} 4{ }^{\prime \prime}$	
	Pollux	E.	99835	974030	$9612 \quad 27$	944426
14	Sun	W.	$\begin{array}{lll}57 & 718\end{array}$	$5828 \quad 9$	59490	$61 \quad 954$
	Aldebaran	E.	454356	$44 \quad 1739$	425127	412522
	Pollux	E.	872440	855643	842845	$83 \quad 046$
15	Son	W.	$6755 \quad 3$	$\begin{array}{llll}69 & 1617\end{array}$	703737	
	Aldebaran	E.	341653	325141	312642	$\begin{array}{llll}30 & 1 & 57\end{array}$
	Pollux	E.	754015	741158	724336	71159
	Jupiter	E.	10602	1043020	103032	1013039
	Regulus	E.	1123516	111633	1093744	108850
16	Sun	W.	78480	801013	813236	825510
	Aldebaran	E.	$23 \quad 4 \quad 2$	214214	202122	19140
	Pollux	E.	$\begin{array}{llll}63 & 51 & 18\end{array}$	62229	605252	592325
	Jupiter	E.	935923	922842	905750	892649
	Regulus	E.	1004225	991242	974248	961244
	Saturn	E.	10923 2	107531	1062249	1045227
17	Sun	W.	895059	$\begin{array}{llll}91 & 14 & 48\end{array}$	923853	$94 \quad 313$
	Mars	W.	291229	303741	$32 \quad 314$	$33 \quad 297$
	a Arietis	W.	$\begin{array}{lll}24 & 1 & 30\end{array}$	25314	$\begin{array}{llll}27 & 1 & 5\end{array}$	283132
	Pollux	E.	515339	50238	$4852 \quad 25$	472130
	Jupiter	E.	814840	801623	784351	77113
	Regulus	E.	883924	$87 \quad 8 \quad 4$	853629	$84 \quad 439$
	Saturn	E.	$\begin{array}{llll}97 & 17 & 31\end{array}$	954551	941356	924146
18	Son	W.	$\begin{array}{llll}101 & 9 & 1\end{array}$	102355	104128	1052810
	Mars	W.	404340	421137	$43 \quad 3956$	$45 \quad 837$
	a Arietis	W.	$36 \quad 942$	374230	391541	404915
	Pollux	E.	394345	381134	363910	$\begin{array}{lll}35 & 635\end{array}$
	Jupiter	E.	692258	674828	661338	643829
	Regulus	E.	762117	744743	731350	713937
	Saturn	E.	845643	832248	814835	80142
19	Sun	W.	1124654	1141545	1154458	1171434
	Mars	W.	523741	$54 \quad 840$	5540	571152
	${ }_{\text {a }}$ Arietis	W.	$48 \quad 4259$	501857	515519	$\begin{array}{llll}53 & 32 & 6\end{array}$
	Pollux	E.	$\begin{array}{llll}27 & 21 & 14\end{array}$	254752	241432	224117
	Jupiter	E.	$\begin{array}{lllll}56 & 37 & 36\end{array}$	$55 \quad 021$	532243	514443
	Regulus	E.	$\begin{array}{llll}63 & 43 & 20\end{array}$	$\begin{array}{llll}62 & 6 & 59\end{array}$	603016	$\begin{array}{llll}58 & 53 & 9\end{array}$
	Saturn	E.	$\begin{array}{llll}72 & 16 & 5\end{array}$	703925	$69 \quad 222$	672457
20	Son	W.	1244835	$\begin{array}{ll}126 & 20 \\ 37\end{array}$	12753	1292555
	Mars	W.	$6457 \quad 9$	663130	$\begin{array}{llll}68 & 6 & 17\end{array}$	694130
	a Arietis	W.	614224	632146	$\begin{array}{llll}65 & 1 & 34\end{array}$	664148
	Aldebaran	W.	30 6	314123	$\begin{array}{llll}33 & 17 & 13\end{array}$	345350
	Jupiter	E.	432850	414829	$\begin{array}{lll}40 & 744\end{array}$	382635
	Regulus	E.	504140	49.29	$47 \quad 2213$	454153
	Saturn	E.	591158	573211	55520	541124
	Spica	E.	1044356	103416	1012410	994338
21	Mars	W.	774414	79226	$81 \quad 0 \quad 24$	$8239 \quad 9$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Star's Name and Position.		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXIT.
21	a Arietis	W.	$75^{\circ} 98940$	$76{ }^{7} 52{ }^{\circ} 3{ }^{\prime \prime}$	$78^{\circ} 35^{\prime} 54$	$80^{\circ} 19^{\prime} 40^{\prime \prime}$
	Aldebaran	W.	43721	444757	$46 \quad 298$	481053
	Jupiter	E.	$2955 \quad 3$	281139	262756	244354
	Regulus	E.	37145	353119	334811	$\begin{array}{lll}32 & 4 & 39\end{array}$
	Saturn	E.	454230	435934	421615	$\begin{array}{llll}40 & 32 & 35\end{array}$
	Spica	E.	911427	893117	874742	$86 \quad 341$
22	Mars	W.	905918	924034	$\begin{array}{llll}94 & 22 & 14\end{array}$	$\begin{array}{llll}96 & 4 & 18\end{array}$
	a Arietis	W.	$89 \quad 457$	$90 \quad 5115$	$\begin{array}{llll}92 & 37 & 57\end{array}$	$\begin{array}{ll}94 & 25\end{array}$
	Aldebaran	W.	564735	$58 \quad 3224$	601741	$62 \quad 325$
	Regulus	E.	232159	213639	$\begin{array}{llll}19 & 51 & 8\end{array}$	$18 \quad 532$
	Saturn	E.	314927	$\begin{array}{llll}30 & 4 & 2\end{array}$	281826	263243
	Spica	E.	$\begin{array}{llll}77 & 17 & 14\end{array}$	$\begin{array}{llll}75 & 30 & 43\end{array}$	734347	715628
23	Mars	W.	104408	1062420	$\begin{array}{lll}108 & 850\end{array}$	1095338
	a Arietis	W.	$103 \quad 2557$	105159	107439	1085427
	Aldebaran	W.	$\begin{array}{llll}70 & 58 & 19\end{array}$	7246 27	74 34	762342
	Pollux	W.	$29 \quad 147$	304830	323548	342339
	Spica	E.	$\begin{array}{llll}62 & 54 & 26\end{array}$	6150	$\begin{array}{llll}59 & 15 & 15\end{array}$	$57 \quad 2514$
	Antares	E.	108361	1064624	1045628	103614
24	Mars	W.	1184133	$\begin{array}{lll}120 & 27 & 48\end{array}$	$\begin{array}{llll}122 & 14 & 14\end{array}$	$124 \quad 049$
	Aldebaran	W.	853155	872218	891252	$\begin{array}{llll}91 & 3 & 36\end{array}$
	Pollux	W.	$43 \quad 2933$	$\begin{array}{ll}45 & 19\end{array}$	471021	$\begin{array}{lll}49 & 1 & 9\end{array}$
	Spica	E.	481112	$46 \quad 1944$	44286	$\begin{array}{llll}42 & 36 & 18\end{array}$
	Antares	E.	93510	915915	$90 \quad 718$	88 1511
25	Aldebaran	W.	$\begin{array}{llll}100 & 19 & 14\end{array}$	1021036	104159	1055323
	Pollux	W.	$\begin{array}{llll}58 & 18 & 4\end{array}$	$\begin{array}{llll}60 & 9 & 53\end{array}$	$62 \quad 146$	635343
	Jupiter	W.	$29 \quad 4 \quad 21$	305712	325011	344317
	Regulus	W.	211654	$\begin{array}{llll}23 & 815\end{array}$	245952	265140
	Spica	E.	$\begin{array}{llll}33 & 15 & 48\end{array}$	312334	293120	2739
	Antares	E.	$78 \quad 5234$	$76 \quad 5946$	$75 \quad 655$	$\begin{array}{llll}73 & 14 & 3\end{array}$
26	Pollux	W.	$\begin{array}{llll}73 & 13 & 39\end{array}$	$75 \quad 5 \quad 32$	$\begin{array}{llll}76 & 57 & 20\end{array}$	$7849 \quad 2$
	Jupiter	W.	$\begin{array}{llll}44 & 9 & 19\end{array}$	$46 \quad 228$	475533	494833
	Regulus	W.	$\begin{array}{llll}36 & 12 & 3\end{array}$	$38 \quad 411$	39 56 15	414815
	Saturn	W.	283533	302641	321757	$\begin{array}{llll}34 & 9 & 18\end{array}$
	Antares	E.	634953	615713	60438	$\begin{array}{llll}58 & 1211\end{array}$
27	Pollux	W.	$88 \quad 525$	$89 \quad 56 \quad 9$	914640	$\begin{array}{llll}93 & 36 & 58\end{array}$
	Jupiter	W.	591131	$61 \quad 3 \quad 36$	625528	$\begin{array}{llll}64 & 47 & 7\end{array}$
	Regulus	W.	51625	525734	544831	$\begin{array}{llll}56 & 39 & 15\end{array}$
	Saturn	W.	432545	$\begin{array}{llll}45 & 16 & 47\end{array}$	$47 \quad 739$	485821
	Antares	E.	$48 \quad 52 \quad 9$	$47 \quad 042$	$45 \quad 9 \quad 29$	$\begin{array}{llll}43 & 18 & 29\end{array}$
	a Aquilæ	E.	$\begin{array}{llll}102 & 7 & 14\end{array}$	1002948	$98 \quad 5224$	$\begin{array}{llll}97 & 15 & 4\end{array}$
28	Pollux	W.	1024434	1043314		
	Jupiter	W.	741139	$\begin{array}{llll}75 & 51 & 44\end{array}$	774132	$\begin{array}{llll}79 & 31\end{array}$
	Regulus	W.	654916	673828	692722	7151559
	Saturn	W.	$58 \quad 845$	$\begin{array}{llll}59 & 58 & 6\end{array}$	614711	633559
	Antares	E.	$34 \quad 721$	321758	302853	$28 \quad 407$
	a Aquilæ	E.	$\begin{array}{llll}89 & 10 & 39\end{array}$	873426	$\begin{array}{llll}85 & 58 & 31\end{array}$	842255
	Sun	E.	1264045	1245910	1231752	1213651

GREENWICH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { mon } \\ & \text { Houth } \end{aligned}$			Midnight.	X74.	XVIII ${ }^{\text {b }}$	xxip.
1	Jupiter Saturn a Aquilæ Sun	$\begin{aligned} & \text { w. } \\ & \text { w. } \\ & \text { w. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$		$\begin{array}{rrr} 90 & 21 & 14 \\ 82 & 0 & 59 \\ 74 & 22 & 24 \\ 74 & 57 & 38 \\ 111 & 37 & 22 \end{array}$	$\begin{array}{rrrr}90 \\ 92 & 8 & 26 \\ 83 & 47 & 20 \\ 76 & 9 & 1 \\ 73 & 25 & 4 \\ 109 & 58 & 35\end{array}$	$\begin{array}{rrr} 98 & 55 & 18 \\ 85 & 33 & 20 \\ 77 & 55 & 19 \\ 71 & 53 & 1 \\ 108 & 20 & 9 \end{array}$
2	Jupiter Regulus Saturn Spica a Aquilæ Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{r} 1024425 \\ 941815 \\ 864142 \\ 4015 \\ 64 \\ 64 \\ 21 \\ 100 \\ 18 \end{array}$	$\begin{array}{rrr} 104 & 29 & 12 \\ 96 & 2 & 11 \\ 88 & 25 & 58 \\ 41 & 59 & 36 \\ 62 & 53 & 38 \\ 98 & 36 & 40 \end{array}$	$10613 \quad 38$ 97454890 9 53 43 43 4 $\begin{array}{rrr}43 & 43 & 4 \\ 61 & 26 & 10\end{array}$ $\begin{array}{lll}97 & 0 & 38\end{array}$	$\begin{array}{rrr} 107 & 57 & 43 \\ 99 & 29 & 3 \\ 91 & 53 & 27 \\ 45 & 26 & 13 \\ 59 & 59 & 29 \\ 95 & 24 & 55 \end{array}$
3	Jupiter Saturn Spica a Aquilæ Sun	W. W. W. E.	$\begin{array}{rrr} 116 & 33 & 0 \\ 100 & 26 & 15 \\ 53 & 57 & 9 \\ 52 & 59 & 23 \\ 87 & 31 & 27 \end{array}$	$\begin{array}{rrr} 118 & 15 & 2 \\ 102 & 7 & 49 \\ 55 & 38 & 23 \\ 51 & 38 & 22 \\ 85 & 57 & 45 \end{array}$	$119 \quad 5645$ 103493 $\begin{array}{llll}57 & 19 & 18 \\ 50 & 18 & 28\end{array}$ 842423	$\begin{array}{rrr} 121 & 38 & 8 \\ 105 & 29 & 57 \\ 58 & 59 & 54 \\ 48 & 59 & 45 \\ 82 & 51 & 20 \end{array}$
4	Saturn Spica Antares Sun	$\begin{aligned} & \mathrm{W} . \\ & \mathrm{W} . \\ & \mathrm{W} . \\ & \mathrm{E} . \end{aligned}$	$\begin{array}{r} 1134941 \\ 67 \\ 18 \\ 21 \\ 21 \\ 73 \\ 75 \\ 10 \end{array} \mathbf{4 6} \text { }$	1152842 685710 733934	$\begin{array}{rrr} 117 & 7 & 25 \\ 70 & 35 & 41 \\ 24 & 50 & 56 \\ 72 & 8 & 40 \end{array}$	1184550 721356 $\begin{array}{llll}26 & 29 & 15 \\ 70 & 38 & 3\end{array}$
5	Spica Antares Sun	$\stackrel{\mathrm{W}}{\mathrm{W}} \mathrm{W}$.	$\begin{array}{lll} 80 & 21 & 5 \\ 34 & 36 & 52 \\ 63 & 9 & 8 \end{array}$	$81 \quad 5745$ $\begin{array}{lll}36 & 13 & 37\end{array}$ 614010	$\begin{array}{llr} 83 & 34 & 9 \\ 37 & 50 & 8 \\ 60 & 11 & 26 \end{array}$	$\begin{array}{lll} 85 & 10 & 19 \\ 39 & 26 & 24 \\ 58 & 42 & 58 \end{array}$
6	Spica Antares Sun	$\begin{aligned} & \mathrm{W} . \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 93 & 7 & 41 \\ 47 & 24 & 17 \\ 51 & 24 & 18 \end{array}$	$\begin{array}{lll} 94 & 42 & 30 \\ 48 & 59 & 13 \\ 49 & 57 & 17 \end{array}$	$\begin{array}{lll}96 & 17 & 7\end{array}$ 503356 483029	$\begin{array}{lrr} 97 & 51 & 31 \\ 52 & 8 & 27 \\ 47 & 3 & 54 \end{array}$
7	Spica Antares Sun	W. W. E.	$\begin{array}{rrr} 1054034 \\ 5958 & 6 \\ 39 & 54 & 18 \end{array}$	$\begin{array}{rrr} 107 & 13 & 50 \\ 61 & 31 & 28 \\ 38 & 29 & 1 \end{array}$	$\begin{array}{rrr} 108 & 46 & 55 \\ 63 & 4 & 41 \\ 37 & 3 & 58 \end{array}$	$\begin{array}{r} 1101949 \\ 643743 \\ 35 \quad 39 \end{array}$
8	$\begin{aligned} & \text { Antares } \\ & \text { Sun } \end{aligned}$	W. E.	$\begin{array}{lll} 72 & 20 & 28 \\ 28 & 38 & 13 \end{array}$	$\begin{array}{llll} 73 & 52 & 34 \\ 27 & 14 & 44 \end{array}$	$\begin{array}{lll} 75 & 24 & 31 \\ 25 & 51 & 30 \end{array}$	$\begin{array}{lll} 76 & 56 & 19 \\ 24 & 28 & 33 \end{array}$
13	Sun Mars Aldebaran Pollux	W. E. E. E.	265930 26479 $\begin{array}{llll}48 & 57 & 12 \\ 90 & 44 & 0\end{array}$ 9044	$\begin{array}{llll}28 & 19 & 29 \\ 25 & 24 & 31\end{array}$ 473031 8916	$\begin{array}{rrr} 29 & 39 & 33 \\ 24 & 2 & 0 \\ 46 & 2 & 0 \\ 47 & 57 \\ 87 & 48 & 2 \end{array}$	$\begin{array}{llll} 30 & 59 & 42 \\ 22 & 39 & 37 \\ 44 & 37 & 29 \\ 86 & 20 & 4 \end{array}$
14	Sun Aldebaran Pollux Jupiter	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$			$\begin{array}{r} 402225 \\ 3436 \\ 76417 \\ 1031925 \end{array}$	$\begin{array}{r} 4143 \\ 3310 \\ 7436 \\ 7436 \\ 1015016 \end{array}$
15	Sun Aldebaran Pollux Jupiter Saturn	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 48 & 27 & 22 \\ 26 & 8 & 59 \\ 67 & 15 & 29 \\ 94 & 23 & 44 \\ 110 & 41 & 24 \end{array}$	$\begin{array}{r} 494829 \\ 244553 \\ 654711 \\ 925415 \\ 1091217 \end{array}$	$\begin{array}{rrr} 51 & 9 & 42 \\ 23 & 23 & 22 \\ 64 & 18 & 49 \\ 91 & 24 & 40 \\ 107 & 43 & 5 \end{array}$	$\begin{array}{rrr} 52 & 31 & 1 \\ 22 & 1 & 34 \\ 62 & 50 & 22 \\ 89 & 55 & 0 \\ 106 & 13 & 46 \end{array}$
16	Sun	W.	591926	604132	$62 \quad 347$	632611

GREENWICH MEAN TIME.						
Lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Monthe. } \\ & \text { Mont. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Positior } \end{gathered}$		Midnight.	XV.	xVIII ${ }^{\text {b }}$	XXIr.
16	Pollux	E.	$55{ }^{\circ} 26{ }^{\prime \prime}$	535757	$5288{ }^{2} 51$	50859
	Jupiter	E.	82255	805444	792414	775336
	Regulus	E.	921332	904348	891355	874352
	Saturn	E.	984533	971532	954521	$\begin{array}{llll}94 & 15 & 1\end{array}$
17	Sun	W.	702055	714428	73 814	743214
	a Arietis	W.	322515	335522	352547	365630
	Pollux	E.	433152	$42 \quad 155$	403151	$\begin{array}{lll}39 & 139\end{array}$
	Jupiter	E.	$\begin{array}{lllll}70 & 17 & 50\end{array}$	$6846 \quad 7$	671411	65423
	Regulns	E.	80114	783955	$\begin{array}{ll}77 & 834\end{array}$	753659
	Saturn	E.	864045	$85 \quad 919$	$83 \quad 3740$	$82 \quad 548$
18\cdots	Sun	W.	813556	$\begin{array}{lll}83 & 1 & 29\end{array}$	$84 \quad 2719$	855327
	a Arietis	W.	443443	$\begin{array}{ll}46 & 718\end{array}$	474012	$\begin{array}{ll}49 & 13\end{array} 27$
	Mars	W.	301310	314045	$\begin{array}{ll}33 & 840\end{array}$	343657
	Pollux	E.	312858	295810	282721	265631
	Jupiter	E.	575745	$\begin{array}{llll}56 & 24 & 7\end{array}$	545013	$\begin{array}{llll}53 & 16 & 1\end{array}$
	Regulus.	E.	675528	662222	644859	631519
	Saturn	E.	742252	724930	711552	694156
19	Sun	W.	93×85	94371	$\begin{array}{lll}96 & 5 & 29\end{array}$	$97 \quad 3419$
	a Arietis	W.	57 4 48	58409	601553	615159
	Mars	W.	$42 \quad 3 \quad 39$	43346	$45 \quad 456$	46369
	Aldebaran	W.	253750	$27 \quad 746$	283838	301021
	Jupiter	E.	452030	434426	$42 \quad 8 \quad 2$	403118
	Regulus	E.	$55 \cdot 2217$	534641	521044	503426
	Saturn	E.	614740	601151	$58 \quad 3542$	565912
20		W.	105410	1063520	$108 \quad 654$	1093853
	a Arietis	W.	695828	71370	$\begin{array}{llll}73 & 15 & 57\end{array}$	745520
	Mars	W.	541815	555155	57261	$59 \quad 032$
	Aldebaran	W.	$38 \quad 0 \quad 6$	39361	411233	424941
	Jupiter	E.	322224	304334	$\begin{array}{ll}29 & 424\end{array}$	272453
	Regulus	E.	$\begin{array}{llll}42 & 27 & 27\end{array}$	404855	$3910 \quad 0$	373042
	Saturn	E.	485122	471242	453341	$\begin{array}{llll}43 & 54 & 17\end{array}$
21	Sun	W.	1172510	1185944	1203443	122109
	a Arietis	W.	831850	$85 \quad 0 \quad 52$	864322	882618
	Mars	W.	665949	$68 \quad 37 \quad 2$	701442	715249
	Aldebaran	W.	51350	524418	542518	$56 \quad 649$
	Regulus	E.	$29 \quad 826$	272652	254458	$24 \quad 2 \quad 45$
	Saturn	E.	353154	335023	$32 \quad 835$	302629
	Spica	E.	$83 \quad 550$	812332	794047	775735
22	Sun	W.	1301344	1315144	$\begin{array}{llll}133 & 30 & 9\end{array}$	$\begin{array}{lll}135 & 857\end{array}$
	Mars	W.	801020	815112	833231	851417
	Aldebaran	W.	64426	662639	681140	695711
	Saturn	E.	21535	201018	182747	164545
	Spica	E.	691448	$67 \quad 2854$	654233	$163 \quad 5546$
23	Mars	W.	934935	$95 \quad 3354$	971836	$\begin{array}{llll}99 & 3 & 41\end{array}$
	Aldebaran	W.	785131	803940	$82 \quad 2814$	841712
	Pollux	W.	365226	383954	$40 \quad 27 \quad 53$	421624

GREENWICH MEAN TIME.						
lunar distances.						
Day nf Month.	Star's Name and Position.		Midnight.	XV'.	XVIII ${ }^{\text {a }}$.	XXI.
23	Spica Antares	E.		$\begin{array}{rrr} 53 & 6 & 113 \\ 98 & 46 & 19 \end{array}$	$\begin{array}{llll}51 & 16 & 31 \\ 96 & 56 & 27\end{array}$	$\begin{array}{ccc} 49 & 26 & 31 \\ 95 & 6 & 11 \end{array}$
24	Mars	W.	1075427	1094135	1112859	1131640
	Aldebaran	W.	93 12720	$\begin{array}{llll}95 & 18 & 20\end{array}$	$97 \quad 936$	$\begin{array}{llll}99 & 1 & 8\end{array}$
	Pollux	W.	512545	531649	$55 \quad 814$	565959
	Spica	E.	$\begin{array}{llll}40 & 11 & 19\end{array}$	381922	$\begin{array}{llll}36 & 27 & 9\end{array}$	343443
	Antares?	E.	854933	835715	82440	801148
25	Pollux	W.	662243	681556	$\begin{array}{llll}70 & 9 & 18\end{array}$	$72 \quad 248$
	Jupiter	W.	394238	413643	43 30 57 3 7	$\begin{array}{llll}45 & 25 & 21\end{array}$
	Regulus	W.	292034	311350	33 1	$\begin{array}{llll}35 & 1 & 3\end{array}$
	Spica	E.	$25 \quad 958$	231644 68	$\begin{array}{llll}21 & 23 & 31 \\ 66 & 55 & \end{array}$	$\begin{array}{llll}19 & 30 & 22\end{array}$
	Antares	E.	$\begin{array}{llll}70 & 44 & 1\end{array}$	684954	665539	$65 \quad 116$
26	Pollux	W.	813139	832531	851921	$87 \begin{array}{lll}87 & 13\end{array}$
	Jupiter	W.	545841	565327	584813	604255
	Regulus	W.	443124	$46 \quad 2539$	$\begin{array}{lll}4819 & 54\end{array}$	5014
	Saturn	W.	384929	404321	$\begin{array}{llll}42 & 37 & 17\end{array}$	443115
	Antares	E.	552819	533341	$\begin{array}{lll}51 & 39 & 4\end{array}$	494430
	a Aquilæ	E.	1074923	106946	1042954	1024950
27	Pollux	W.	964039	983342	1002633	1021912
	Jupiter	W.	70156	729	$\begin{array}{llll}74 & 2 & 57\end{array}$	75 5634
	Regulus	W.	59440	613735	$\begin{array}{llll}63 & 30 & 59\end{array}$	652411
	Saturn	W.	$54 \quad 030$	$5554 \quad 3$	574727	594040
	Antares	E.	401312	381924	362547	343223
	a Aquilæ	E.	942819	92485	$\begin{array}{ll}91 & 758\end{array}$	89281
28	Jupiter	W.				90 90559
	Regulns	W.	744634	763812	$\begin{array}{ll}78 & 29 \\ 31\end{array}$	$\begin{array}{llll}80 & 20 & 31 \\ 7 & 37\end{array}$
	Saturn	W.	69 3 21 0	$7055 \quad 5$	724631	$\begin{array}{lllll}74 & 37 & 37\end{array}$
	Antares	E.	$\begin{array}{lll} 25 & 9 & 17 \end{array}$	$\begin{array}{llll}23 & 17 & 34 \\ 70 & 34\end{array}$	$21 \quad 2612$ 775620	$\begin{aligned} & 193511 \\ & 76 \quad 19 \end{aligned}$
	a Aquilæ	E.	811210	79342	775620	76196
29				1015630 91		
	Regulus	W.	893010 834756	911858 85	$\begin{array}{llll}93 & 7 & 22 \\ 87 & 25\end{array}$	$\begin{array}{lll} 94 & 55 & 22 \end{array}$
	Saturn	W.	834756	853653	87 25 26 9 4	89 13 34 40 52
	${ }_{\text {Spica }}$ Aquilæ	W.	$\begin{array}{llll}35 & 27 & 47 \\ 68 & 21 & 16\end{array}$	3716163 6647 6	$\begin{array}{rrrr}39 & 4 & 37 \\ 65 & 14 & 42\end{array}$	$40 \quad 5229$ 634233
	${ }_{\text {a }}^{\text {a Aquilæ }}$	E.	682116 1314652	$66 \quad 47 \quad 37$ $130 \quad 5 \quad 57$	65 128 128	6342 1264511
30	Jupiter	W.	1142850	1161436	1175955	1194449
	Saturn	W.	$\begin{array}{llll}98 & 8 & 4\end{array}$	995342	1013854	1032339
	Spica	W.	494553	513120	531623 53	$\begin{array}{llll}55 & 1 & 1\end{array}$
	a Aquilæ	E.	$\begin{array}{lll}56 & 14 & 57\end{array}$	544823	$\begin{array}{llll}53 & 22 & 56 \\ 76\end{array}$	$\begin{array}{llll}51 & 58 & 39\end{array}$
	Fomalhant	E.	$\begin{array}{llll}79 & 44 & 56\end{array}$	$\begin{array}{llll}78 & 9 & 8\end{array}$	$\begin{array}{llll}76 & 33 & 51 \\ 115 & 14 & 52\end{array}$	$\begin{array}{lllll}74 & 59 & 5\end{array}$
	Sun	E.	118304	1165216	1151452	$\begin{array}{llll}113 & 3753\end{array}$
31	Saturn	W.	$\begin{array}{lll}112 & 0 & 58\end{array}$	113438	1152452	117611
	Spica	W.	$\begin{array}{llll}63 & 37 & 55\end{array}$	$65 \quad 20 \quad 3$	$67 \quad 146$	68435
	a Aquilæ	E.	$\begin{array}{llll}45 & 17 & 21\end{array}$	$\begin{array}{ll}44 & 1\end{array} 41$	$\begin{array}{ll}42 & 47 \\ 646\end{array}$	413543
	Fomalhant	E.	$\begin{array}{r}671347 \\ \hline 159\end{array}$	65 4232 	641158	$\begin{array}{r}62423 \\ \hline 10056\end{array}$
	Sun	E.	1053910	104440	1023034	1005653

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.	$\begin{gathered} \text { Star's Nan } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXIb.
1	Spica Antares Fomalhaut Sun	W. W. E. E. W.	$\begin{array}{rrrr}77 & 3 & 43 \\ 31 & 20 & 34 \\ 55 & 23 & 28 \\ 93 & 14 & 22\end{array}$	$\begin{array}{lll} 78 & 42 & 42 \\ 32 & 59 & 42 \\ 53 & 58 & 7 \\ 91 & 43 & 2 \end{array}$	$\begin{array}{llll} 80 & 21 & 111 \\ 34 & 38 & 17 \\ 52 & 33 & 39 \\ 90 & 12 & 3 \end{array}$	$\begin{array}{llll} 81 & 59 & 11 \\ 36 & 16 & 31 \\ 51 & 10 & 4 \\ 88 & 41 & 27 \end{array}$
2	Spica Antares Fomalhaut Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	90 5 24 44 22 50 44 27 26 81 13 42	$\begin{array}{rrrr} 91 & 41 & 34 \\ 45 & 59 & 5 \\ 43 & 10 & 20 \\ 79 & 45 & 10 \end{array}$	93 17 25 47 35 2 41 54 33 78 16 57	$\begin{array}{lll} 94 & 52 & 58 \\ 49 & 10 & 39 \\ 40 & 40 & 10 \\ 76 & 49 & 3 \end{array}$
3	Spica Antares Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrrr} 102 & 46 & 15 \\ 57 & 4 & 26 \\ 69 & 33 & 59 \end{array}$	$\begin{array}{rrr} 104 & 20 & 5 \\ 58 & 38 & 22 \\ 68 & 7 & 49 \end{array}$	$\begin{array}{rrr} 105 & 53 & 39 \\ 60 & 12 & 2 \\ 66 & 41 & 54 \end{array}$	$\begin{array}{rll} 107 & 26 & 58 \\ 61 & 45 & 28 \\ 65 & 16 & 15 \end{array}$
4	Antares Sun	W. E.	$\begin{array}{lll} 69 & 29 & 7 \\ 58 & 11 & 37 \end{array}$	$\begin{array}{rrr} 71 & 1 & 12 \\ 56 & 47 & 22 \end{array}$	$\begin{array}{rrr} 72 & 33 & 6 \\ 55 & 23 & 19 \end{array}$	$\begin{array}{lr} 74 & 4 \\ 53 & 59 \\ 59 \end{array}$
5	Antares Sun	W. E.	$\begin{array}{rrr} 81 & 40 & 42 \\ 47 & 3 & 11 \end{array}$	$\begin{array}{lll} 83 & 11 & 24 \\ 45 & 40 & 28 \end{array}$	$\begin{array}{lll} 844158 \\ 44 & 17 & 55 \end{array}$	$\begin{array}{lll} 86 & 12 & 24 \\ 42 & 55 & 32 \end{array}$
6	Antares a Aquilæ Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 93 & 42 & 41 \\ 46 & 39 & 50 \\ 36 & 6 & 4 \end{array}$	$\begin{array}{lll} 95 & 12 & 24 \\ 47 & 48 & 30 \\ 34 & 44 & 39 \end{array}$	96 42 2 48 57 58 33 23 24	$\begin{array}{rrrr}98 & 11 & 34 \\ 50 & 8 & 9 \\ 32 & 2 & 19\end{array}$
7	Antares a Aquilæ Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 105 & 38 & 4 \\ 56 & 8 & 11 \\ 25 & 19 & 35 \end{array}$	$\begin{array}{rrr} 107 & 7 & 9 \\ 57 & 21 & 42 \\ 23 & 59 & 39 \end{array}$	$\begin{array}{r} 10836 \quad 11 \\ 58 \\ 35 \\ 39 \\ 22 \\ 39 \\ 59 \end{array}$	$\begin{array}{rrr} 110 & 5 & 10 \\ 59 & 49 & 59 \\ 21 & 20 & 36 \end{array}$
12	Sun Pollux Jupiter Regulus Saturn	W. E. E. E. E.	$\begin{array}{rrr} 29 & 51 & 43 \\ 58 & 25 & 27 \\ 84 & 17 & 23 \\ 95 & 12 & 43 \\ 100 & 14 & 54 \end{array}$	$\begin{array}{lll} 31 & 12 & 50 \\ 56 & 56 & 41 \\ 82 & 47 & 52 \\ 93 & 43 & 12 \\ 98 & 45 & 21 \end{array}$	32 34 7 55 27 52 81 18 16 92 13 36 97 15 43	33 55 35 53 59 0 79 48 34 90 43 54 95 45 59
13	Sun Pollux Jupiter Regulus Saturn	W. E. E. E. E.	40 45 31 46 33 38 72 18 28 83 13 45 88 15 38	42 8 1 45 4 21 70 48 6 8.1 43 22 86 45 11	43 30 42 43 35 1 69 17 36 80 12 49 85 14 37	44 53 33 42 5 38 67 46 58 78 42 9 83 43 54
14	Sun Pollux Jupiter Regulus Saturn	W. E. E. E. E.	$\begin{array}{rrr} 51 & 50 & 34 \\ 34 & 37 & 55 \\ 60 & 11 & 33 \\ 71 & 6 & 28 \\ 76 & 8 & 6 \end{array}$	53 14 33 33 8 18 58 39 59 69 34 50 74 36 26	54 38 45 31 38 41 57 8 14 68 3 1 73 4 36	56 3 9 30 9 6 55 36 18 66 31 0 71 32 35
15	Sun Aldebaran Mars Jupiter Regulus Saturn Spica	W. W. W. E. E. E. E.	$\begin{array}{rrr} 63 & 8 & 31 \\ 22 & 21 & 55 \\ 20 & 42 & 27 \\ 47 & 53 & 44 \\ 58 & 47 & 54 \\ 63 & 49 & 32 \\ 112 & 50 & 32 \end{array}$	$\begin{array}{rrr} 64 & 34 & 19 \\ 23 & 48 & 20 \\ 22 & 10 & 33 \\ 46 & 20 & 36 \\ 57 & 14 & 37 \\ 62 & 16 & 17 \\ 111 & 17 & 7 \end{array}$	$\begin{array}{rrr} 66 & 0 & 21 \\ 25 & 15 & 46 \\ 23 & 38 & 58 \\ 44 & 47 & 14 \\ 55 & 41 & 7 \\ 60 & 42 & 48 \\ 109 & 43 & 28 \end{array}$	$\begin{array}{rrr} 67 & 26 & 40 \\ 26 & 44 & 7 \\ 25 & 7 & 41 \\ 43 & 13 & 38 \\ 54 & 7 & 22 \\ 59 & 9 & 6 \\ 108 & 9 & 33 \end{array}$
16	Sun Aldebaran	W. W.	$\begin{array}{lll} 74 & 42 & 19 \\ 34 & 16 & 49 \\ \hline \hline \end{array}$	$\begin{array}{lll} 78 & 10 & 20 \\ 35 & 49 \cdot & 11 \\ \hline \end{array}$	$\begin{array}{r} 7738 \quad 39 \\ 37 \quad 22 \quad 6 \\ \hline \end{array}$	$\begin{array}{rrr} 79 & 7 & 17 \\ 38 & 55 & 32 \\ \hline \hline \end{array}$

GREENWIOH MEAN TIME.						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Mone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXIb.
16	Mars	W.	323550	$34^{\circ} 6{ }^{\prime \prime}{ }^{\prime \prime}$	$35^{\circ} 37^{\prime \prime} 16^{\prime \prime}$	$37{ }^{\circ} 8{ }^{\text {¢ }} 2{ }^{\prime \prime}$
	Jupiter	E.	35228	33475	321148	303616
	Regulus	E.	461449	443930	$43 \quad 355$	41283
	Saturn	E.	511656	494145	$48 \quad 6 \quad 17$	463034
	Spica	E.	1001557	984022	$97 \quad 429$	952817
17	Sun	W.	863523	$88 \quad 6 \quad 2$	89373	$91 \quad 826$
	Aldebaran	W.	464959	$48 \quad 2617$	$50 \quad 3 \mathrm{l}$	514013
	Mars	W.	444937	462254	475634	493035
	Jupiter	E.	22358	20.5819	192122	174422
	Regulus	E.	332421	314645	30851	283040
	Saturn	E.	382755	365035	35130	333510
	Spica	E.	872223	854411	$84 \quad 536$	822641
18	Sun	W.	9851	1002441	1015845	1033314
	Aldebaran	W.	595251	613243	63131	645346
	Mars	W.	572629	$\begin{array}{lll}59 & 2 & 51\end{array}$	603938	621649
	Regulus	E.	201612	183650	165727	15188
	Saturn	E:	252257	2344.7	$\begin{array}{lll}22 & 518\end{array}$	202635
	Spica	E.	${ }^{7} 46622$	72258	704331	$\begin{array}{ll}69 & 129\end{array}$
19	Sun	W.	1113142	$\begin{array}{lll}113 & 8 & 37\end{array}$	1144557	1162341
	Aldebaran	W.	$73 \quad 24 \quad 7$	$\begin{array}{llll}75 & 7 & 30\end{array}$	$\begin{array}{llll}76 & 51 & 19\end{array}$	783534
	Mars	W.	702856	$\begin{array}{lll}72 & 8 & 37\end{array}$	734844	752915
	Pollux	W.	313326	331520	$\begin{array}{llll}34 & 57 & 53\end{array}$	$\begin{array}{llll}36 & 41 & 3\end{array}$
	Spica	E.	$\begin{array}{llll}60 & 25 \quad 15\end{array}$	584046	$\begin{array}{llll}56 & 55 & 53\end{array}$	$\begin{array}{llll}55 & 10 & 35\end{array}$
	Antares	E.	$\begin{array}{llll}106 & 5 & 7\end{array}$	1042029	1023526	1004957
20	Sun	W.	1243821	1261828	1275856	1293947
	Aldebaran	W.	872311	$89 \quad 956$	90575	924437
	Mars	W.	83588	85418	872433	89821
	Pollux	W.	452521	471146	485840	50461
	Spica	E.	$\begin{array}{llll}46 & 18 & 1\end{array}$	443020	424216	405350
	Antares	E.	915621	$90 \quad 824$	$88 \quad 20 \quad 4$	863120
21	Aldebaran	W.	1014744	1033723	1052719	1071733
	Mars	W.	975259	993858	1012518	1031156
	Pollux	W.	594918	61399	$\begin{array}{lll}63 & 2922\end{array}$	651956
	Jupiter	W.	332912	351915	37 9 12	$\begin{array}{llll}39 & 0 & 31\end{array}$
	Regulus	W.	224751	243719	$\begin{array}{llll}26 & 27 & 18\end{array}$	281745
	Saturn	W.	$1830 \quad 3$	201624	$\begin{array}{lll}22 & 3 & 50\end{array}$	23529
	Spica	E.	314630	2956	28 8	261435
	Antares	E.	77222	75317	733952	714818
22	Mars	W.	$\begin{array}{llll}112 & 9 & 27\end{array}$	1135743	1154611	1173451
	Pollux	W.	743725	762944	782215	801459
	Jupiter	W.	481921	501157	$\begin{array}{ll}52 & 4 \\ 47\end{array}$	$\begin{array}{lllll}53 & 57 & 49\end{array}$
	Regulus	W.	373552	392828	412118	431423
	Saturn	W.	$\begin{array}{ll}33 & 3\end{array} 23$	34554	$\begin{array}{llll}36 & 47 & 6\end{array}$	38 39 18
	Spica	E.	1658 50	$15 \quad 652$	$\begin{array}{llll}13 & 15 & 59 \\ 58 & 39\end{array}$	$\begin{array}{llll}11 & 2544 \\ 56 & 46\end{array}$
	Antares	E.	622611	60330	583937	56462
23	Pollux	W.	89413	913435	$93 \quad 2810$	952148

GREENWICH MEAN TTME.						
lunar distances.						
Day of Month.	$\begin{gathered} \text { Star's Nar } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV.	XVIII ${ }^{\text {. }}$	XXI ${ }^{\text {b }}$
23	Jupiter Regulus Saturn Antares a Aquilx	W. W. W. E. E.	$\begin{array}{rrr} 63 & 25 & 27 \\ 52 & 42 & 34 \\ 48 & 4 & 55 \\ 47 & 15 & 53 \\ 100 & 39 & 48 \end{array}$	65 19 20 54 36 35 49 58 31 45 21 32 98 59 15	67 13 16 56 30 41 51 52 14 43 27 9 97 18 30	69 7 14 58 24 50 53 46 2 41 32 43 95 37 36
24	Pollux Jupiter Regulus Saturn Antares a Aquilæ	W. W. W. W. E. E.	$\begin{array}{rrr} 104 & 49 & 39 \\ 78 & 37 & 1 \\ 67 & 55 & 38 \\ 63 & 15 & 22 \\ 32 & 0 & 51 \\ 87 & 12 & 30 \end{array}$	$\begin{array}{rrr} 106 & 43 & 1 \\ 80 & 30 & 48 \\ 69 & 49 & 38 \\ 65 & 9 & 8 \\ 30 & 6 & 41 \\ 85 & 31 & 39 \end{array}$	$\begin{array}{rrr} 108 & 36 & 14 \\ 82 & 24 & 28 \\ 71 & 43 & 32 \\ 67 & 2 & 48 \\ 28 & 12 & 38 \\ 83 & 50 & 58 \end{array}$	$\begin{array}{rrr} 110 & 29 & 19 \\ 84 & 18 & 1 \\ 73 & 37 & 20 \\ 68 & 56 & 21 \\ 26 & 18 & 45 \\ 82 & 10 & 29 \end{array}$
25	Jupiter Regulus Saturn Spica Antares a Aquilæ Fomalhaut	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 93 & 43 & 4 \\ 83 & 3 & 41 \\ 78 & 21 & 43 \\ 29 & 1 & 56 \\ 16 & 52 & 26 \\ 73 & 52 & 39 \\ 98 & 42 & 28 \end{array}$	$\begin{array}{rrr} 95 & 35 & 25 \\ 84 & 56 & 19 \\ 80 & 14 & 10 \\ 30 & 54 & 12 \\ 15 & 0 & 1 \\ 72 & 14 & 18 \\ 97 & 0 & 6 \end{array}$	97 27 30 86 48 41 82 6 20 32 46 16 13 8 0 70 36 28 95 17 54	$\begin{array}{lll} 99 & 19 & 18 \\ 88 & 40 & 46 \\ 83 & 58 & 15 \\ 34 & 38 & 7 \\ 11 & 16 & 27 \\ 68 & 59 & 12 \\ 93 & 35 & 54 \end{array}$
26	Jupiter Regulus Saturn Spica a Aquilæ Fomalhaut ${ }_{a}$ Pegasi	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 108 & 33 & 30 \\ 97 & 56 & 30 \\ 93 & 13 & 8 \\ 43 & 53 & 13 \\ 61 & 2 & 57 \\ 85 & 9 & 56 \\ 105 & 54 & 4 \end{array}$	$\begin{array}{rrr} 110 & 23 & 17 \\ 99 & 46 & 36 \\ 95 & 3 & 4 \\ 45 & 43 & 16 \\ 59 & 30 & 6 \\ 83 & 29 & 47 \\ 104 & 7 & 39 \end{array}$	$\begin{array}{rrr} 112 & 12 & 41 \\ 101 & 36 & 20 \\ 96 & 52 & 37 \\ 47 & 32 & 58 \\ 57 & 58 & 10 \\ 81 & 50 & 2 \\ 102 & 21 & 32 \end{array}$	$\begin{array}{rrr} 114 & 1 & 41 \\ 103 & 25 & 41 \\ 98 & 41 & 47 \\ 49 & 22 & 18 \\ 56 & 27 & 14 \\ 80 & 10 & 44 \\ 100 & 35 & 43 \end{array}$
27	Regulus Saturn Spica a Aquilæ Fomalhaut a Pegasi	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 112 & 26 & 13 \\ 107 & 41 & 26 \\ 58 & 23 & 3 \\ 49 & 9 & 53 \\ 72 & 1 & 45 \\ 91 & 52 & 4 \end{array}$	$\begin{array}{rrr} 114 & 13 & 2 \\ 109 & 28 & 3 \\ 60 & 9 & 58 \\ 47 & 46 & 26 \\ 70 & 25 & 39 \\ 90 & 8 & 31 \end{array}$	$\begin{array}{rr} 115 & 59 \\ 111 & 14 \\ 61 & 14 \\ 56 & 26 \\ 46 & 24 \\ 31 \\ 68 & 50 \\ 11 \\ 88 & 25 \end{array} 23$	$\begin{array}{rrr} 117 & 45 & 19 \\ 112 & 59 & 57 \\ 63 & 42 & 29 \\ 45 & 4 & 16 \\ 67 & 15 & 21 \\ 86 & 42 & 41 \end{array}$
28	Saturn Spica Antares Fomalhaut a Pegasi Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 121 & 41 & 34 \\ 72 & 26 & 2 \\ 26 & 44 & 12 \\ 59 & 32 & 2 \\ 78 & 16 & 1 \\ 124 & 15 & 18 \end{array}$	$\begin{array}{rrr} 123 & 34 & 29 \\ 74 & 9 & 24 \\ 28 & 27 & 34 \\ 58 & 1 & 44 \\ 76 & 36 & 5 \\ 122 & 39 & 33 \end{array}$	$\begin{array}{rrr} 125 & 6 & 54 \\ 75 & 52 & 19 \\ 30 & 10 & 31 \\ 56 & 32 & 18 \\ 74 & 56 & 39 \\ 121 & 4 & 14 \end{array}$	$\begin{array}{rrr} 126 & 48 & 51 \\ 77 & 34 & 47 \\ 31 & 53 & 1 \\ 55 & 3 & 45 \\ 73 & 17 & 43 \\ 119 & 29 & 20 \end{array}$
29	Spica Antares Fomalhaut ${ }^{a}$ Pegasi Sun	$\begin{aligned} & \text { W. } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 86 & 0 & 30 \\ 40 & 18 & 59 \\ 47 & 56 & 6 \\ 65 & 10 & 32 \\ 111 & 41 & 20 \end{array}$	$\begin{array}{r} 8740 \\ 4158 \\ 41 \\ 46 \\ 48 \\ 33 \\ 55 \\ 63 \\ 34 \\ 110 \\ 110 \end{array}$	$\begin{array}{rrr} 89 & 19 & 46 \\ 43 & 38 & 23 \\ 45 & 13 & 0 \\ 61 & 59 & 16 \\ 108 & 37 & 5 \end{array}$	$\begin{array}{rrr} 90 & 58 & 46 \\ 45 & 17 & 27 \\ 43 & 53 & 25 \\ 60 & 24 & 25 \\ 107 & 5 & 35 \end{array}$
30	Spica Antares Fomalhaut a Pegasi Sun	W. W. E. E. E.	1 7 71 53 26 41 37 38 29 52 38 21 99 34 2	$\begin{array}{rrr} 100 & 44 & 17 \\ 55 & 3 & 30 \\ 36 & 28 & 50 \\ 51 & 6 & 49 \\ 98 & 4 & 52 \\ \hline \end{array}$	$\begin{array}{rrr} 102 & 20 & 32 \\ 56 & 39 & 50 \\ 35 & 21 & 16 \\ 49 & 35 & 52 \\ 96 & 36 & 4 \\ \hline \end{array}$	$\begin{array}{rrr} 103 & 56 & 24 \\ 58 & 15 & 48 \\ 34 & 15 & 56 \\ 48 & 5 & 32 \\ 95 & 7 & 38 \end{array}$

GREENWICH MEAN TIME.						
lunar distances.						
Day of Month	$\begin{gathered} \text { Star’s Nan } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathbf{x V}^{\text {b }}$.	XVIII.	XXI ${ }^{\text {b }}$
1	Spica	W.	$111^{\circ} 50{ }^{\circ} 3{ }^{\prime \prime}$	$113^{\circ} 24^{\prime} 26^{\prime \prime}$	$11457{ }^{\circ} 59$	$116^{\circ} 31^{1} 14$
	Antares	W.	661031	674429	6918	705131
	${ }_{\text {a }}$ Pegasi	E.	404329	391711	375141	$\begin{array}{llll}36 & 27\end{array}$
	Sun	E.	875035	86248	8458 0	83329
2	Antares	W.	783417	$80 \quad 6 \quad 5$	813739	83.90
	${ }_{\text {a P Pegasi }}$	E.	29 8	$\begin{array}{llll}28 & 20 & 24\end{array}$	27 73	254857
			$\begin{array}{llll}76 & 27 & 1\end{array}$	$75 \quad 245$	733843	721454
3	Antares	W.	904242	921254	934257	951250
	a Aquilæ	W.	441631	$45 \quad 2354$	463211	474116
	Sun	E.	651853	635614	623345	611125
4	Antares	W.	1024019	104929		$107 \quad 731$
	a Aquilæ	W.	$\begin{array}{llll}53 & 36 & 51\end{array}$	544938	$\begin{array}{lll}56 & 2 & 53\end{array}$	571634
	Sun ${ }^{\text {a }}$	E.	542150	$\begin{array}{llll}53 & 0 & 17\end{array}$	513850	501728
5	Antares	W.	1143122	1155959	1172833	. 118576
	\boldsymbol{a} Aquilæ	W.	$\begin{array}{llll}63 & 30 & 21\end{array}$	$\begin{array}{llllll}64 & 46 & 1\end{array}$	$\begin{array}{llll}66 & 1 & 57\end{array}$	67 18
	Fomalhaut	W.	$\begin{array}{lll}39 & 25 & 57\end{array}$	$\begin{array}{ll}40 & 3314\end{array}$	414136	425057
	Sun	E.	433159	42116	405016	392930
6	a Aquilæ	W.	$\begin{array}{llll}73 & 42 & 8\end{array}$	745928	761658	773437
	Fomalhaut	W.	$48 \quad 50 \quad 3$	$50 \quad 356$	511824	523324
	Sun	E.	324625	312557	$\begin{array}{llll}30 & 5 & 32\end{array}$	28459
12				35804	$36 \quad 55 \quad 39$	382128
	Pollux	E.	$25 \quad 3045$	$\begin{array}{llll}24 & 146\end{array}$	223311	$21 \quad 5 \quad 5$
	Jupiter	E.	$\begin{array}{llll}52 & 7 & 6\end{array}$	$\begin{array}{llll}50 & 34 & 48\end{array}$	$\begin{array}{llll}49 & 2 & 20\end{array}$	$47 \quad 2942$
	Regulus	E.	614057	$60 \quad 7 \quad 56$	583446	$\begin{array}{lll}57 & 125\end{array}$
	Saturn	E.	$66 \quad 2828$	645549	$\begin{array}{llll}63 & 23 & 1\end{array}$	
13	Sun	W.	$45 \quad 3352$	$\begin{array}{llll}47 & 1 & 1\end{array}$	$48 \quad 28 \quad 24$	$\begin{array}{llll}49 & 56 & 1\end{array}$
	Jupiter	E.	39449	$38 \quad 1032$	363646	$35 \quad 250$
	Regulus	E.	49122	473737	$\begin{array}{llll}46 & 3 & 1\end{array}$	442813
	Saturn	E.	$54 \quad 243$	522844	$\begin{array}{llll}50 & 54 & 35\end{array}$	$49 \quad 2015$
	Spica	E.	1031318	1013837	$100 \quad 343$	982836
14	Sun	W.	571740	584644	$\begin{array}{llll}60 & 16 & 4\end{array}$	614539
	Mars	W.	24633	253818	271018	284233
	Jupiter	E.	271050	$\begin{array}{ll}25 & 36\end{array}$	$\begin{array}{llll}24 & 1 & 8\end{array}$	22269
	Regulus	E.	363124	345528	$\begin{array}{llll}33 & 19 & 22\end{array}$	31434
	Saturn	E.	41260	395038	$\begin{array}{lll}38 & 15 & 7\end{array}$	363926
	Spica	E.	$\begin{array}{llll}90 & 29 & 43\end{array}$	885314	871630	853932
15	Sun	W.			$\begin{array}{lllll}72 & 20 & 18\end{array}$	73 52 41 10
	Mars	W.	362743	$\begin{array}{llll}38 & 1 & 34\end{array}$	$\begin{array}{lllll}39 & 35 & 41\end{array}$	41106
	Regulus	E.	$\begin{array}{llll}23 & 39 & 15\end{array}$	$\begin{array}{lll}22 & 2 & 9\end{array}$	$\begin{array}{lllll}20 & 25 & 1\end{array}$	184755
	Saturn	E.	28397	$27 \quad 248$	252629	235012
	Spica	E.	773049	$75 \quad 5217$	$\begin{array}{ll}7413 & 27\end{array}$	723420
16	Sun	W.	813533	$83 \quad 910$	84436	861721
	Mars	W.	$\begin{array}{llll}49 & 6 & 37\end{array}$	504250	$\begin{array}{llll}52 & 19 & 22\end{array}$	535613
	Pollux	W.	275530	$\begin{array}{llll}29 & 33 & 1\end{array}$	311111	324956
	Saturn	E.	155251	141931	124746	111823

GREENWICH MEAN TLME,						
lunar distances.						
$\begin{aligned} & \text { Day of } \\ & \text { Mone } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIII.	XXI.
16	Spica Antares	$\underset{\mathrm{E} .}{\mathrm{E} .}$	$\begin{array}{r} 6 \circ 1427 \\ 641427 \\ 109 \quad 5335 \end{array}$	$\begin{array}{rrr} 62 & 33 & 34 \prime \\ 108 & 12 & 34 \end{array}$	$\begin{array}{rrr} 60 & 52 & 23 \\ 10631 & 14 \end{array}$	$\begin{array}{r} 59 \\ 10 \\ 104 \\ 1093 \\ \hline 183 \end{array}$
17	Sus Mars Pollux Spica Antares	W. W. W. E. E.	$\begin{array}{rrr}94 & 13 & 26 \\ 62 & 5 & 17 \\ 41 & 11 & 40 \\ 50 & 38 & 44 \\ 96 & 16 & 31\end{array}$	$\begin{array}{lllr}95 & 49 & 39 \\ 63 & 44 & 5 \\ 42 & 53 & 26 \\ 48 & 55 & 21 \\ 94 & 32 & 55\end{array}$	$\begin{array}{llll}97 & 26 & 11 \\ 65 & 23 & 12 \\ 44 & 35 & 39 \\ 47 & 11 & 40 \\ 92 & 48 & 59\end{array}$	99 3 3 67 2 40 46 18 18 45 27 39 91 4 43
18	Sun	W.	1071221	1085111	1103022	112951
	Mars	W.	752457	$77 \quad 624$	784811	803017
	Pollux	W.	545739	564242	58286	601353
	Jupiter	W.	265028 150	283452	301941	$32 \quad 456$
	Regulus	W.	$\begin{array}{llll}17 & 59 & 14\end{array}$	1943	212732	231239
	Spica	E.	$\begin{array}{llll}36 & 42 & 57\end{array}$	3457	$\begin{array}{llll}33 & 10 & 59\end{array}$	312435
	Antares	E.	821827	803212	784538	765844
19	Sun	W.	1203157	-1221316	1235452	1253644
	Mars	W.	$89 \quad 532$	904930	923345	941817
	Pollux	W.	69 7 88	705547	724353	743218
	Jupiter	W.	405654	424421	44327	462012
	Regulus	W.	$\begin{array}{lll}32 & 548\end{array}$	335343	354159	373035
	Saturn	W.	273138	291751	31436	325150
	Spica	E.	22292	204123	185340	$17 \quad 558$
	Antares	E.	675932	661047	642145	623226
20	Sun	W.	$\begin{array}{ll}134 & 9\end{array} 8$	135535	1373634	1392013
	Mars	W.	$103 \quad 454$	1045057	1063712	1082340
	Pollux	W.	833827	852826	871837	$\begin{array}{llll}89 & 9 & 1\end{array}$
	Jupiter	W.	55.2450	571432	$\begin{array}{lll}59 & 428\end{array}$	605436
	Regulus	W.	463820	482842	501919	521010
	Saturn	W.	41545	434334	453319	472321
	Antares	E.	53 51 1057	51318	49407	474854
	a Aquilæ	E.	106416	1042714	1024948	$10112 \quad 1$
21	Pollux	W.	982329	1001446	$\begin{array}{llll}102 & 6 & 8\end{array}$	1035735
	Jupiter	W.	$70 \quad 758$	71594	73 730	75 71
	Regulus	W.	612712	$\begin{array}{lll}63 & 19 & 4\end{array}$	65112	67 3.7
	Saturn	W.	563646	582759	601919	621046
	Antares	E.	383019	363812	34460	325343
	a Aquilæ	E.	9258.49	911936	894015	$88 \quad 0 \quad 51$
23	Pollux	W.	$\begin{array}{ll}113 & 1514\end{array}$	115642	116586	1184925
	Jupiter	W.	845846	865013	884139	118033 90
	Regulus	W.	762418	$78 \quad 1634$	$80 \quad 848$	821.0
	Saturn	W.	71291	732043	$75 \quad 12 \quad 25$	77
	Spica	W.	$22 \begin{array}{lll}24 & 30\end{array}$	$2416 \quad 2$	$26 \quad 741$	275923
	Antares	E.		213935	194722	175515
	a Aquilæ Fomalhaut	E.	$\begin{array}{r}79 \\ \hline 144 \\ \hline\end{array}$	78.50	76 6612	744738
	Fomalhaut	E.	1044427	$\begin{array}{lll}103 & 3 & 1\end{array}$	1012127	993947
23	Jupiter	W.	994824	101394	1032932	1051949
	Regulus	W.	912035	93126	$95 \quad 3 \quad 26$	965434

GREENWICH MEAN TIME.						
Lunar distances.						
Day of Month			Midnight.	XVb.	XVIII.	XXIP.
23	Saturn	W.	$86^{\circ} 20{ }^{\prime \prime}$	$88^{\circ} 11^{\prime} 55$	$90^{\circ} \quad 24.4$	$91^{\circ} 53820$
	Spica	W.	371733	39855	$41 \quad 0 \quad 9$	425112
	a Aquilæ	E.	66407	$\begin{array}{lll}65 & 4 & 2\end{array}$	632832	615342
	Fomalhaut	E.	911130	$8930 \quad 6$	874852	$\begin{array}{lll}86 & 7 & 49\end{array}$
	a Pegasi	E.	1121535	110280	1084029°	10653 3
24	Jupiter	W.	1142740	$\begin{array}{llll}116 & 16 & 24\end{array}$	118 1851	1195258
	Regulus	W.	106649	1075627	1094548	1113449
	Saturn	W.	$101 \quad 255$	102521	1044049	1062918
	Spica	W.	$\begin{array}{llll}52 & 3 & 24\end{array}$	53536	554230	573137
	a Aquilæ	E.	541131	52420	511338	494630
	Fomalhaut	E.	774647	$\begin{array}{llll}76 & 7 & 38\end{array}$	742856	725041
	a Pegasi	E.	975817	961158	942554	92408
25	Saturn	W.	$\begin{array}{ll}115 & 26\end{array} 27$	1171245	1185838	
	Spica	W.	663214	$\begin{array}{llll}68 \quad 19 & 17\end{array}$	$70 \quad 558$	715216
	Antares	W.	205125	223824	$24 \quad 25 \quad 2$	261118
	a Aquilæ	E.	$\begin{array}{llll}4253 & 21 \\ 045\end{array}$	41364	402055	$\begin{array}{lll}39 & 8 & 4\end{array}$
	Fomalhaut	E.	$64 \begin{array}{lll}64 & 47\end{array}$	631253	613851	$\begin{array}{llll}60 & 5 & 35\end{array}$
	${ }_{\boldsymbol{a}}$ Pegasi	E.	83567	821224	$8029 \quad 5$	784611
26		W.				
	Antares	W.	345654	364049	$\begin{array}{llll}38 & 24 & 18\end{array}$	$\begin{array}{llll}40 & 7 & 23\end{array}$
	Fomalhant	E.	52321	$\begin{array}{lll} 51 \quad 413 \end{array}$	493731	481159
	a Pegasi			$6838 \quad 6$	665826	
27	Spica	W.	941645	$95 \quad 5713$	973715	$\begin{array}{llllll}99 & 16 & 52\end{array}$
	Antares	W.	483627	$5017 \quad 0$	51578	$\begin{array}{llll}53 & 36 & 51\end{array}$
	Fomalhaut	E.	412426	$\begin{array}{lll}40 & 7 & 35\end{array}$	385232	373926
	a Pegasi	E.	571127	553533	54 0	$\begin{array}{llll}52 & 25 & 34\end{array}$
	a Arietis	E.	$\begin{array}{llll}99 & 13 & 33\end{array}$	973321	95 53 53 1	$\begin{array}{lllll}94 & 14 & 12\end{array}$
	Sun	E.	1302541	1285231	1271945	1254724
28	Spica	W.	1072850	$\begin{array}{lll}109 & 6 & 1\end{array}$	1104249	1121914
	Antares	W.	614921	632639	$65 \quad 3 \quad 34$	66406
	Fomalhaut	E.	$32 \quad 826$	311026	301540	29 24 23 0
	a Pegasi	E.	444142	$4311 \quad 0$	41414	401155
	a Arietis	E.	$86 \quad 3 \quad 28$	842631	824957	811346
	Sun	E.	1181136	1164137	115120	1134246
29	Antares	W.	743723	761148		
	a Pegasi	E.	325942	313625	301423	285344
	a Arietis	E.	$\begin{array}{llll}73 & 18 & 19\end{array}$	$\begin{array}{llll}7144 & 17\end{array}$	701035	$\begin{array}{llll}68 & 37 & 12\end{array}$
	Sun	E.	1062157	1045449	103280	102129
30						
	a Aquilæ	W.	412918	423525		$4450 \quad 49$
	a Arietis	E.	605454	$\begin{array}{lll} 59 & 23 & 18 \end{array}$	575159	$\begin{array}{llll}56 & 20 & 55\end{array}$
	Sun ${ }^{\text {a }}$	E.	945324	932836	9243	903945
31	Antares	W.	991356	10044.14	1021420	1034417
		W.		$\begin{array}{llr}51 & 56 & 5 \\ 47 & 19 & \end{array}$	$\begin{array}{llll}53 & 9 & 3 \\ 45 & 50 & 7\end{array}$	542229
	a Arietis	E.	$48 \quad 49 \quad 14$	471934	$45 \quad 50 \quad 7$	442051
	Sun	E.	834133	821830	805538	793256

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Name and Position.		Midnight.	XVb.	XVIII ${ }^{\text {b }}$	$\mathbf{X X I T}$.
1	a Aquilæ	W.	$60^{\circ} 35^{\prime \prime}{ }^{\prime \prime}$	615054	$63{ }^{\circ} 6411$	$64{ }^{\circ} 22^{\prime \prime} 43$
	Fomalhaut	W.	$37 \quad 544$	$38 \quad 1015$	$\begin{array}{llll}39 & 16 & 4\end{array}$	$40 \quad 23 \quad 4$
	a Arietis	E.	$\begin{array}{llll}36 & 57 & 25\end{array}$	$\begin{array}{llll}35 & 29 & 16\end{array}$	$\begin{array}{lll}34 & 1 & 18\end{array}$	$\begin{array}{llll}32 & 33\end{array}$
	Sun	E.	724135	711941	69 57 53	683610
2	a Aquilæ	W.	$\begin{array}{llll}70 & 45 & 57\end{array}$	$\begin{array}{llll}72 & 3 & 8\end{array}$	$73 \quad 2028$	$\begin{array}{llll}74 & 37 & 56\end{array}$
	Fomalhaut	W.	$\begin{array}{llll}46 & 12 & 37\end{array}$	$47 \quad 2456$	$48 \quad 3755$	495131
	a Arietis	E.	251724	235051	$22 \quad 2434$	205837
	Sun	E.	614838	602717	$\begin{array}{llll}59 & 5 & 57\end{array}$	574438
3	a Aquilæ	W.	81715	822527	$\begin{array}{llll}83 & 43 & 45\end{array}$	
	Fomalhaut	W.	56 7	572359	584056	$\begin{array}{llll}59 & 5815\end{array}$
	a Pegasi	W.	$\begin{array}{llll}33 & 21 & 7\end{array}$	344014	$36 \quad 0 \quad 3$	$37 \quad 2029$
	Sun	E.	$\begin{array}{llll}50 & 58 & 9\end{array}$	493648	$48 \quad 15 \quad 25$	46540
4	a Aquilæ	W.	913520	$\begin{array}{llll}92 & 54 & 11\end{array}$	$\begin{array}{llll}94 & 13 & 5\end{array}$	$95 \quad 32 \quad 1$
	Fomalhaut	W.	662955	$6749 \quad 9$	69 8940	$70 \quad 2827$
	a Pegasi	W.	441016	$\begin{array}{llll}45 & 33 & 31\end{array}$	$\begin{array}{llll}46 & 57 & 7\end{array}$	48214
	Sun	E.	$40 \quad 6 \quad 6$	384420	372228	$36 \quad 0 \quad 31$
5	a Aquilæ	W.	$\begin{array}{lll}102 & 7 & 11\end{array}$	1032615	1044518	$\begin{array}{lll}106 & 419\end{array}$
	Fomalhaut	W.	$77 \quad 1058$	$78 \quad 329$	$\begin{array}{llll}79 & 53 & 32\end{array}$	81157
	a Pegasi	W.	552531	565116	$\begin{array}{llll}58 & 17 & 17\end{array}$	59 43, 33
	Sun	E.	$29 \quad 924$	274652	$26 \quad 2414$	25130
10	Sun	W.	$28 \quad 2348$	$\begin{array}{llll}29 & 53 & 27\end{array}$	$\begin{array}{llll}31 & 2319\end{array}$	325324
	Jupiter	E.	332844	315341	$\begin{array}{lll}30 & 18 & 31\end{array}$	284315
	Regulus	E.	$\begin{array}{llll}39 & 31 & 36\end{array}$	375510	$\begin{array}{lll}36 & 18 & 35\end{array}$	344151
	Saturn	E.	453121	435545	42200	40448
	Spica	E.	$93 \quad 3031$	915335	$\begin{array}{llll}90 & 16 & 27\end{array}$	$\begin{array}{llll}88 & 39 & 7\end{array}$
11	Sun	W.	$40 \quad 27 \quad 5$	415828	$43 \quad 30 \quad 3$	
	Jupiter	E.	$\begin{array}{ll}20 & 4619\end{array}$	19116	1736	16126
	Regulus	E.	$\begin{array}{llll}26 & 36 & 27\end{array}$	24598	$\begin{array}{llll}23 & 2147\end{array}$	214428
	Saturn	E.	324316	$31 \quad 654$	293030	2754
	Spica	E.	$80 \quad 29 \quad 29$	$78 \quad 5058$	$\begin{array}{ll}77 & 1214\end{array}$	$\begin{array}{llll}75 & 33 & 19\end{array}$
12	Sun	W.	52441	$\begin{array}{llll}54 & 17 & 5\end{array}$	$55 \quad 5022$	$57 \quad 2351$
	Mars	W.	$28 \quad 4912$	302438	$\begin{array}{lll}32 & 0 & 17\end{array}$	$\begin{array}{llll}33 & 36 & 9\end{array}$
	Saturn	E.	19 54 1	181928	$\begin{array}{llll}16 & 4518\end{array}$	$\begin{array}{llll}15 & 12 & 9\end{array}$
	Spica	E.	$67 \quad 1543$	653535	$\begin{array}{llll}63 & 5515\end{array}$	$62 \quad 1444$
	Antares	E.	1125431	1111415	1093347	107536
13	Sun	W.	$\begin{array}{llll}65 & 14 & 30\end{array}$	$\begin{array}{llll}66 & 49 & 17\end{array}$	682416	695929
	Mars	W.	413839	431548	445310	$46 \quad 30 \quad 45$
	Spica	E.	$\begin{array}{llll}53 & 49 & 3\end{array}$	$52 \quad 719$	502522	$48 \quad 4314$
	Antares	E.	$\begin{array}{llll}99 & 26 & 32\end{array}$	974435	$96 \quad 225$	$94 \quad 20 \quad 3$
14	Sun	W.	775845	793516	811159	824856
	Mars	W.	544153	562045	575951	59 39
	Spica	E.	$\begin{array}{llll}40 & 9 & 35\end{array}$	$\begin{array}{ll}38 & 2617\end{array}$	364248	34598
	Antares	E.	854458	$\begin{array}{lll}84 & 18\end{array}$	821726	803320
15	Sun	W.	$\begin{array}{llll}90 & 56 & 51\end{array}$	$9235 \quad 5$	$\begin{array}{llll}94 & 13 & 31\end{array}$	95 52
	Mars	W.	$67 \quad 5854$	693929	712017	$\begin{array}{llll}73 & 1 & 17\end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Nam and Position.		Midnight.	$\mathbf{X V h}$.	XVIII ${ }^{\text {b }}$.	XXI',
15	Jupiter	W.	$3836{ }^{\prime \prime}$	35189	$37{ }^{\circ} \mathrm{B} 288$	$38481{ }^{1 \prime}$
	Regulus	W.	$28 \quad 1854$	$\begin{array}{lll}30 & 3 & 8\end{array}$	314742	$33 \quad 3235$
	Saturn	W.	223313	241436	$25 \quad 5638$	$27 \quad 3913$
	Spica	E.	$\begin{array}{llll}26 & 18 & 25\end{array}$	243353	$\begin{array}{llll}22 & 49 & 17\end{array}$	$21 \quad 438$
	Antares	E.	714941	$70 \quad 420$	$\begin{array}{llll}68 & 18 & 46\end{array}$	$\begin{array}{llll}66 & 33 & 0\end{array}$
	a Aquilæ	E.	1215932	120317	$\begin{array}{lll}119 & 1 & 57\end{array}$	117327
16	Sun	W.	104822	1054812	1072813	109824
	Mars	W.	812917	831128	845350	863623
	Jupiter	W.	$47 \quad 3019$	491536	$\begin{array}{llll}51 & 1 & 5\end{array}$	524646
	Regulus	W.	$42 \quad 2058$	$44 \quad 722$	$45 \quad 54 \quad 0$	474050
	Saturn	W.	$\begin{array}{lll}36 & 18 & 41\end{array}$	$\begin{array}{llll}38 & 3 & 38\end{array}$	394853	413425
	Antares	E.	57418	$55 \quad 5411$	$\begin{array}{llll}54 & 7 & 3\end{array}$	521945
	a Aquilæ	E.	109542	1082054	1064721	1051324
17	Sun	W.	1173156	119137	1205426	1223554
	Mars	W.	951140	$\begin{array}{llll}96 & 55 & 11\end{array}$	$98 \quad 3851$	1002239
	Jupiter	W.	6138	$\begin{array}{llll}63 & 24 & 46\end{array}$	6511140	$\begin{array}{llll}66 & 58 & 43\end{array}$
	Regulus	W.	$\begin{array}{llll}56 & 37 & 57\end{array}$	$58 \quad 25 \quad 54$	$\begin{array}{llll}60 & 14 & 1\end{array}$	$\begin{array}{llll}62 & 2 & 16\end{array}$
	Saturn	W.	$\begin{array}{llll}50 & 25 & 42\end{array}$	$\begin{array}{llll}52 & 12 & 35\end{array}$	$\begin{array}{llll}53 & 59 & 39\end{array}$	$\begin{array}{llll}55 & 46 & 54\end{array}$
	Antares	E.	$43 \quad 2042$	413226	3944	375530
	a Aquilæ	E.	$\begin{array}{llll}97 & 18 & 41\end{array}$	954256	$\begin{array}{llll}94 & 7 & 0\end{array}$	923053
18	Sun	W.	$\begin{array}{lll}131 & 4 & 53\end{array}$	1324658	$13429 \quad 7$	$\begin{array}{llll}136 & 11 & 20\end{array}$
	Mars	W.	109321	1104746	1123216	1141649
	Jupiter	W.	$75 \quad 5547$	$\begin{array}{llll}77 & 43 & 29\end{array}$	$\begin{array}{llll}79 & 31 & 17\end{array}$	$\begin{array}{llll}81 & 19 & 8\end{array}$
	Regulus	W.	715	725421	$\begin{array}{lllll}74 & 43 & 23\end{array}$	$\begin{array}{llll}76 & 32 & 28\end{array}$
	Saturn	W.	$\begin{array}{llll}64 & 45 & 16\end{array}$	$\begin{array}{llll}66 & 33 & 17\end{array}$	$\begin{array}{llll}68 & 21 & 24\end{array}$	$\begin{array}{llll}70 & 9 & 36\end{array}$
	Antares	E.	285116	$27 \quad 211$	$2513 \quad 3$	232352
	a Aquilæ	E.	842843	$82 \quad 52 \quad 10$	$81 \quad 1539$	793911
	Fomalhant	E.	109304	1075218	1061414	1043555
19	Mars		123005	1244446	1262925	$\begin{array}{lll}128 & 14 & 2\end{array}$
	Jupiter	W.	$\begin{array}{llll}90 & 18 & 56\end{array}$	$92 \quad 656$	935454	954250
	Regulus	W.	853830	872745	$89 \quad 1659$	$91 \quad 610$
	Saturn	W.	$\begin{array}{llll}79 & 11 & 16\end{array}$	805939	82481	843622
	Spica	W.	$\begin{array}{llll}31 & 36 & 13\end{array}$	$\begin{array}{llll}33 & 25 & 11\end{array}$		$\begin{array}{lrr}37 & 3 & 11 \\ 66 & 54 & 3\end{array}$
	a Aquilæ	E.	$\begin{array}{llr}71 & 39 & 3 \\ 96 & 21 & 41\end{array}$	$\begin{array}{rrrr}70 & 3 & 42 \\ 94 & \end{array}$	$\begin{array}{rrrr}68 & 28 & 41 \\ 93 & 3\end{array}$	$\begin{array}{lll}66 & 54 & 3 \\ 91 & 24 & 7\end{array}$
	Fomalhaut	E.	$\begin{array}{rrrr}96 & 21 & 41\end{array}$	944231	$\begin{array}{rrr}93 & 319 \\ 114 & 15 & 50\end{array}$	
	a Pegasi	E.	1174611	11614	1141550	1123031
20	Jupiter	W.	1044134	$\begin{array}{llll}10629 & 1\end{array}$	1081622	$\begin{array}{rrrr}110 & 3 & 34 \\ 105 & 37 & 8\end{array}$
	Regulus	W.	1001116	102001	$\begin{array}{rrr}103 & 48 & 39\end{array}$	$\begin{array}{rrrr}105 & 37 & 8\end{array}$
	Saturn	W.	$\begin{array}{llll}93 & 37 & 15\end{array}$	$\begin{array}{lllr}95 & 25 & 9\end{array}$	$\begin{array}{llll}97 & 12 & 56 \\ 49 & 45 & 11\end{array}$	
	Spica	W.	$\begin{array}{rrr}46 & 7 & 48 \\ 59 & 8 & 6\end{array}$	$\begin{array}{llll}47 & 56 & 32 \\ 57 & 36 & 45\end{array}$	$\begin{array}{rrrr}49 & 45 & 11 \\ 56 & 6 & 10\end{array}$	$\begin{array}{llll}51 & 33 & 42 \\ 54 & 36 & 25\end{array}$
	a Aquilæ	E.	$\begin{array}{lll}59 & 8 & 6 \\ 83 & 9 & 1\end{array}$	573645	$\begin{array}{rrr}56 & 6 & 10 \\ 79 & 51 & 58\end{array}$	$\begin{array}{llll}54 & 36 \\ 78 & 13 & 46\end{array}$
	Fomalhaut	E.	$\begin{array}{rrr}83 & 9 & 1 \\ 103 & 43 & 24\end{array}$	$\begin{array}{rrr}81 & 30 & 23 \\ 10158 & 1\end{array}$	1001243	982729
21		W.	118570	120435	$\begin{array}{lll}122 & 2855\end{array}$	1241432
	Regulus	W.	114376	1162430	1181140	1195836
	- Saturn	W.	1075618	1094250	111298	1131513
	Spica		$\begin{array}{llll}60 & 34 & 3\end{array}$	622135	$64 \quad 855$	65561

GREENWICH MEAN TIME.

LUNAR DISTANCES.

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIII.	XXI ${ }^{\text {b }}$
1	a Aquilæ	W.	$8817{ }^{\prime \prime}$	$89{ }^{35} 4{ }^{\prime \prime}$	$90^{\circ} 54{ }^{\prime \prime} 2{ }^{\prime \prime}$	$92 \times 13 \quad 4$
	Fomalhaut	W.	631523	643345	$65 \quad 5225$	671121
	a Pegasi	W.	404244	$\begin{array}{ll}42 & 4 \\ 57\end{array}$	43.2735	445035
	Aldebaran	E.	$3834 \quad 3$	$\begin{array}{ll}37 & 752\end{array}$	354148	341553
	Sun	E.	692450	$\begin{array}{lll}68 & 3 & 7\end{array}$	664121	651931
2	a Aquilæ	W.	984721	100 6 616	101 101 76	102448
	Fomalhaut	W.	734949	751013	763051	775142
	a Pegasi	W.	515036	531530	544042	$56 \quad 610$
	Aldebaran	E.	$\begin{array}{llll}27 & 9 & 28\end{array}$	25456	242112	225751
	Sun	E.	582911	$57 \quad 649$	554420	542144
3	a Aquilæ	W.	1091835	1103721	11156	1131440
	Fomalhaut	W.	84394	8618	872324	884551
	a Pegasi	W.	631731	644434	661152	673925
	Sun	E.	472633	$\begin{array}{lll}46 & 3 & 2\end{array}$	443921	431528
4	Fomalhaut	W.	954039	$\begin{array}{llll}97 & 4 & 5\end{array}$	982739	$\begin{array}{llll}99 & 51 & 22\end{array}$
	a Pegasi	W.		7630	775922	792856
	a Arietis	W.	313413	$\begin{array}{llll}33 & 5 & 9\end{array}$. 343623	$36 \quad 7 \quad 57$
	Sun			34487	${ }^{*} 332249$	315718
10	Sun	W.		375420	393025	$41 \quad 639$
	Spica	E.	$57 \quad 512$	552223	533925	$\begin{array}{llll}51 & 56 & 18\end{array}$
	Antares	E.	102430	10100	991649	973330
11						$\begin{array}{llll}54 & 1 & 37\end{array}$
	Spica	E.	431847	413456	395058	$38 \quad 655$
	Antares	E.	885440	871030	852612	
12	Sun	W.	$62 \quad 959$	634758	$65 \quad 263$	$\begin{array}{llll}67 & 4 & 14\end{array}$
	Jupiter	W.	254941	273143	29140	305633
	Regulus	W.	251313	265655	284051	$\begin{array}{llll}30 & 25 & 2\end{array}$
	Spica	E.	292534	27 71	255643	24 12 19 6 42
	Antares	E.	745757	731252	712741	694225
13	Sun	W.	751628	76559	783354	801244
	Jupiter	W.	39325	411539	425920	44438
	Regulus	W.	39836	405344	42391	442423
	Saturn	W.	305112	323412	341728	$\begin{array}{llll}36 & 0 & 56\end{array}$
	Antares	E.	605445	59859	57238	$\begin{array}{llll}55 & 37 & 13\end{array}$
	a Aquilæ	E.	1124238	111115	109398	108651
14	Sun	W.	882749	$\begin{array}{llll}90 & 6 & 59\end{array}$	914613	
	Jupiter	W.	$53 \quad 23 \quad 36$	$\begin{array}{llll}55 & 7 & 57\end{array}$	565221	583650
	Regulus	W.	531239	545833	564430	$58 \quad 3032$
	Saturn	W.	44411	462527	$4810 \quad 0$	495438
	Antares	E.	464645	$45 \quad 0 \quad 30$	431413	412753
	a Aquilm	E.	1002116	984730	971335	$\begin{array}{llll}95 & 39 & 32\end{array}$
15	Sun	W.	1014225	1032153		
	Jupiter	W.	$67 \quad 1957$	69 4 60	$\begin{array}{llll}70 & 49 & 28\end{array}$	723416
	Regulus	W.	672123	$\begin{array}{llll}69 & 7 & 40\end{array}$	705359	$\begin{array}{llll}72 & 4019\end{array}$
	Saturn	W.	58393	$6024 \quad 7$	$62 \quad 914$	635423

GREENWICH MEAN TIME.						
lunar distances.						
Day of Month.			Midnight.	XV'.	XVIII.	XXI ${ }^{\text {b }}$
22	a Arietis	E.	$83^{\circ} \mathrm{C}{ }^{\prime} 25^{\prime \prime}$	$81^{\circ} 24^{\prime \prime}$	$79^{\circ} 45^{\prime} 59$	$78^{\circ} 8813$
23	Antares	W.	77 7248 30	79 2911 8	$\begin{array}{llll}81 & 5 & 17 \\ 87 & 5 & 17\end{array}$	
	${ }_{\text {a }} \boldsymbol{a}$ Pegasi	E.	$\begin{array}{llll}30 & 6 & 40 \\ 70 & 3 & 48\end{array}$	284347 682749	27 27 66 62	$\begin{array}{lrr}26 & 2 & 58 \\ 65 & 16 & 45\end{array}$
	Aldebaran	E.	1024453	101934	993432	975947
24	Antares	W.	903552	92959	934351	951726
	a Aquilæ	W.	$44 \quad 0 \quad 10$	451042	46228	473423
	a Arietis	E.	572416	555039	541720	524417
	Aldebaran	E.	90107	88370	8748	853134
25	Antares	W.	$\begin{array}{lll}103 & 1 & 33\end{array}$	1043338	$\begin{array}{llll}106 & 5 & 31 \\ 56 & 16 & 30\end{array}$	107 107 57 8
	\boldsymbol{a} Aquilæ	W.	534459	$55 \quad 033$	561630	57 2446
	a Arietis	E.	$45 \quad 316$	433154	$42 \quad 047$	402957
	Aldebaran	E.	775231	762128	$74 \quad 5038$	73203
	Sun	E.	1321055	1304559	129217	$127 \quad 5647$
26	Antares	W.	1151218	1164246	11813	
	a Aquilæ	W.	$\begin{array}{llll}63 & 57 & 54\end{array}$	651530	$\begin{array}{llll}66 & 33 & 14\end{array}$	67516
	Fomalhaut	W.	$40 \quad 443$	411334	422325	433410
	a Arietis	E.	$\begin{array}{llll}32 & 59 & 45\end{array}$	313031	$\begin{array}{llll}30 & 1 & 34\end{array}$	283255
	Aldebaran	E.	- 655026	64219	62524	612310
	Son	E.	1205726	119347	1181059	116481
27	a Aquilæ	W.	742149	754010	765834	78 17
	Fomalhaut	W.	493842	505321	$52 \quad 830$	$\begin{array}{llll}53 & 24 & 4\end{array}$
	${ }_{a}$ Pegasi	W.	$2643 \quad 5$	275756	291357	$\begin{array}{llll}30 & 31 & 0 \\ 40 & \end{array}$
	Aldebaran	E.	$54 \quad 124$	523334	$\begin{array}{llll}51 & 5 & 53\end{array}$	493821
	Sun	E.	1095516	108335	107111	105491
28	${ }^{\boldsymbol{a}}$ Aquilæ	W.	844937	$86 \quad 813$	872648	$\begin{array}{llll}88 & 45 & 25\end{array}$
	Fomalhaut	W.	594729	$\begin{array}{llll}61 & 5 & 7\end{array}$	$6223 \quad 2$	634112
	a Pegasi	W.	$37 \quad 734$	382837	39506	41120
	Aldebaran	E.	42232	405626	392959	$\begin{array}{llll}38 & 3 & 42\end{array}$
	Sun	E.	$99 \quad 0 \quad 9$	973831	961655	945519
29	a Aquilæ	W.	951829	$9637 \quad 5$	975541	991415
	Fomalhaut	W.	701534	$7135 \quad 5$	725448	741443
	a Pegasi	W.	$48 \quad 640$	493029	505435	521855
	Aldebaran	E.	305510	293011	$28 \quad 530$	264112
	Sun	E.	$88 \quad 716$	864534	852349	$84 \quad 20$
30	a Aquilæ	W.	1054648 80		108 83	
	Fomalhaut	W.	80578	821810	$\begin{array}{ll}83 & 3922\end{array}$	85045
	a Pegasi	W.	592419	60506	$\begin{array}{llll}62 & 16 & 7\end{array}$	$\begin{array}{lll}63 & 42 & 23\end{array}$
	Aldebaran	E.	1948 3	18284	$17 \quad 930$	155243
	Sun	E.	771138	754914	742642	$\begin{array}{llll}73 & 4 & 2\end{array}$
31	a Aquilæ	W.		1172926		$\begin{array}{lll}120 & 4 & 8\end{array}$
	Fomalhaut	W.	915014	931238	94 3512	955755
	a Pegasi	W.	$70 \quad 5714$	722457	735254	$75 \quad 216$
	a Arietis	W.	272533	285451	302431	315430
	Sun	E.	$\begin{array}{lll}66 & 818\end{array}$	644437	632044	615638

GREENWICH MEAN TIME.						
Lunar distances.						
Day of $\stackrel{\text { the }}{\text { Month }}$ Month	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXIL.
14	Sun	W.	$11{ }^{\circ} \mathrm{C}$	$113{ }^{\circ} 42{ }^{\text {5 }}$	$115{ }^{\circ} 1922$	11685
	Venus	W.	863221	$88 \quad 638$	894046	911445
	Spica	W.	$5216 \quad 5$	535950	554326	572654
	a Aquilæ	E.	535849	52345	511019	494734
	Fomalhaut	E.	$\begin{array}{ll}77 & 37 \\ 42\end{array}$	76481	743037	725731
	a Pegasi	E.	974521	$96 \quad 446$	942418	924359
15	Sun	W.	1245423	1262937	128441	1293933
	Venus	W.	$99 \quad 214$	1003514	10288	1034043
	Spica	W.	$\begin{array}{llll}66 & 1 & 55\end{array}$	674427	692649	$\begin{array}{llll}71 & 9 & 2\end{array}$
	Antares	W.	- 202142	2247	234624	$25 \quad 2834$
	a Aquilæ	E.	431214	415736	404443	393346
	Fomalhaut	E.	651723	634637	621619	604632
	a Pegasi	E.	842439	824517	$816^{1} 7$	79278
16	Venus	W.	111219	1125252	1142414	1155525
	Spica	W.	79 37 1	811844	825944	844033
	Antares	W.	33574	$\begin{array}{llll}35 & 3817\end{array}$	37 19 50	$\begin{array}{llll}39 & 0 & 12\end{array}$
	Fomalhaut	E.	$\begin{array}{llll}53 & 26 & 35\end{array}$	52041	503537	491126
	a Pegasi	E.	711526	$\begin{array}{llll}69 & 37 & 47\end{array}$	$68 \quad 0 \quad 24$	662316
	a Arietis	E.	113508	112917	1102837	108488
17	Spica	W.	$\begin{array}{llll}93 & 1 & 52\end{array}$	944133	$\begin{array}{llll}96 & 21 & 3\end{array}$	$\begin{array}{llll}98 & 0 & 20\end{array}$
	Antares	W.	472149	49185	504150	$\begin{array}{llll}52 & 20 & 32\end{array}$
	Fomalhaut	E.	422617	41	395318	383912
	a Pegasi	E.	$5822 \quad 2$	564645	551150	533718
	a Arietis	E.	1002818	984854	97941	953040
18	Spica	W.	1061345	1075148	1092939	$\begin{array}{ll}111 & 717\end{array}$
	Antares	W.	603424	621233	635030	652815
	Fomalhaut	E.	325854	315812	31028	$\begin{array}{llll}30 & 5 & 59\end{array}$
	a Pegasi	E.	45513	441917	42485	411730
	a Arietis	E.	871834	854046	$84 \quad 311$	822548
	Aldebaran	E.	1195038	1181349	$\begin{array}{llll}116 & 37 & 9\end{array}$	115040
19	Spica	W.	119129	1204827	1222432	$\begin{array}{lll}124 & 0 & 23\end{array}$
	Antares	W.	733344	751011	764624	782225
	a Pegasi	E.	335541	$3230 \quad 3$	$\begin{array}{ll}31 & 533\end{array}$	294218
	a Arietis	E.	742213	724610	711020	693445
	Aldebaran	E.	10710	1052538	1035028	1021531
20 \%	Antares	W.	86198	875349	892817	$\begin{array}{llll}91 & 2 & 32\end{array}$
	a Aquilæ	W.	405624	$42 \begin{array}{lll}42 & 35\end{array}$	431240	$\begin{array}{ll}44 \quad 2232 \\ 56 & 58\end{array}$
	\boldsymbol{a} Arietis	E.	614014	$\begin{array}{lll}60 & 6 & 2\end{array}$	58324	565821
	Aldebaran	E.	942350	92.508	911639	894323
21	Antares	W.	985030	1002327	1015612	1032845
	a Aquilæ	W.	$\begin{array}{llll}50 & 25 & 4\end{array}$	513938	525445	541020
	a Arietis	E.	49.1316	474058	$46 \quad 855$	$\begin{array}{ll}44 & 37\end{array}$
	Aldebaran	E.	$82 \quad 0 \quad 15$	802817	785631	772458
22		W.	111830	$\begin{array}{llll}112 & 39 & 52\end{array}$	$\begin{array}{llll}114 & 11 & 4\end{array}$	115425
	à Aquilæ		603346	615117	63 9. 1	642656

GREENWICH MEAN TIME.					
lunar distances.					
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Mooth. } \end{aligned}$	Star's Name and Position.	Midnight.	XV.	XVIIT.	XXP.
22	$\begin{array}{ll} \text { Fomalhant } & \text { W. } \\ \text { a Arietis } & \text { E. } \\ \text { Aldebaran } & \text { E. } \end{array}$	$\begin{array}{rrr}37 & 1 & 15 \\ 37 & 1 & 43 \\ 69 & 50 & 21\end{array}$	$\begin{array}{rrr} 38 & 7 & 13 \\ 35 & 31 & 24 \\ 68 & 20 & 3 \end{array}$	$\begin{array}{rrrr} 39 & 14 & 111 \\ 34 & 1 & 21 \\ 66 & 49 & 58 \end{array}$	$\begin{array}{llll} 40 & 2 & \prime \prime \prime \\ 40 & 22 & 58 \\ 32 & 31 & 35 \\ 65 & 20 & 3 \end{array}$
23	a Aquilæ W. Fomalhaut W. a Pegasi W. a Arietis E. Aldebaran E.	$\begin{array}{rrr} 70 & 58 & 32 \\ 46 & 19 & 26 \\ 23 & 36 & 47 \\ 25 & 7 & 9 \\ 57 & 53 & 28 \end{array}$	72 17 7 47 32 59 24 47 46 23 39 18 56 24 44	$\begin{array}{rrr} 73 & 35 & 46 \\ 48 & 47 & 6 \\ 26 & 0 & 30 \\ 22 & 11 & 52 \\ 54 & 56 & 10 \end{array}$	$\begin{array}{lll}74 & 54 & 27\end{array}$ $\begin{array}{lll}50 & 1 & 46\end{array}$ $27 \quad 1444$ 204454 $\begin{array}{lll}53 & 27 & 47\end{array}$
24	a Aquilæ W. Fomalhant W. a Pegasi W. Aldebaran E. Sun E.	$\begin{array}{rrr} 81 & 28 & 17 \\ 56 & 21 & 38 \\ 33 & 41 & 57 \\ 46 & 8 & 35 \\ 128 & 41 & 5 \end{array}$	$\begin{array}{rrr} 82 & 47 & 4 \\ 57 & 38 & 41 \\ 35 & 1 & 43 \\ 44 & 41 & 17 \\ 127 & 19 & 25 \end{array}$	$\begin{array}{rrr} 84 & 5 & 51 \\ 58 & 56 & 1 \\ 36 & 22 & 2 \\ 43 & 14 & 11 \\ 125 & 57 & 52 \end{array}$	$\begin{array}{r} 85 \\ 60 \\ 60 \\ 13 \\ 36 \\ 37 \\ 42 \\ 42 \\ 4147 \\ 124 \\ 126 \end{array}$
25	a Aquilæ W. Fomalhaut W. a Pegasi W. Aldebaran E. SUN E.	$\begin{array}{rrr} 91 & 57 & 58 \\ 66 & 45 & 4 \\ 44 & 32 & 49 \\ 34 & 35 & 36 \\ 117 & 49 & 40 \end{array}$	$\begin{array}{rrr} 93 & 16 & 32 \\ 68 & 3 & 57 \\ 45 & 55 & 44 \\ 33 & 9 & 57 \\ 116 & 28 & 27 \end{array}$	$\begin{array}{rrr} 94 & 35 & 3 \\ 69 & 23 & 0 \\ 47 & 18 & 55 \\ 31 & 44 & 34 \\ 115 & 7 & 14 \end{array}$	$\begin{array}{rrr} 95 & 53 & 31 \\ 70 & 42 & 13 \\ 48 & 42 & 20 \\ 30 & 19 & 28 \\ 113 & 46 & 1 \end{array}$
26	a Aquilæ W. Fomalhaut W. a Pegasi W. Aldebaran E. SuN E.	$\begin{array}{r} 1022459 \\ 772034 \\ 554236 \\ 231953 \\ 1065948 \end{array}$	$\begin{array}{rrr} 103 & 43 & 4 \\ 78 & 40 & 40 \\ 57 & 7 & 14 \\ 21 & 57 & 38 \\ 105 & 38 & 28 \end{array}$	$\begin{array}{rrr} 105 & 1 & 5 \\ 80 & 0 & 53 \\ 58 & 32 & 4 \\ 20 & 36 & 11 \\ 104 & 17 & 5 \end{array}$	$\begin{array}{rrr} 106 & 19 & 0 \\ 81 & 21 & 14 \\ 59 & 57 & 4 \\ 19 & 15 & 43 \\ 102 & 55 & 37 \end{array}$
27	a Aquilæ W. Fomalhaut W. a Pegasi W. Sun E.	$\begin{array}{rrr} 112 & 47 & 2 \\ 88 & 4 & 55 \\ 67 & 4 & 50 \\ 96 & 7 & 4 \end{array}$	$\begin{array}{rrr} 114 & 4 & 16 \\ 89 & 26 & 2 \\ 68 & 30 & 57 \\ 94 & 45 & 2 \end{array}$	$\begin{array}{rrr} 115 & 21 & 20 \\ 90 & 47 & 16 \\ 69 & 57 & 16 \\ 93 & 22 & 52 \end{array}$	$\begin{array}{rrr} 116 & 38 & 13 \\ 92 & 8 & 37 \\ 71 & 23 & 46 \\ 92 & 0 & 34 \end{array}$
28	Fomalhaut W. a Pegasi W. a Arietis W. Sun E.	$\begin{array}{rrr} 98 & 57 & 12 \\ 78 & 39 & 26 \\ 35 & 15 & 59 \\ 85 & 6 & 37 \end{array}$	$\begin{array}{rrr} 100 & 19 & 15 \\ 80 & 7 & 13 \\ 36 & 45 & 42 \\ 83 & 43 & 17 \end{array}$	$\begin{array}{rrr} 101 & 41 & 25 \\ 81 & 35 & 14 \\ 38 & 15 & 41 \\ 82 & 19 & 44 \end{array}$	$\begin{array}{rrr} 103 & 3 & 42 \\ 83 & 3 & 29 \\ 39 & 45 & 58 \\ 80 & 55 & 58 \end{array}$
29	Fomalhaut W. a Pegasi W. a Arietis W. Sun E.	$\begin{array}{rrr} 109 & 56 & 27 \\ 90 & 28 & 28 \\ 47 & 21 & 45 \\ 73 & 53 & 36 \end{array}$	$\begin{array}{rrr} 111 & 19 & 14 \\ 91 & 58 & 15 \\ 48 & 53 & 48 \\ 72 & 28 & 21 \end{array}$	$\begin{array}{rrr} 112 & 42 & 4 \\ 93 & 28 & 17 \\ 50 & 26 & 11 \\ 71 & 2 & 50 \end{array}$	$\begin{array}{rrr} 114 & 4 & 56 \\ 94 & 58 & 35 \\ 51 & 58 & 53 \\ 69 & 37 & 1 \end{array}$
30	Fomalhaut W. a Pegasi W. a Arietis W. Aldebaran W. Sus E.	$\begin{array}{rrr} 120 & 59 & 14 \\ 102 & 34 & 22 \\ 59 & 47 & 21 \\ 27 & 54 & 45 \\ 62 & 23 & 26 \end{array}$	$\begin{array}{rrr} 122 & 21 & 56 \\ 104 & 6 & 23 \\ 61 & 22 & 5 \\ 29 & 25 & 34 \\ 60 & 55 & 46 \end{array}$	$\begin{array}{r} 12344 \\ 10538 \\ 62 \\ 67 \\ 57 \\ 30 \\ 37 \\ 59 \\ 57 \\ 27 \end{array}$	$\begin{array}{rrr} 125 & 6 & 57 \\ 107 & 11 & 16 \\ 64 & 32 & 39 \\ 32 & 29 & 22 \\ 57 & 59 & 25 \end{array}$
31	a Pegasi W. a Arietis W. Aldebaran W. Sun E.	$\begin{array}{r} 114 \quad 58 \quad 27 \\ 72 \quad 3535 \\ 401951 \\ 5032 \quad 27 \end{array}$	$\begin{array}{rrr} 116 & 32 & 43 \\ 74 & 13 & 20 \\ 41 & 55 & 38 \\ 49 & 1 & 59 \end{array}$	$\begin{array}{rrr} 118 & 7 & 14 \\ 75 & 51 & 28 \\ 43 & 31 & 56 \\ 47 & 31 & 9 \end{array}$	$\begin{array}{rrr} 119 & 42 & 1 \\ 77 & 30 & 0 \\ 45 & 8 & 46 \\ 45 & 59 & 57 \end{array}$

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of Month.			Midnight.	XVa.	XVIII.	XXI ${ }^{\text {b }}$
1	a Arietis Aldebaran Sun	W. W. E.	$\begin{array}{lll} 85 & 48 & 311 \\ 53 & 20 & 17 \\ 38 & 18 & 36 \end{array}$	$\begin{array}{rrrr} 87 & 29 & 33^{\prime \prime} \\ 55 & 0 & 1 \\ 36 & 45 & 16 \end{array}$	$\begin{array}{llll} 89 & 10 & 511 \\ 56 & 40 & 13 \\ 35 & 11 & 36 \end{array}$	$\begin{array}{lll} 90^{\circ} & 52^{\prime \prime} & 36 \\ 58 & 20 & 51 \\ 33 & 37 & 36 \end{array}$
2	a Arietis Aldebaran Pollux Sun	W. W. W. E.	99 27 2 66 50 36 25 19 39 25 43 16	$\begin{array}{rrr} 101 & 11 & 4 \\ 68 & 33 & 48 \\ 26 & 59 & 29 \\ 24 & 7 & 42 \end{array}$	$\begin{array}{rrr} 102 & 55 & 27 \\ 70 & 17 & 24 \\ 28 & 40 & 11 \\ 22 & 31 & 59 \end{array}$	$\begin{array}{rrrr}104 & 40 & 12 \\ 72 & 1 & 24 \\ 30 & 21 & 41 \\ 20 & 56 & 11\end{array}$
6	Sun Antares a Aquilæ	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{rrr} 29 & 2 & 40 \\ 54 & 40 & 19 \\ 107 & 10 & 31 \end{array}$	$\begin{array}{r} 3045 \\ 5249 \\ 105 \quad 33 \\ 19 \end{array}$	$\begin{array}{rr} 32 & 27 \\ 50 & 58 \\ 103 & 55 \\ 106 \end{array}$	$\begin{array}{rrr} 34 & 10 & 11 \\ 49 & 7 & 42 \\ 102 & 18 & 22 \end{array}$
7	Sun Antares a Aquilæ	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lrr} 42 & 43 & 0 \\ 39 & 54 & 47 \\ 94 & 9 & 25 \end{array}$	$\begin{array}{rrr} 44 & 25 & 24 \\ 38 & 4 & 33 \\ 92 & 31 & 39 \end{array}$	$\begin{array}{rrr} 46 & 7 & 42 \\ 36 & 14 & 27 \\ 90 & 53 & 57 \end{array}$	$\begin{array}{lll} 47 & 49 & 53 \\ 34 & 24 & 31 \\ 89 & 16 & 23 \end{array}$
8	Sun Venus Spica Antares a Aquilæ Fomalhaut	W. W. W. E. E. E.	$\begin{array}{rrr} 56 & 18 & 41 \\ 24 & 47 & 40 \\ 20 & 38 & 46 \\ 25 & 17 & 40 \\ 81 & 11 & 20 \\ 106 & 25 & 9 \end{array}$	$\begin{array}{rrr} 57 & 59 & 56 \\ 26 & 25 & 8 \\ 22 & 26 & 43 \\ 23 & 28 & 57 \\ 79 & 35 & 5 \\ 104 & 47 & 12 \end{array}$	$\begin{array}{rrr} 59 & 40 & 59 \\ 28 & 2 & 39 \\ 24 & 14 & 37 \\ 21 & 40 & 30 \\ 77 & 59 & 10 \\ 103 & 9 & 15 \end{array}$	$\begin{array}{rrr} 61 & 21 & 50 \\ 29 & 40 & 11 \\ 26 & 2 & 24 \\ 19 & 52 & 20 \\ 76 & 23 & 37 \\ 101 & 31 & 22 \end{array}$
9	Sun Venus Spica a Aquilæ Fomalhaut a Pegasi	W. W. W. E. E. E.	$\begin{array}{r} 694246 \\ 3746 \\ 46 \\ 3459 \\ 68 \\ 68 \\ 92 \\ 93 \\ 93 \\ 114 \\ 114 \end{array} 24$	$\begin{array}{rrr} 71 & 22 & 14 \\ 39 & 23 & 42 \\ 36 & 45 & 47 \\ 66 & 59 & 23 \\ 91 & 46 & 25 \\ 112 & 41 & 46 \end{array}$	$\begin{array}{rrr} 73 & 1 & 28 \\ 41 & 0 & 27 \\ 38 & 32 & 19 \\ 65 & 27 & 10 \\ 90 & 9 & 32 \\ 110 & 58 & 54 \end{array}$	$\begin{array}{rrr} 74 & 40 & 27 \\ 42 & 37 & 1 \\ 40 & 18 & 37 \\ 63 & 55 & 34 \\ 88 & 32 & 54 \\ 109 & 16 & 11 \end{array}$
10	Sun Venus Spica a Aquilæ Fomalhaut a Pegasi	W. W. W. E. E. E.	$\begin{array}{rrr} 82 & 51 & 26 \\ 50 & 36 & 43 \\ 49 & 6 & 28 \\ 56 & 28 & 10 \\ 80 & 33 & 49 \\ 100 & 45 & 21 \end{array}$	$\begin{array}{lll} 84 & 28 & 50 \\ 52 & 11 & 59 \\ 50 & 51 & 17 \\ 55 & 1 & 8 \\ 78 & 58 & 57 \\ 99 & 13 & 49 \end{array}$	$\begin{array}{rrr} 86 & 5 & 58 \\ 53 & 47 & 1 \\ 52 & 35 & 51 \\ 53 & 35 & 3 \\ 77 & 24 & 27 \\ 97 & 22 & 29 \end{array}$	$\begin{array}{rrr} 87 & 42 & 50 \\ 55 & 21 & 49 \\ 54 & 20 & 9 \\ 52 & 9 & 57 \\ 75 & 50 & 20 \\ 95 & 41 & 24 \end{array}$
11	Sun Venus Spica a Aquilæ Fomalhaut a Pegasi	W. W. W. E. E. E.	95 43 6 63 12 6 62 57 43 45 21 59 68 6 2 87 19 45	97 18 20 64 45 25 64 40 26 44 4 30 66 34 34 85 40 12	98 53 18 66 18 29 66 22 54 42 48 36 65 3 38 84 0 55	$\begin{array}{rrr} 100 & 28 & 0 \\ 67 & 51 & 18 \\ 68 & 5 & 7 \\ 41 & 34 & 26 \\ 63 & 33 & 14 \\ 82 & 21 & 55 \end{array}$
12	Sun Spica Venus Antares Fomalhaut a Pegasi	W. W. W. W. E. E.	$\begin{array}{rrr} 108 & 17 & 33 \\ 76 & 32 & 19 \\ 75 & 31 & 41 \\ 30 & 53 & 0 \\ 56 & 10 & 21 \\ 74 & 11 & 12 \end{array}$	$\begin{array}{rrr} 109 & 50 & 41 \\ 78 & 13 & 0 \\ 77 & 3 & 2 \\ 32 & 33 & 39 \\ 54 & 43 & 50 \\ 72 & 33 & 56 \end{array}$	$\begin{array}{rrr} 111 & 23 & 33 \\ 79 & 53 & 26 \\ 78 & 34 & 8 \\ 34 & 14 & 4 \\ 53 & 18 & 5 \\ 70 & 56 & 59 \end{array}$	$\begin{array}{rrr} 112 & 56 & 10 \\ 81 & 33 & 37 \\ 80 & 5 & 0 \\ 35 & 54 & 15 \\ 51 & 53 & 9 \\ 69 & 20 & 21 \end{array}$
18	Sun Spica	W. W.	$\begin{array}{rrr} 120 & 35 & 29 \\ 89 & 50 & 59 \end{array}$	$\begin{array}{rrr} 122 & 6 & 37 \\ 91 & 29 & 46 \end{array}$	$\begin{array}{rrr} 123 & 37 & 29 \\ 93 & 8 & 18 \end{array}$	$\begin{array}{rrr} 125 & 8 & 7 \\ 94 & 46 & 37 \end{array}$

GREENWICH MEAN TLME.						
Lunar distances.						
Day of $\begin{aligned} & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	$\mathbf{x V}^{\text {b }}$.	XVIII.	XXI ${ }^{\text {b }}$
13	Venus	W.	878550	$89^{\circ} \quad 519$	$90^{\circ} 34^{\prime \prime} 3$	$92 \times 3{ }^{\circ}$
	Antares	W.	441142	455030	47295	$49 \quad 727$
	Fomalhaut	E.	$45 \quad 239$	434351	422621	411014
	a Pegasi	E.	61220	594721	58134	56399
	a Arietis	E.	1033733	101596	1002053	984253
14	Sun	W.	132.3743	$134 \quad 655$	1353553	137436
	Spica	W.	102.5455	1043156	106844	1074520
	Venus	W.	992534	1005319	1022052	1034813
	Antares	W.	57161	58537	602959	$62 \quad 640$
	Fomalhaut	E.	351439	$34 \quad 9.34$	$33 \quad 655$	$32 \quad 653$
	a Pegasi	E.	485536	$47 \quad 2412$	$45 \quad 5319$	442257
	a Arietis	E.	90366	885923	872252	854633
15	Venus	W.	$\begin{array}{lll}111 & 1 & 56\end{array}$	112286	11354	1151950
	Antares	W.	$\begin{array}{lll}70 & 7 & 4\end{array}$	714234	731753	74531
	a Pegasi	E.	$37 \quad 0 \quad 13$	353350	$34 \quad 820$	324347
	a Arietis	E.	77482	761256	$7438 \quad 1$	$\begin{array}{llll}73 & 3 & 18\end{array}$
	Aldebaran	E.	1102626	1085159	1071742	1054335
16	Antares	W.	824555	841958	855350	872732
	a Arietis	E.	651234	633859	$62 \quad 535$	603223
	Aldebaran	E.	975530	962223	944926	931639
17	Antares	W.	951329	964611	981843	
	a Aquilæ	W.	473425	48477	$50 \quad 0 \quad 32$	511435
	a Arietis	E.	524911	5117	494513	481332
	Aldebaran	E.	853513	$84 \quad 325$	823148	81020
18	Antares	W.	1073039	$\begin{array}{lll}109 & 2 & 6\end{array}$	1103325	112435
	a Aquilæ	W.	573226	584912	$60 \quad 6 \quad 17$	121 61 31
	Fomalhaut	W.	342814	35304	$3633 \quad 36$	373840
	a Arietis	E.	403758	$\begin{array}{llll}39 & 7 & 28\end{array}$	373710	$\begin{array}{lll}36 & 7 & 5\end{array}$
	Aldebaran	E.	732527	715457	702437	685427
	Pollux	E.	115203	1134931	112196	1104848
19	Antares	W.	$\begin{array}{llll}119 & 3819\end{array}$	$\begin{array}{llll}121 & 8\end{array}$		$124 \quad 9 \quad 0$
	a. Aquilæ	W.	6753199	69128	703043	714925
	Fomalhaut	W.	432234	443417	454646	465957
	a Arietis	E.	284018	271145	254332	241540
	Aldebaran	E.	612559	595646	582743	565849
	Pollux	E.	103199	1014934	100206	985045
20	a Aquilæ	W.	782350	794249	$81 \quad 149$	822049
	Fomalhaut	W.	531424	543040	$55 \quad 4717$	$57 \quad 414$
	a Pegasi	W.	303759	31569	$3315 \quad 5$	343442
	Aldebaran	E.	493645	$48 \quad 850$	46414	451329
	Pollux	E.	912538	895655	$88 \quad 2817$	865946
21	a Aquilæ Fomalhaut	W.	$\begin{array}{llll}88 & 55 & 33 \\ 63 & 33 & 6\end{array}$	901423	913310	925154
	Fomalhaut	W.	63336	645132	661010	672857
	a Pegasi	W.	412023	424241	$\begin{array}{llll}44 & 516\end{array}$	$45 \quad 28 \quad 7$
	Aldebaran Pollux	E.	375820 79	363155	$\begin{array}{lll}35 & 5 & 43\end{array}$	333946
	Pollux	E.	793822	$78 \quad 1019$	764220	751424

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
Day of the Month.	Star's Name and Position.		Midnight.	XVh.	XVIII ${ }^{\text {b }}$	XXI'.
22	a Aquilæ	W.	$99^{\circ} 24^{\prime \prime} 8^{\prime \prime}$	$100^{\circ} 42{ }^{\prime \prime}{ }^{\prime \prime}$	$102^{\circ} 00^{\prime \prime} 53^{\prime \prime}$	$103^{\circ} 188^{\prime \prime}$
	Fomalhaut	W.	$\begin{array}{llll}74 & 5 & 5\end{array}$	$\begin{array}{ll}75 & 2440\end{array}$	764422	$\begin{array}{llll}78 & 4 & 10\end{array}$
	a Pegasi	W.	$\begin{array}{llll}52 & 25 & 37\end{array}$	$\begin{array}{llll}53 & 49 & 40\end{array}$	$\begin{array}{llll}55 & 13 & 52\end{array}$	$\begin{array}{llll}56 & 38 & 13\end{array}$
	Aldebaran	E.	$\begin{array}{llll}26 & 34 & 37\end{array}$	$\begin{array}{llll}25 & 10 & 47\end{array}$	234729	$22 \quad 2450$
	Pollux	E.	$67 \quad 5534$	$\begin{array}{llll}66 & 27 & 55\end{array}$	$65 \quad 0 \quad 18$	$\begin{array}{llll}63 & 3242\end{array}$
23	\boldsymbol{a} Aquilæ	W.	1094716	111430	1122134	1133826
	Fomalhaut	W.	844428	$86 \quad 446$	$87 \quad 25 \quad 9$	884536
	a Pegasi	W.	$\begin{array}{llll}63 & 42 & 4\end{array}$	$\begin{array}{llll}65 & 7 & 14\end{array}$	$\begin{array}{llll}66 & 32 & 32\end{array}$	$\begin{array}{llll}67 & 57 & 58\end{array}$
	Pollux	E.	$\begin{array}{llll}56 & 14 & 57\end{array}$	544725	$\begin{array}{llll}53 & 19 & 52\end{array}$	$\begin{array}{llll}51 & 52 & 18\end{array}$
	Regulus	E.	925830	$9130 \quad 2$	$90 \quad 131$	$88 \quad 32 \quad 56$
	Sun	E.	$\begin{array}{llll}125 & 55 & 47\end{array}$	1243454	$\begin{array}{llll}123 & 13 & 58\end{array}$	1215257
24	a Aquilæ	W.	1195935	$\begin{array}{lll}121 & 15 & 2\end{array}$	1223011	$\begin{array}{ll}123 & 4459\end{array}$
	Fomalhaut	W.	$\begin{array}{llll}95 & 28 & 49\end{array}$	$\begin{array}{llll}96 & 49 & 39\end{array}$	$\begin{array}{llll}98 & 10 & 32\end{array}$	$\begin{array}{llll}99 & 31 & 29\end{array}$
	a Pegasi	W.	$75 \quad 7 \quad 12$	$\begin{array}{llll}76 & 33 & 29\end{array}$	775955	792631
	a Arietis	W.	313758	$33 \quad 5 \quad 54$	$\begin{array}{llll}34 & 34 & 5\end{array}$	$36 \quad 228$
	Pollux	E.	443415	$43 \quad 6 \quad 34$	413852	$\begin{array}{llll}40 & 11 & 9\end{array}$
	Regulus	E.	818851	79 39	$78 \quad 10 \quad 31$	$\begin{array}{llll}76 & 41 & 10\end{array}$
	Sun	E.	$\begin{array}{lll}115 & 612\end{array}$	1134456	1122313	111121
25	Fomalhaut	W.	$\begin{array}{lll}106 & 1652\end{array}$	10738	1085916	1102029
	a Pegasi	W.	$\begin{array}{llll}86 & 41 & 59\end{array}$	$88 \quad 9 \quad 38$	$\begin{array}{llll}89 & 37 & 27\end{array}$	91505
	a Arietis	W.	$43 \quad 2744$	$44 \quad 57 \quad 27$	$\begin{array}{llll}46 & 27 & 25\end{array}$	475737
	Pollux	E.	325231	312451	295716	$28 \quad 2947$
	Regulus	E.	$69 \quad 1214$	674158	$\begin{array}{llll}66 & 11 & 29\end{array}$	644049
	Sun	E.	$\begin{array}{ll}104 & 945\end{array}$	1024654	1012352	$100 \quad 0 \quad 37$
26	Fomalhaut	W.	$\begin{array}{ll}117 & 630\end{array}$	1182735	1194835	121929
	a Pegasi	W.	$\begin{array}{llll}98 & 28 & 47\end{array}$	99586	1012740	1025727
	a Arietis	W.	$\begin{array}{llll}55 & 32 & 29\end{array}$	$\begin{array}{llll}57 & 4 & 16\end{array}$	583621	608843
	Aldebaran	W.	234610	2513	264046	$28 \quad 915$
	Regulus	E.	$57 \quad 415$	$\begin{array}{llll}55 & 32 & 14\end{array}$	$\begin{array}{llll}53 & 59 & 57\end{array}$	522725
	Sun	E.	$\begin{array}{llll}93 & 1 & 0\end{array}$	913620	9011124	884611
27	$\alpha \text { Pegasi }$	W.	$\begin{array}{llll}110 & 30 & 5\end{array}$	$\begin{array}{ll}112 & 122\end{array}$	$\begin{array}{llll}113 & 32 & 53\end{array}$	$\begin{array}{ll}115 & 4 \\ 70\end{array}$
	a Arietis	W.	$\begin{array}{llll}67 & 55 & 19\end{array}$	692938	$\begin{array}{llll}71 & 4 & 18\end{array}$	723920
	Aldebaran	W.	354117	371323	$\begin{array}{llll}38 & 46 & 1\end{array}$	$\begin{array}{llll}40 & 19 & 9\end{array}$
	Regulus	E.	444030	$43 \quad 6 \quad 13$	413139	$\begin{array}{llll}39 & 56 & 45\end{array}$
	Sun	E.	$8135 \cdot 38$	$80 \quad 8 \quad 34$	784110	771325
28	a Arietis	W.	$8040 \quad 7$	$\begin{array}{llll}82 & 17 & 26\end{array}$	$\begin{array}{llll}83 & 55 & 10\end{array}$	$\begin{array}{llll}85 & 33 & 19\end{array}$
	Aldebaran	W.	$\begin{array}{llll}48 & 12 & 14\end{array}$	$49 \quad 4818$	512450	5315151
	Regulus	E.	$\begin{array}{llll}31 & 57 & 33\end{array}$	$\begin{array}{llll}30 & 20 & 46\end{array}$	284342	$\begin{array}{lll}27 & 6 & 20\end{array}$
	SuN	E.	694914	$68 \quad 19 \quad 15$	664853	$\begin{array}{lll}65 & 18\end{array}$
29	a Arietis	W.	9350501	$\begin{array}{rlrr}95 & 31 & 2\end{array}$		
	Aldebaran	W.	61143	$\begin{array}{llll}62 & 53 & 55\end{array}$	$\begin{array}{llll}64 & 34 & 15\end{array}$	$\begin{array}{llll}66 & 15 & 4\end{array}$
	Son	E.	$57 \quad 3812$	$56 \quad 458$	543119	$\begin{array}{llll}52 & 57 & 15\end{array}$
30	a Arietis	W.	10728	1091218	$\begin{array}{llll}110 & 5654 \\ 78 & 13 & 47\end{array}$	1124156
	Aldebaran	W.	74 468	$76 \quad 2944$	$\begin{array}{llll}78 & 13 & 47\end{array}$	$\begin{array}{llll}79 & 58 & 17\end{array}$
	Pollux	E.	$\begin{array}{llll}33 & 617\end{array}$	344755	$\begin{array}{llll}36 & 30 & 15\end{array}$	$\begin{array}{llll}38 & 13 & 14\end{array}$
	Sun	E.	$45 \quad 0 \quad 44$	$43 \quad 2412$	414718	$40 \quad 10 \quad 0$

GREENWICH MEAN TTME.

LUNAR DISTANCES.

$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Star's Name and Position.		Midnight.	XVb .	XVIII.	XXI.
1	Aldebaran	W.	$884871{ }^{1 \prime}$	90×3418	$92 \times 1{ }^{\circ} \mathrm{L}$	$94{ }^{\circ} \mathrm{9}$ ¢ 3 "
	Pollux	W.	$46 \quad 5653$	484313	50301	$\begin{array}{llll}52 & 17 & 17\end{array}$
	Sun	E.	315820	$\begin{array}{llll}30 & 19 & 5\end{array}$	283936	$26 \quad 5956$
6	Sun	W.	$\begin{array}{llll}38 & 29 & 5\end{array}$	$\begin{array}{llll}40 & 12 & 16\end{array}$	415514	4338
	a Aquilæ	E.	723948	$\begin{array}{llll}71 & 2 & 6\end{array}$	$\begin{array}{llll}69 & 24 & 57\end{array}$	674821
	Fomalhaut	E.	$\begin{array}{llll}97 & 52 & 7\end{array}$	$\begin{array}{llll}96 & 11 & 15\end{array}$	943032	92502
7	Sun	W.	$52 \quad 758$	53495	552953	571021
	a Aquilæ	E.	595528	$\begin{array}{llll}58 & 23 & 15\end{array}$	$\begin{array}{llll}56 & 51 & 56\end{array}$	$\begin{array}{llll}55 & 21 & 35\end{array}$
	Fomalhaut	E.	843133	825251	811432	$\begin{array}{llll}79 & 36 & 39\end{array}$
	a Pegasi	E.	104499	103343	1011834	993342
8	Sun	W.	$65 \quad 2735$	$\begin{array}{llll}67 & 5 & 57\end{array}$	684358	$\begin{array}{llll}70 & 21 & 36\end{array}$
	Venus	W.	$27 \quad 0 \quad 14$	283712	$\begin{array}{llll}30 & 13 & 50\end{array}$	31507
	a Aquilæ	E.	$\begin{array}{llll}48 & 6 & 44\end{array}$	$\begin{array}{llll}46 & 43 & 41\end{array}$	$\begin{array}{llll}45 & 22 & 9\end{array}$	$\begin{array}{llll}44 & 2 & 15\end{array}$
	Fomalhaut	E.	$71 \quad 3416$	695921	$6825 \quad 2$	$\begin{array}{llll}66 & 5120\end{array}$
	a Pegasi	E.	$\begin{array}{llll}90 & 54 & 13\end{array}$	891122	872853	854647
9	Sun	W.	$\begin{array}{llll}78 & 24 & 13\end{array}$	$\begin{array}{llll}79 & 59 & 38\end{array}$	813440	$83 \quad 921$
	Venus	W.	394617	412027	$\begin{array}{llll}42 & 54 & 15\end{array}$	442741
	Antares	W.	273242	291540	$\begin{array}{llll}30 & 58 & 17\end{array}$	324033
	Fomalhaut	E.	$\begin{array}{llll}59 & 12 & 50\end{array}$	574321	$\begin{array}{llll}56 & 14 & 41\end{array}$	544652
	a Pegasi	E.	$\begin{array}{ll}77 & 22\end{array}$	$75 \quad 42 \quad 23$	$74 \quad 3 \quad 4$	$\begin{array}{llll}72 & 2411\end{array}$
10	Sun	W.	$\begin{array}{llll}90 & 57 & 18\end{array}$	$\begin{array}{llll}92 & 29 & 50\end{array}$	$94 \quad 2 \quad 2$	$\begin{array}{llll}95 & 33 & 53\end{array}$
	Venus	W.	$52 \quad 936$	534056	$\begin{array}{llll}55 & 11 & 57\end{array}$	$56 \quad 4237$
	Antares	W.	41642	424654	442645	$\begin{array}{llll}46 & 6 & 17\end{array}$
	Fomalhaut	E.	474215	$46 \quad 2035$	$45 \quad 0 \quad 10$	43414
	a Pegasi	E.	$64 \quad 16 \quad 9$	623952	$61 \quad 4 \quad 2$	592839
	a Arietis	E.	1064121	105130	103220	1014250
11	Sun	W.	103812	104387	$106 \quad 744$	10737
	Venus	W.	641110	653958	$67 \quad 827$	683639
	Antares	W.	$\begin{array}{llll}54 & 19 & 8\end{array}$	$\begin{array}{llll}55 & 56 & 47\end{array}$	$\begin{array}{llll}57 & 34 & 7\end{array}$	591111
	Fomalhaut	E.	$37 \quad 2844$	$\begin{array}{llll}36 & 19 & 43\end{array}$	$\begin{array}{llll}35 & 12 & 51\end{array}$	$\begin{array}{lll}34 & 8 & 18\end{array}$
	a Pegasi	E.	513854	$50 \quad 6 \quad 27$	483433	$47 \quad 311$
	a Arietis	E.	9313147	915430	$\begin{array}{llll}90 & 17 & 31\end{array}$	884050
12	Sun	W.	1145920	1162658	1175421	1192129
	Venus	W.	$\begin{array}{llll}75 & 53 & 30\end{array}$	$77 \quad 20 \quad 5$	784625	801231
	Antares	W.	$67 \quad 1217$	684743	702253	715750
	a Pegasi	E.	393531	$\begin{array}{lll} 38 & 8 & 2 \end{array}$	364121	$\begin{array}{llll}35 & 15 & 31\end{array}$
	a Arietis	E.	804136	$79 \quad 633$	773145	$75 \quad 5713$
13	Sun	W.	1263329	1275911	1292440	1304956
	Venus	W.	871935	884421	$90 \quad 855$	913317
	Antares	W.	79494	812240	$82 \quad 56 \quad 4$	842916
	a Arietis	E.	$68 \quad 8 \quad 4$	$\begin{array}{llll}66 & 34 & 55\end{array}$	$65 \quad 159$	$\begin{array}{llll}63 & 29 & 16\end{array}$
	Aldebaran	E.	1005238	$99 \quad 19 \quad 55$	974723	$\begin{array}{llll}96 & 15 & 3\end{array}$
14	Venus	W.	$\begin{array}{llll}98 & 32 & 24\end{array}$	$\begin{array}{llll}99 & 55 & 43\end{array}$	1011852	1024152
	Antares	W.	$\begin{array}{llll}92 & 12 & 29\end{array}$	$\begin{array}{llll}93 & 44 & 37\end{array}$	951635	064823
	a Aquilæ	W.	$4510 \quad 5$	$46 \quad 20 \quad 50$	473225	484445

GREENWICH MEAN TIME.						
lunar distances.						
Day of the Month.	$\begin{gathered} \text { Star's Nam } \\ \text { and } \\ \text { Position. } \end{gathered}$		Midnight.	$\mathbf{X V F}^{\text {b }}$	XVIII.	xxy.
14	a Arietis Aldebaran	E. E.	$\begin{array}{llr} 55 & 48 & 3 \prime \prime \\ 88 & 36 & 2 \end{array}$	$$	$\begin{array}{llll} 52_{\varepsilon} & 45 & 44 \\ 85 & 33 & 37 \end{array}$	$\begin{array}{rrrr} 51 & 14 & 3 \prime 3 \\ 84 & 2 & 39 \end{array}$
15	Venus	W.	1093444	1105654	1121857	1134053
	Antares	W.	1042514	1055612	$10727 \quad 3$	$108 \quad 5746$
	a Aquilæ	W.	545533	561111	$\begin{array}{lll}57 & 2712\end{array}$	584334
	a Arietis	E.	434120	42 111	$\begin{array}{llll}40 & 41 \\ 70\end{array}$	3911133
	Aldebaran	E.	$76 \quad 30 \quad 2$	745956	732959	72009
16	a Aquilæ	W.	$\begin{array}{llll}65 & 9 & 42\end{array}$	$\begin{array}{lllll}66 & 27 & 36\end{array}$	674541	$\begin{array}{llll}69 & 3 & 55\end{array}$
	Fomalhaut	W.	$4057 \quad 0$	$\begin{array}{llll}42 & 6 & 9\end{array}$	$\begin{array}{llll}43 & 1616\end{array}$	442716
	a Arietis	E.	314541	30179	284852	272050
	Aldebaran	E.	$64 \quad 3259$	$\begin{array}{llll}63 & 3 & 56\end{array}$	61350	$60 \quad 611$
	Pollux	E.	1062618	104575	1032756	1015853
17	a Aquilæ	W.	75 56 50	$\begin{array}{llllll}76 & 55 & 49\end{array}$	$\begin{array}{llll}78 & 14 & 45\end{array}$	79 33 54 4
	Fomalhaut	W.	503310	51487	$\begin{array}{llll}53 & 3 & 33\end{array}$	541924
	$a \mathrm{Pegasi}$	W.	275554	291157	$30 \quad 29 \quad 3$	$3147 \quad 5$
	Aldebaran	E.	524356	511551	494754	48204
	Pollux	E.	943444	$\begin{array}{lll}93 & 6 & 7\end{array}$	913734	$\begin{array}{llll}90 & 9 & 5\end{array}$
18	a Aquilæ	W.	$\begin{array}{llll}86 & 9 & 2\end{array}$	$\begin{array}{llll}87 & 28 & 6 \\ 62 & 1 & 56\end{array}$		
	Fomalhaut	W.	60 44 38 $\mathbf{2 7}$	$\begin{array}{lrr}62 & 1 & 56 \\ 39 & 49 & 5\end{array}$	$\begin{array}{llll}63 & 20 & 0 \\ 41 & 11 & 5\end{array}$	643818 42
	a Pegasi Aldebaran	W.	$\begin{array}{llrr}38 & 27 & 28 \\ 41 & 3 & 0\end{array}$	39 39 39 86	41 11 5 38 9 15 8 5	4233 36 36 42
	Pollux	E.	824735	811927	795122	782320
19	a Aquilæ		964041	975924	99 79 18 18	$\begin{array}{ll}100 & 36 \\ 46\end{array}$
	Fomalhant	W.	711235	723154	735121	751055
-	a Pegasi	W.	492921			
	Aldebaran	E.	$2933 \quad 2$	$28 \quad 7 \quad 59$	264318	25194
	Pollux	E.	$71 \quad 350$	$69 \quad 36 \quad 3$	$68 \quad 818$	664036
20	a Aquilæ	W.	$107 \quad 7 \quad 37$	$10825 \quad 25$	$10943 \quad 3$	$\begin{array}{llll}111 & 0 & 31\end{array}$
	Fomalhaut	W.	815012	831018	843028	855041
	a Pegasi	W.	604435	$62 \quad 935$	633443	645957
	Pollux	E.	592228	575455	562723	545953
	Regulus	E.	$\begin{array}{llll}96 & 7\end{array}$	943835	$\begin{array}{llll}93 & 10 & 7\end{array}$	914137
	Jupiter	E.	1162312	1145628	$\begin{array}{ll}113 & 2942 \\ 113 & 27\end{array}$	$\begin{array}{llll}112 & 2 & 54 \\ 112 & 0 & 34\end{array}$
	Saturn	E.	1162216	$\begin{array}{lll}11455 & 4\end{array}$	1132750	$\begin{array}{lll}112 & 0 & 34\end{array}$
21	Fomalhaut	W.	$\begin{array}{llll}92 & 32 & 28\end{array}$	935255	95.1324	$\begin{array}{llll}96 & 33 & 54\end{array}$
	$\stackrel{\text { a Pegasi }}{ }$	W.	72743	733335	745934	762538
	a Arietis	W.	283422	$30 \cdot 136$	$\begin{array}{lll}31 & 29 & 2\end{array}$	325640
\%	Pollux	E.	474239	461516	444755	432085
1	Regulus	E.	841841		$\begin{array}{r}81 \\ \hline 10112\end{array}$	
*	Saturn	E.	1044335	103161	$\begin{array}{r} 10148 \quad 23 \\ 10154 \end{array}$	$\begin{array}{lll} 100 & 20 & 41 \\ 100 & 26 & 50 \end{array}$
	Jupiter	E.	1044817		101543	1002650
22	Fomalbaut	W.	1031627	1043657	1055725 80	1071751
	a Pegasi	W.	$83 \quad 3736$ 40	$\begin{array}{llll}85 & 4 & 20 \\ 41 & 46\end{array}$	863111	$87 \quad 58 \quad 9$
	a Arietis Pollux	W.	$\begin{array}{rrrr}40 & 17 & 26 \\ 36 & 4 & 32\end{array}$	$\begin{array}{llr} 41 & 46 & 5 \\ 34 & 37 & 31 \end{array}$	$\begin{array}{llll}43 & 14 & 54 \\ 33 & 10 & 35\end{array}$	$\begin{array}{llll}44 & 43 & 52 \\ 31 & 43 & 47\end{array}$
	$\xrightarrow{\text { Pollux }}$ Regulus	E.	$\begin{array}{lrrr}36 & 4 & 32 \\ 72 & 27 & 5\end{array}$	$\begin{array}{lll} 34 & 37 & 31 \\ 70 & 57 & 45 \end{array}$	331045 $69 \quad 28 \quad 20$	314848 67

GREENWICH MEAN TIME.						
lunar distances.						
Day of Month.			Midnight.	XV'.	XVIII ${ }^{\text {b }}$.	XXI ${ }^{\text {b }}$
4	Sun a Aquilæ Fomalhaut a Pegasi	W. E. E. E.	$\begin{array}{lll} 32 & 59 & 5 \prime \prime \\ 52 & 29 & 11 \\ 76 & 39 & 48 \\ 96 & 15 & 50 \end{array}$	$\begin{array}{rrr} 34 & 42 & 46 \\ 50 & 58 & 36 \\ 75 & 0 & 0 \\ 94 & 28 & 9 \end{array}$	$\begin{array}{lll} 36 & 25 & 17 \\ 49 & 29 & 18 \\ 73 & 20 & 42 \\ 92 & 40 & 48 \end{array}$	$\begin{array}{lll} 38 & 7 & 31 \\ 48 & 1 & 24 \\ 71 & 41 & 58 \\ 90 & 53 & 47 \end{array}$
5	Sun a Aquilæ Fomalhaut a Pegasi	W. E. E. E.	46 33 29 41 6 46 63 37 35 82 4 28	$\begin{array}{rrr} 48 & 13 & 34 \\ 39 & 49 & 46 \\ 62 & 2 & 50 \\ 80 & 19 & 51 \end{array}$	$\begin{array}{llr} 49 & 53 & 14 \\ 38 & 35 & 8 \\ 60 & 28 & 53 \\ 78 & 35 & 42 \end{array}$	$\begin{array}{llr} 51 & 32 & 30 \\ 37 & 23 & 2 \\ 58 & 55 & 46 \\ 76 & 52 & 0 \end{array}$
6	Sun Fomalhaut a Pegasi	$\begin{aligned} & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$	$\begin{array}{lll} 59 & 42 & 33 \\ 51 & 24 & 21 \\ 68 & 20 & 47 \end{array}$	$\begin{array}{ccc} 61 & 19 & 16 \\ 49 & 57 & 16 \\ 66 & 40 & 4 \end{array}$	$\begin{array}{lll} 62 & 55 & 34 \\ 48 & 31 & 23 \\ 64 & 59 & 52 \end{array}$	$\begin{array}{rrr} 64 & 31 & 25 \\ 47 & 6 & 47 \\ 63 & 20 & 13 \end{array}$
7	Sun Venus Fomalhaut a Pegasi a Arietis	W. W. E. E. E.	$\begin{array}{lll} 72 & 24 & 16 \\ 28 & 55 & 36 \\ 40 & 25 & 45 \\ 55 & 10 & 19 \\ 97 & 16 & 49 \end{array}$	$\begin{array}{llll} 73 & 57 & 34 \\ 30 & 27 & 53 \\ 39 & 10 & 40 \\ 53 & 34 & 6 \\ 95 & 36 & 12 \end{array}$	$\begin{array}{lll} 75 & 30 & 26 \\ 31 & 59 & 46 \\ 37 & 57 & 33 \\ 51 & 58 & 29 \\ 93 & 56 & 1 \end{array}$	$\begin{array}{lll} 77 & 2 & 54 \\ 33 & 31 & 15 \\ 36 & 46 & 34 \\ 50 & 23 & 29 \\ 92 & 16 & 13 \end{array}$
8	Sun Venus a Pegasi a Arietis	W. W. E. E.	$\begin{array}{rrr} 84 & 39 & 14 \\ 41 & 2 & 45 \\ 42 & 38 & 34 \\ 84 & 3 & 21 \end{array}$	86 9 21 42 31 54 41 7 46 82 25 56	$\begin{array}{rrr} 87 & 39 & 5 \\ 44 & 0 & 41 \\ 39 & 37 & 46 \\ 80 & 48 & 55 \end{array}$	$\begin{array}{rrr} 89 & 8 & 27 \\ 45 & 29 & 6 \\ 38 & 8 & 36 \\ 79 & 12 & 15 \end{array}$
9	Sun Venus a Pegasi a Arietis Aldebaran	W. W. E. E. E.	$\begin{array}{rrr} 96 & 30 & 7 \\ 52 & 46 & 5 \\ 30 & 57 & 34 \\ 71 & 14 & 13 \\ 104 & 1 & 19 \end{array}$	$\begin{array}{r} 97 \\ 57 \\ 54 \\ 54 \\ 12 \\ 29 \\ 34 \\ 64 \\ 69 \\ \hline 99 \\ 102 \\ \hline 97 \\ \hline \end{array}$	$\begin{array}{rrr} 99 & 24 & 31 \\ 55 & 38 & 36 \\ 28 & 13 & 39 \\ 68 & 5 & 21 \\ 100 & 53 & 18 \end{array}$	$\begin{array}{rrr} 100 & 51 & 15 \\ 57 & 4 & 25 \\ 26 & 54 & 2 \\ 66 & 31 & 23 \\ 99 & 19 & 44 \end{array}$
10	Sun Venus a Arietis Aldebaran	W. W. E. E.	$\begin{array}{rrr} 108 & 0 & 43 \\ 64 & 9 & 16 \\ 58 & 45 & 57 \\ 91 & 36 & 0 \end{array}$	$\begin{array}{rrr} 109 & 25 & 49 \\ 65 & 33 & 28 \\ 57 & 13 & 42 \\ 90 & 4 & 1 \end{array}$	$\begin{array}{r} 1105041 \\ 6657 \\ 55 \\ 51 \\ 41 \\ 88 \\ 32 \\ 17 \end{array}$	$\begin{array}{rrr} 112 & 15 & 18 \\ 68 & 21 & 8 \\ 54 & 9 & 59 \\ 87 & 0 & 46 \end{array}$
11	Sun Venus a Aquilæ a Arietis Aldebaran	W. W. W. E. E.	$\begin{array}{rrr} 119 & 15 & 12 \\ 75 & 16 & 33 \\ 52 & 24 & 20 \\ 46 & 34 & 55 \\ 79 & 26 & 28 \end{array}$	$\begin{array}{rrr} 120 & 38 & 35 \\ 76 & 39 & 3 \\ 53 & 39 & 13 \\ 45 & 4 & 35 \\ 77 & 56 & 13 \end{array}$	$\begin{array}{rr} 122 & 1 \\ 78 & 1 \\ 78 \\ 54 & 1 \\ 54 & 32 \\ 43 & 34 \\ 76 & 26 \\ \hline 26 \end{array}$	$\begin{array}{rrr} 123 & 24 & 49 \\ 79 & 23 & 32 \\ 56 & 10 & 14 \\ 42 & 4 & 36 \\ 74 & 56 & 14 \end{array}$
12	Sun Venus a Aquilæ Fomalhant a Arietis Aldebaran	W. W. W. W. E. E.	$\begin{array}{rrr} 130 & 17 & 37 \\ 86 & 12 & 4 \\ 62 & 33 & 23 \\ 38 & 50 & 42 \\ 34 & 38 & 20 \\ 67 & 29 & 11 \end{array}$	$\begin{array}{rrr} 131 & 39 & 45 \\ 87 & 33 & 23 \\ 63 & 50 & 45 \\ 39 & 57 & 3 \\ 33 & 9 & 44 \\ 66 & 0 & 14 \end{array}$	$\begin{array}{rrr} 133 & 1 & 46 \\ 88 & 54 & 34 \\ 65 & 8 & 19 \\ 41 & 4 & 33 \\ 31 & 41 & 21 \\ 64 & 31 & 25 \end{array}$	$\begin{array}{rrr} 134 & 23 & 39 \\ 90 & 15 & 39 \\ 66 & 26 & 4 \\ 42 & 13 & 7 \\ 30 & 13 & 13 \\ 63 & 2 & 44 \end{array}$
13	Venus a Aquilæ Fomalhaut Aldebaran Pollux	W. W. W. E. E.	$\begin{array}{lll} 96 & 59 & 38 \\ 72 & 56 & 59 \\ 48 & 8 & 56 \\ 55 & 41 & 10 \\ 97 & 31 & 3 \end{array}$	$\begin{array}{rrr} 98 & 20 & 11 \\ 74 & 15 & 30 \\ 49 & 22 & 13 \\ 54 & 13 & 13 \\ 96 & 2 & 45 \end{array}$	99 40 40 75 34 7 50 36 4 52 45 22 94 34 30	$\begin{array}{rrr} 101 & 1 & 6 \\ 76 & 52 & 49 \\ 51 & 50 & 28 \\ 51 & 17 & 38 \\ 93 & 6 & 19 \end{array}$

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month.	Star's Na and Position		Midnight.	XVb.	XVIII ${ }^{\text {b }}$	XXI' ${ }^{\text {b }}$
22	a Arietis	W.	$86^{\circ} 0^{\circ} 50$	$87^{\circ} 35^{\prime} \quad .11$	$89^{\circ} 98{ }^{\prime \prime \prime}$	$90^{\circ} 44{ }^{\prime \prime}$
	Aldebaran	W.	532135	$\begin{array}{llll}54 & 54 & 56\end{array}$	562834	$58 \quad 230$
	Regulus	E.	264639	$\begin{array}{llll}25 & 13 & 36\end{array}$	234030	$22 \quad 724$
	Saturn	E.	$\begin{array}{llll}50 & 9 & 37\end{array}$	$48 \quad 3640$	$47 \quad 3 \begin{array}{lll}47\end{array}$	$45 \quad 3014$
	Jupiter	E.	$\begin{array}{llll}52 & 35 & 14\end{array}$	$\begin{array}{lll}51 & 2 & 29\end{array}$	$49 \quad 29 \quad 32$	475624
	Spica	E.	803335	$78 \quad 5924$	$77 \quad 2436$	754934
	Mars	E.	$89 \quad 1916$	874956	862022	$84 \quad 5032$
	Sun	E.	1192518	1175821	116319	$\begin{array}{llll}115 & 3\end{array}$
23	a Arietis	W.	$98 \quad 4158$	$\begin{array}{llll}100 & 18 & 18\end{array}$	1015456	1033152
	Aldebaran	W.	$\begin{array}{llll}65 & 56 & 35\end{array}$	$67 \quad 3219$	$69 \quad 822$	704444
	Pollux	W.	244453	$\begin{array}{llll}26 & 1618\end{array}$	274833	292135
	Saturn	E.	374111	$\begin{array}{ll}36 & 6 \\ 35\end{array}$	$\begin{array}{llll}34 & 32 & 30\end{array}$	$\begin{array}{llll}32 & 57 & 59\end{array}$
	Jupiter	E.	40	$\begin{array}{llll}38 & 33 & 17\end{array}$	$\begin{array}{llll}36 & 58 & 45\end{array}$	$\begin{array}{llll}35 & 24 & 3\end{array}$
	Spica	E.	$\begin{array}{llll}67 & 50 & 26\end{array}$	$\begin{array}{llll}66 & 13 & 47\end{array}$	$\begin{array}{llll}64 & 36 & 51\end{array}$	$\begin{array}{llll}62 & 59 & 37\end{array}$
	Mars	E.	771730	$\begin{array}{lllll}75 & 46 & 5\end{array}$	$\begin{array}{llll}74 & 14 & 22\end{array}$	$\begin{array}{llll}72 & 42 & 22\end{array}$
	Sun	E.	1074226	$10613 \cdot 20$	1044357	1031415
24	Aldebaran	W.	$\begin{array}{llll}78 & 51 & 30\end{array}$	$80 \quad 2952$	$82 \quad 834$	834738
	Pollux	W.	$\begin{array}{llll}37 & 16 & 25\end{array}$	$\begin{array}{llll}38 & 53 & 5\end{array}$	$40 \quad 30 \quad 15$	$42 \quad 756$
	Saturn	E.	$25 \quad 455$	23 30	215631	$\begin{array}{llll}20 & 22 & 54\end{array}$
	Jupiter	E.	272824	25533	241744	224232
	Spica	E.	544850	$\begin{array}{llll}53 & 9 & 43\end{array}$	513016	$\begin{array}{llll}49 & 50 & 29\end{array}$
	Mars	E.	$\begin{array}{llll}64 & 57 & 46\end{array}$	$\begin{array}{llll}63 & 23 & 54\end{array}$	$\begin{array}{llll}61 & 49 & 42\end{array}$	$60 \quad 1511$
	Sun	E.	95413	94 925	$\begin{array}{llll}92 & 37 & 27\end{array}$	$\begin{array}{lll} 91 & 5 & 8 \end{array}$
25	Aldebaran	W.	$\begin{array}{llll}92 & 8 & 18\end{array}$	$\begin{array}{llll}93 & 49 & 32\end{array}$	95318	971313
	Pollux	W.	$\begin{array}{llll}50 & 23 & 27\end{array}$	$52 \quad 356$	534451	$\begin{array}{llll}55 & 26 & 14\end{array}$
	Spica	E.	$\begin{array}{llll}41 & 26 & 25\end{array}$	$\begin{array}{llll}39 & 44 & 34\end{array}$	$38 \quad 221$	$\begin{array}{llll}36 & 19 & 47\end{array}$
	Mars	E.	$\begin{array}{llll}52 & 17 & 31\end{array}$	504057	$\begin{array}{rrr}49 & 4 & 3\end{array}$	$47 \quad 26 \quad 48$
	Sun	E.	831810	814340	$80 \quad 847$	$78 \quad 3332$
26	Pollux	W.	63 59 16	654333	$67 \quad 2756$	691243
	Regulus	W.	$\begin{array}{llll}26 & 58 & 19\end{array}$	284159	302611	321055
	Mars	E.	$\begin{array}{llll}39 & 15 & 33\end{array}$	$\begin{array}{llll}37 & 36\end{array}$	$35 \quad 5649$	$\begin{array}{llll}34 & 17 & 0\end{array}$
	Sun	E.	703130	$68 \quad 53 \quad 56$	$67 \quad 15 \quad 59$	$\begin{array}{llll}65 & 37 & 39\end{array}$
27	Pollux	W.	$78 \quad 241$	794951	$\begin{array}{llll}81 & 37 & 23\end{array}$	$\begin{array}{llll}83 & 25 & 17\end{array}$
	Regulus	W.	$\begin{array}{llll}41 & 1 & 45\end{array}$	424915	$\begin{array}{llll}44 & 37 & 10\end{array}$	$\begin{array}{llll}46 & 25 & 29\end{array}$
	Mars	E.	$\begin{array}{llll}25 & 54 & 30\end{array}$	$\begin{array}{llll}24 & 13 & 32\end{array}$	$\begin{array}{llll}22 & 32 & 34\end{array}$	$\begin{array}{lll} 20 & 51 & 41 \end{array}$
	Sun	E.	$\begin{array}{llll}57 & 20 & 16\end{array}$	$55 \quad 3941$	535844	521726
28	Pollux	W.	$92 \quad 2954$	941946	$\begin{array}{llll}96 & 9 & 55\end{array}$	$98 \quad 0 \quad 20$
	Regulus	W.	$\begin{array}{llll}55 & 32 & 38\end{array}$	$57 \quad 236$	$\begin{array}{llll}59 & 13 & 53\end{array}$	$\begin{array}{llll}61 & 4 & 58\end{array}$
	Saturn	W.	$\begin{array}{llll}32 & 19 & 32\end{array}$	$\begin{array}{llll}34 & 7 & 16\end{array}$	$\begin{array}{llll}35 & 55 & 33 \\ 32 & 54 & 50\end{array}$	$\begin{array}{llll}37 & 44 & 20 \\ 34 & 43\end{array}$
	Jupiter	W.	$\begin{array}{llll}29 & 19 & 27\end{array}$	$\begin{array}{lll}31 & 6 & 52 \\ 42 & 2\end{array}$	$\begin{array}{llll}32 & 54 & 50 \\ 40 & 19 & 10\end{array}$	$34 \quad 43 \quad 18$
	Sun	E.	434555	$42 \quad 241$	$\begin{array}{llll}40 & 19 & 10\end{array}$	383523
29	Pollux	W.	107 70 156			$\begin{array}{rrr}112 & 51 & 26 \\ 76 & 2 & 29\end{array}$
	Regulus	W.	$\begin{array}{llll}70 & 24 & 18 \\ 46 & 54 & 17\end{array}$	$\begin{array}{lll} 72 & 16 & 51 \\ 48 & 45 & 15 \end{array}$	$\begin{array}{rrrr}74 & 9 & 35 \\ 50 & 36 & 29\end{array}$	$\begin{array}{rrr} 76 & 2 & 29 \\ 52 & 27 & 58 \end{array}$
	Saturn	W.	$\begin{array}{llll}46 & 54 & 17 \\ 43 & 51 & 45\end{array}$	$\begin{array}{llll}48 & 45 & 15 \\ 45 & 42 & 25\end{array}$	50 47 47 3	$\begin{array}{llll}52 & 27 & 58 \\ 49 & 24 & 32\end{array}$
	SuN	E.	295259	$28 \quad 757$	$26 \quad 2246$	243728

GREENWICH MEAN TIME.						
LUNAR DISTANCES.						
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	$\begin{gathered} \text { Star's Nar } \begin{array}{c} \text { and } \\ \text { Position } \end{array} \end{gathered}$		Midnight.	XV.	XVIII ${ }^{\text {b }}$	XXT.
4	Sun	W.	$39^{\circ} 40{ }^{\prime \prime}$	$41^{\circ} 18{ }^{\text {c }} 36$	$42^{\circ} 56{ }^{118}$	$44^{\circ} 33^{\prime} 34$
	Fomalhant	E.	444354	432050	415927	403955
	a Pegasi	E.	60211	583934	565842	551826
	a Arietis	E.	$10242 \quad 7$	1005644	991147	$\begin{array}{llll}97 & 27 & 16\end{array}$
5	Sun	W.		$\begin{array}{ll}54 & 752\end{array}$	55421	571544
	Fomalhaut	E.	343451	332936	322726	312835
	a Pegasi	E.	$47 \quad 658$	453049	435526	422052
	a Arietis	E.	885125	$87 \quad 935$	$85 \quad 2812$	834717
6	Sun	W.	645747	662854	$67 \quad 5937$	692955
	${ }^{\text {a Pegasi }}$	E.	344148	331310	314546	301944
	a Arietis	E.	$75 \quad 2915$	$73 \quad 5056$	$\begin{array}{llll}72 & 13 & 3\end{array}$	703535
	Aldebaran	E.	1081726	1063939	$105 \quad 216$	1032517
7	Sun	W.	765534	$78 \quad 2335$	795113	811831
	Venus	W.	303640	$\begin{array}{llll}32 & 3 & 7\end{array}$	$\begin{array}{ll}33 & 2919\end{array}$	345514
	a Arietis	E.	623419	605914	$\begin{array}{llll}59 & 24 & 31\end{array}$	575010
	Aldebaran	E.	$\begin{array}{llll}95 & 26 & 2\end{array}$	$\begin{array}{llll}93 & 51 & 17\end{array}$	921653	904249
8	Sun	W.	$8830 \quad 5$	895529	912036	924526
	$a_{\text {a }}$ Aquilæ	W.	492727	504230	51581	531358
	Venus	W.	$42 \quad 0 \quad 54$	$43 \quad 2516$	444923	461316
	a Arietis	E.	$\begin{array}{llll}50 & 3 & 42\end{array}$	483124	465926	452746
	Aldebaran	E.	825728	812519	795328	782153
9	Sun	W.	994550	101914		
	${ }^{\text {a Aquilæ }}$	W.	593832	$\begin{array}{llll}60 & 5610\end{array}$	62140	63320
	Venus	W.	$\begin{array}{llll}53 & 9 & 18\end{array}$	543154	555418	571632
	a Arietis	E.	375358	36245	345429	332511
	Aldebaran	E.	704756	691753	67483	$6618 \quad 25$
10	Sun	W.	1104744	112945	1133138	1145323
	a Aquilæ	W.	$\begin{array}{ll}70 & 3\end{array} 46$	$\begin{array}{ll}71 & 2224\end{array}$	72416	73 739
	Venus	W.	$\begin{array}{llll}64 & 5 & 17\end{array}$	$65 \quad 2637$	664750	$68 \quad 857$
	Fomalhaut	W.	453658	464852	$48 \quad 126$	491436
	Aldebaran	E.	585318	572450	$55 \quad 5631$	542822
	Pollux	E.	1004138	$99 \quad 1257$	974423	961555
11			1214040	123154	12423 3	125449
	${ }^{a}$ Aquilæ	W.	803412	81539	83127	84316
	Venus	W.	74 53	761346	773420	785452
	Fomalhaut	W.	$\begin{array}{llll}55 & 27 & 56\end{array}$	564351	$58 \quad 0 \quad 7$	591642
	Aldebaran	E.	$47 \quad 955$	454239	$44 \quad 1532$	424833
	Pollux	E.	8855	87279	$85 \quad 59 \quad 17$	843128
12	Sun	W.	1322910	$13350 \quad 7$		$\begin{array}{llll}136 & 32 & 2\end{array}$
	${ }^{\text {a }}$ Aquilæ	W.	$91 \quad 5 \quad 59$	922456	$\begin{array}{llll}93 & 43 & 52\end{array}$	$\begin{array}{rr}135 & 247\end{array}$
	Venus	W.	85376	865731	881756	893822
	Fomalhaut	W.	654351	$67 \quad 20$	682022	693856
	a Pegasi	W.	433644	445936	462245	474610
	Aldebaran	E.	353552	$34 \quad 950$	32440	311822
	Pollux	E.	771259	754522	741746	725010

GREENWICH MEAN TIME.

LUNAR DISTANCES.

Day of the Month	Star's Name and Position.		Midnight.	XV'.	XVIII ${ }^{\text {b }}$.	XXI' ${ }^{\text {b }}$
13	Venus	W.	$96^{\circ} 200^{\prime \prime} \quad 5$	9741314	$99^{\circ} \quad 2$$\prime \prime$ 15	$100{ }^{\circ} 23^{\prime \prime}$
	Fomalhaut	W.	761429	$77 \quad 344$	$78 \quad 5348$	801340
	a Pegasi	W.	$\begin{array}{llll}54 & 46 & 37\end{array}$	$\begin{array}{llll}56 & 11 & 19\end{array}$	$\begin{array}{llll}57 & 36 & 12\end{array}$	$\begin{array}{llll}59 & 115\end{array}$
	Pollux	E.	$65 \quad 32 \quad 6$	$\begin{array}{lll}64 & 4 & 27\end{array}$	$\begin{array}{llll}62 & 36 & 47\end{array}$	$\begin{array}{llll}61 & 9 & 5\end{array}$
	Regulus	E.	1022021	1005154	992324	$97 \quad 5450$
14	Venus	W.	$107 \quad 744$	1082855	1095012	1111134
	Fomalhant	W.	865451	881525	$\begin{array}{llll}89 & 36 & 4\end{array}$	905649
	a Pegasi	W.	$66 \quad 9 \quad 4$	$67 \quad 35 \quad 6$	$\begin{array}{llll}69 & 1 & 18\end{array}$	702739
	Pollux	E.	$53 \quad 50$	$\begin{array}{llll}52 & 22 & 17\end{array}$	505422	492626
	Regulas	E.	$\begin{array}{lllll}90 & 31 & 1\end{array}$	$89 \quad 20$	873255	$86 \quad 344$
15	$a \mathrm{Pegasi}$	W.	$\begin{array}{llll}77 & 41 & 36\end{array}$	$79 \quad 850$	$80 \quad 3612$	$82 \quad 343$
	a Arietis	W.	$\begin{array}{ll}3413 & 13\end{array}$	354221	371126	384043
	Pollux	E.	42 6 7	403829	$\begin{array}{llll}39 & 10 & 29\end{array}$	374232
	Regulus	E.	$\begin{array}{llll}78 & 36 & 19\end{array}$	$77 \quad 630$	$\begin{array}{llll}75 & 36 & 35\end{array}$	$\begin{array}{ll}74 & 6 \\ 33\end{array}$
	Saturn	E.	103122	1013213	$100 \quad 256$	$98 \quad 3332$
	Jupiter	E.	1065653	1052759	1035858	1022949
16	a Pegasi	W.	892320	905140	$\begin{array}{llll}92 & 20 & 8\end{array}$	934844
	a Arietis	W.	$46 \quad 952$	474013	$\begin{array}{llll}49 & 10 & 46\end{array}$	504128
	Pollux	E.	$30 \quad 2357$	28 56	27 29	$26 \quad 256$
	Regulus	E.	$\begin{array}{llll}66 & 34 & 36\end{array}$	$\begin{array}{llll}65 & 3 & 50\end{array}$	$\begin{array}{llll}63 & 32 & 57\end{array}$	$\begin{array}{llll}62 & 1 & 55\end{array}$
	Saturn	E.	$\begin{array}{llll}91 & 4 & 33\end{array}$	893421	$\begin{array}{lll}88 & 4 & 1\end{array}$	$\begin{array}{llll}86 & 33 & 33\end{array}$
	Jupiter	E.	$95 \quad 24$	93 32	$92 \quad 20$	903145
17	a Pegasi	W.	1011332	1024250	1041216	1054148
	a Arietis	W.	$\begin{array}{llll}58 & 17 & 32\end{array}$	594915	61218	625311
	Regulus	E.	$\begin{array}{llll}54 & 24 & 52\end{array}$	$52 \begin{array}{lll}53 & 4\end{array}$	$\begin{array}{llr}51 & 21 & 8 \\ 75 & 56\end{array}$	49495
	Saturn	E.	$78 \quad 59 \quad 5$	$77 \quad 2746$	$\begin{array}{llll}75 & 56 & 18\end{array}$	$74 \quad 2442$
	Jupiter	E.	$8258 \cdot 22$	812716	$\begin{array}{llll}79 & 56 & 0\end{array}$	$\begin{array}{lllll}78 & 24 & 36\end{array}$
18	a Arietis	W.	$70 \quad 35 \quad 58$	$\begin{array}{llll}72 & 9 & 2\end{array}$	$\begin{array}{llll}73 & 42 & 16\end{array}$	$\begin{array}{llll}75 & 15 & 41\end{array}$
	Aldebaran	W.	38 8.31	$\begin{array}{llll}39 & 39 & 50\end{array}$	411127	42 43
	Regulus	E.	$42 \quad 653$	40345	$\begin{array}{llr}39 & 1 & 9\end{array}$	$\begin{array}{llll}37 & 28 & 7\end{array}$
	Saturn	E.	$\begin{array}{llll}66 & 44 & 34\end{array}$	$\begin{array}{llll}65 & 12 & 7\end{array}$	$\begin{array}{llll}63 & 39 & 32\end{array}$	$\begin{array}{ll}62 & 6\end{array} 48$
	Jupiter	E.	$70 \quad 4519$	$\begin{array}{llll}69 & 13 & 0\end{array}$	674033	$66 \quad 756$
	Spica	E.	$96 \quad 244$	$94 \quad 2920$	925546	91222
19	a Arietis	W.	$\begin{array}{lll}83 & 5 & 19\end{array}$	843946	$\begin{array}{llll}86 & 14 & 24\end{array}$	874913
	Aldebaran	W.	$\begin{array}{llll}50 & 26 & 49\end{array}$	$\begin{array}{llll}52 & 0 & 15\end{array}$	$\begin{array}{llll}53 & 33 & 55\end{array}$	$\begin{array}{rrr}55 & 7 & 49 \\ 05 & 1 & 3\end{array}$
	Regulus	E.	294136	$\begin{array}{rrrr}28 & 8 & 6\end{array}$	$\begin{array}{llll}26 & 34 & 34 \\ 51 & 13 & 53\end{array}$	$\begin{array}{lrr}25 & 1 & 3 \\ 49 & 40 & 5\end{array}$
	Satura	E.	$\begin{array}{lll}54 & 21 & 5\end{array}$	524733	$\begin{array}{lll}51 & 13 & 53 \\ 55 & 15 & 30\end{array}$	$\begin{array}{lllr}49 & 40 & 5\end{array}$
	Jupiter	E.	$\begin{array}{llll}58 & 22 & 39\end{array}$	$5649 \quad 9$	$\begin{array}{llll}55 & 15 & 30\end{array}$	534142
	Spica	E.	$\begin{array}{llll}83 & 30 & 51\end{array}$	81565	802110	$\begin{array}{rrr}78 & 46 \\ 105 & 37\end{array}$
	Mars	E.	110639	10837 3	107717	1053719
20	a Arietis	W.			$\begin{array}{rrrr}98 & 58 & 3 \\ 66 & 11 & 26\end{array}$	
	Aldebaran	W.	$\begin{array}{llll}63 & 0 & 43\end{array}$	$\begin{array}{llll}64 & 35 & 58 \\ 23 & 30 & 27\end{array}$	$\begin{array}{rrrr}66 & 11 & 26 \\ 25 & 1 & 0\end{array}$	$\begin{array}{llr} 67 & 47 & 7 \\ 26 & 32 & 25 \end{array}$
	Pollux	W.	$\begin{array}{rrr}22 & 0 & 53 \\ 41 & 49 & 29\end{array}$	$\begin{array}{rrr}23 & 30 & 27 \\ 40 & 15 & 5\end{array}$	$\begin{array}{rrr}25 & 1 & 0 \\ 38 & 40 & 36\end{array}$	$\begin{array}{rrr}26 & 32 & 25 \\ 37 & 6 & 5\end{array}$
	Jupiter	E.	$45 \quad 5037$	4416	424116	$41 \quad 625$
	Spica	E.	704748	691135	673511	655836

GREENWICH MEAN TIME.						
lunar distances.						
$\left\lvert\, \begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month } \end{aligned}\right.$ Month	$\begin{gathered} \text { Star's Na } \\ \text { and } \\ \text { Position } \end{gathered}$		Midnight.	XV'.	XVIII ${ }^{\text {b }}$	XXİ.
20	Mars	E.	$98^{\circ} 4411$	$96^{\circ} 33^{\prime \prime} 3$	$95^{\circ} \quad 21^{1} 17$	$9380{ }^{\circ} 47$
21	Aldebaran	W.	75 48 55 84 19	$\begin{array}{llll}77 & 25 & 57 \\ 35 & 54 & 9\end{array}$	$\begin{array}{rrrr}79 & 3 & 12 \\ 37 & 9 & 31\end{array}$	$\begin{array}{lrr}80 & 40 & 41 \\ 39 & 5 & 18\end{array}$
	Pollux	W.	34 1919 29 13	$\begin{array}{llll}35 & 54 & 9 \\ 27 & 38 & 59\end{array}$	$\begin{array}{rrrr}37 & 29 & 31 \\ 26 & 4 & 50\end{array}$	$\begin{array}{llll}39 & 5 & 18 \\ 24 & 30 & 57\end{array}$
	Saturn Jupiter	E.	291313 33 10	273859 313599	$\begin{array}{lll}26 & 4 & 50 \\ 30 & 0 & 11\end{array}$	243057 282455
	Spica	E.	5752 39*	56 56 14	543651	525838
	Mars	E.	855014	841729	824432	811121
	Sun	E.	$\begin{array}{lll}126 & 6 & 3\end{array}$	1243540	$\begin{array}{llll}123 & 5 & 4\end{array}$	1213416
22	Aldebaran	W.	$\begin{array}{llll}88 & 51 & 34\end{array}$	$\begin{array}{lllll}90 & 30 & 27\end{array}$	$\begin{array}{llll}92 & 9 & 34 \\ 50 & 26\end{array}$	934856
	Pollux	W.	$47 \quad 952$	484749	$5026 \quad 6$	$\begin{array}{llll}52 & 4 & 42 \\ 15 & 53\end{array}$
	Jupiter	E.	20315	185731	172444	$\begin{array}{llll}15 & 53 & 4 \\ 39 & 45\end{array}$
	Spica	E.	444418	43 4	4125 4	$\begin{array}{lllr}39 & 45 & 4 \\ 68 & 37 & 46\end{array}$
	Mars	E.	$73 \quad 226$	714734	701247	683746 1091928
	Sun	E.	1135647	1122435	110 52	1091928
23	Pollux	W. .	602225	$62 \quad 252$	634338	$65 \quad 2441$
	Regulus	W.	$23 \quad 2228$	$25 \quad 212$	264297	28239
	Spica	E.	312156	294040	275911	261732
	Mars	E.	$\begin{array}{llll}60 & 39 & 1\end{array}$	$\begin{array}{ll}59 & 231\end{array}$	572546	554846
	Sun	E.	1013218	99586	982338	964854
24	Pollux	W.	735426	$75 \quad 3715$	772022	$\begin{array}{llll}79 & 3 & 46\end{array}$
	Regulus	W.	365246	383548	40198	$42 \quad 251$
	Mars	E.	473956	$46 \quad 125$	442238	424337
	Sus	E.	885112	871451	853813	$\begin{array}{lll}84 & 1 & 19\end{array}$
25	Pollux	W.	87451	$8930 \quad 5$	911526	$\begin{array}{lll}93 & 1 & 2\end{array}$
	Regulus	W.	$5046 \quad 7$	523142	541734	$\begin{array}{llll}56 & 3 & 43\end{array}$
	Saturn	W.	264537	282740	301024	315345
	Jupiter	W.	222127	$24 \quad 244$	254450	272740
	Mars	E.	342458	324434	31359	292313
	Sun	E.	755240	$7414 \quad 7$	723518	705613
26	Pollux	W.	1015246	1033949	$105 \quad 276$	1071434
	Regulus	W.	645839	664625	683426	$70 \quad 2241$
	Saturn	W.	40387	422416	441047	455738
	Jupiter	W.	361021	375615	39 42 17	412911
	Mars	E.	205735	191623	173519	$\begin{array}{llll}15 & 54 & 32\end{array}$
	Sun	E.	623657	605620	591530	573427
27			792715	811645	$83 \quad 6 \quad 26$	845616
	Saturn	W.	545624	564456	583341	602238
	Jupiter	W.	$\begin{array}{llll}50 & 27 & 4\end{array}$	521526	$54 \quad 4 \quad 2$	555250
	Spica	W.	252543	271450	$\begin{array}{lll}29 & 4 & 12\end{array}$	305348
	Sun	E.	$49 \quad 5 \quad 58$	472342	454115	435840
28	Regulus	W.	$\begin{array}{lll}94 & 7 & 25\end{array}$	$\begin{array}{llll}95 & 57 & 57\end{array}$	974833	$\begin{array}{llll}99 & 39 & 12\end{array}$
	Saturn	W.	692956	711948	$73 \quad 944$	745946
	Jupiter	W.	645925	66499	683858	702851
	Spica	W.	$40 \quad 433$	41556	434545	453629
	Sun	E.	352344	334027	31575	301341

1861.			AT	GREENWICH		MEAN TIME.			1861.		
SEPTIEMBER.			OCTOBER.			NOVEMBER.			DECEMBER.		
Day of the Month.	GEOCB	ntric.	Day of the Month.	grocentric.		Day of the Month.	GEOC	ntric.	Day of the Month.	geocentrio.	
		idian			idian			dian		Meri	dian
		sage.			sage.			age.		Pass	sage.
		${ }_{53} \mathrm{~m} .5$	1		$\mathrm{m}_{6.2}$	1		${ }_{17} \mathrm{~m} .7$	1		$\mathrm{m} .$ $33 \cdot 8$
2		$51 \cdot 9$	2		$4 \cdot 7$	2	22	$16 \cdot 2$	2	21	$32 \cdot 4$
3		$50 \cdot 4$	3		$3 \cdot 1$	3	22	$14 \cdot 7$	3	21	$31 \cdot 0$
4	23	$48 \cdot 8$	4	23	1.5	4	22	$13 \cdot 1$	4	21	$29 \cdot 6$
5		$47 \cdot 2$	5		59•9	5		$11 \cdot 6$	5	21	$28 \cdot 3$
6		$45 \cdot 7$	6		58•3	6		$10 \cdot 1$	6	21	$26 \cdot 9$
7	23	$44 \cdot 1$	7		$56 \cdot 7$	7	22	$8 \cdot 6$	7	21	$25 \cdot 6$
8	23	$42 \cdot 6$	8		$55 \cdot 2$	8	22	$7 \cdot 1$	8	21	$24 \cdot 2$
9		$41 \cdot 0$	9		$53 \cdot 6$	9	22	$5 \cdot 6$	9	21	$22 \cdot 9$
10	23	$39 \cdot 4$	10		$52 \cdot 0$	10	22	$4 \cdot 1$	10		$21 \cdot 5$
11	23	$37 \cdot 9$	11		$50 \cdot 4$	11	22	$2 \cdot 6$	11	21	$20 \cdot 2$
12	23	36-3	12		$48 \cdot 8$	12	22	$1 \cdot 1$	12	21	$18 \cdot 9$
13	23	$34 \cdot 7$	13	22	$47 \cdot 3$	13	21	$59 \cdot 6$	13	21	$17 \cdot 5$
14	23	$33 \cdot 1$	14	22	$45 \cdot 7$	14	21	$58 \cdot 1$	14	21	$16 \cdot 2$
15	23	$31 \cdot 6$	15		44•1	15	21	$56 \cdot 7$	15	21	14*9
16	23	$30 \cdot 0$	16	22	$42 \cdot 5$	16	21	$55 \cdot 2$	16	21	$13 \cdot 6$
17	23	$28 \cdot 4$	17		$41 \cdot 0$	17	21	$53 \cdot 7$	17	21	$12 \cdot 4$
18	23	$26 \cdot 8$	18		$39 \cdot 4$	18	21	$52 \cdot 3$	18	21	$11 \cdot 1$
19	23	$25 \cdot 2$	19		$37 \cdot 8$	19	21	$50 \cdot 8$	19	21	$9 \cdot 8$
20	23	$23 \cdot 7$	20		$36 \cdot 3$	20	21	$49 \cdot 4$	20	21	$8 \cdot 5$
21	23	$22 \cdot 1$	21		$34 \cdot 7$	21	21	$47 \cdot 9$	21	21	$7 \cdot 2$
22	23	$20 \cdot 5$	22	22	$33 \cdot 1$	22	21	$46 \cdot 5$	22	21	$6 \cdot 0$
23	23	$18 \cdot 9$	23	22	$31 \cdot 6$	23	21	$45 \cdot 0$	23	21	$4 \cdot 7$
24	23	17-3	24	22	$30 \cdot 0$	24	21	$43 \cdot 6$	24	21	$3 \cdot 5$
25	23	$15 \cdot 7$	25	22	$28 \cdot 5$	25	21	$42 \cdot 2$	25	21	$2 \cdot 3 *$
26	23	$14 \cdot 2$	26		$26 \cdot 9$	26	21	$40 \cdot 8$	26	21	$1 \cdot 0$
27	23	$12 \cdot 6$	27		$25 \cdot 4$	27	21	$39 \cdot 4$	27	20	$59 \cdot 8$
28	23	$11 \cdot 0$	28		$23 \cdot 8$	28	21	$38 \cdot 0$	28	20	$58 \cdot 6$
29	23	$9 \cdot 4$	29	22	$22 \cdot 3$	29	21	$36 \cdot 6$	29	20	$57 \cdot 4$
30	23	$7 \cdot 8$	30	22	$20 \cdot 7$	30		$35 \cdot 2$	30	20	$56 \cdot 2$
			31		$19 \cdot 2$				31	20	$55 \cdot 0$
31		$6 \cdot 2$	32	22	$17 \cdot 7$	31			32	20	$53 \cdot 8$

						FEBRUARE, 86 \%						
MEAN TIME.						MEAN TIME.						
Day of the Month.	geocentric.					Day of the Month.	GEOCENTRIC.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian		
	Noon.					Noon.	Passage.					
1 2 3	N. 0 13 13	38 40 41	11 45 18 54	h. 15 15 15	m. $\begin{aligned} & 8.8 \\ & 4.6 \\ & 0.4 \end{aligned}$		1 2 3	N. 14 14 14	47 50 53	$\begin{array}{r} 14 \\ 44 \\ 25 \\ 6 \end{array}$	h. 12 12 12	$\begin{aligned} & \mathrm{m} . \\ & 54 \cdot 8 \\ & 50 \cdot 4 \\ & 45 \cdot 9 \end{aligned}$
4	13	43	33	14	$56 \cdot 2$	4	14	55	47	12	$41^{\circ} 5$	
5	13	45	17	14	$52 \cdot 0$	5	14	58	29	12	$37 \cdot 1$	
6	13	47	3		$47 \cdot 8$	6	15	1		12	$32 \cdot 6$	
7	13	48	52	14	$43 \cdot 5$	7	15	3		12	$28 \cdot 2$	
8	13	50	45	14	$39 \cdot 3$	8	15	6		12	$23 \cdot 7$	
9	13	52	41		$35 \cdot 0$	9	15	9		12	$19 \cdot 3$	
10	13	54	40	14	$30 \cdot 8$	10	15	11	58	12	$14 \cdot 8$	
11	13	56	42	14	$26 \cdot 5$	11	15	14	39	12	$10 \cdot 4$	
12	13	58	47		$22 \cdot 2$	12	15	17	19	12	$5 \cdot 9$	
13	14	-	54	14	17.9	13	15	19	58	12	$1 \cdot 5$	
14	14	3	4	14	$13 \cdot 6$	14	15	22	36	11	$57 \cdot 0$	
15	14	5	17	14	$9 \cdot 3$	15	15	25	14	11	$52 \cdot 6$	
16	14	7	32	14	$5 \cdot 0$	16	15	27	50	11	$48 \cdot 1$	
17	14	9	50	14	$0 \cdot 6$	17	15	30	25	11	$43 \cdot 7$	
18	14	12	10	13	$56 \cdot 3$	18	15	32	59	11	$39 \cdot 3$	
19	14	14	32	13	$51 \cdot 9$	19	15	35	31	11	$34 \cdot 8$	
20	14	16	56	13	$47 \cdot 6$	20	15	38	2	11	$30 \cdot 4$	
21	14	19	21	13	$43 \cdot 2$	21	15	40	31	11	$26 \cdot 0$	
22	14	21	49	13	$38 \cdot 8$	22	15	42	59	11	21.6	
23	14	24	19	13	$34 \cdot 5$	23	15	45	24	11	$17 \cdot 1$	
24	14	26	50	13	$30 \cdot 1$	24	15	47	48	11	$12 \cdot 7$	
- 25	14	29	22		. $25 \cdot 7$	25	15	50	10	11	8.3	
26	14	31	56	13	$21 \cdot 3$	26	15	52	30	11	$3 \cdot 9$	
27	14	34	32	13	$16 \cdot 9$	27	15	54	48	10	$59 \cdot 5$	
28	14	37	8		$12 \cdot 5$	28	15	57	3	10	55-1	
29	14	39	46	13	$8 \cdot 1$	29	N. 15	59		10	$50 \cdot 8$	
30	14	42	24	13	$3 \cdot 6$							
31	14	45	4		$59 \cdot 2$							
32	N. 14	47			$54 \cdot 8$							

MARCH, 1861.						APITL, 1861.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geooentric.					Day of the Month.	geooentrio.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage،	
	${ }^{\circ}{ }^{\circ}$	${ }^{\prime}$	${ }^{\prime \prime}$	h.			${ }^{\circ} \mathrm{O}$	43	39	h.	m.
1	N. 15	59		10	$50 \cdot 8$	1	N. 16	43		8	$39 \cdot 2$
2	16	1	27	10	$46 \cdot 4$	2	16	44	12	8	35.2
3	16	3		10	$42 \cdot 0$	3	16	44	40	8	$31 \cdot 1$
4	16	5		10	$37 \cdot 6$	4	16	45	6	8	27•1
5	16	7	45	10	$33 \cdot 3$	5	16	45.	27	8	$23 \cdot 1$
6	16	9	45	10	$28 \cdot 9$	6	16	45	46	8	$19 \cdot 0$
7	16	11	43	10	$24 \cdot 6$	7	16	46	0	8	$15 \cdot 0$
8	16	13	38	10	$20 \cdot 2$	8	16	46	11	8	11.1
9	16	15	31	10	$15 \cdot 9$	9	16	46	19	8	$7 \cdot 1$
10	16	17	20	10	$11 \cdot 6$	10	16	46	23	8	$3 \cdot 1$
11	16	19	6	10	$7 \cdot 3$	11	16	46	24	7	$59 \cdot 2$
12	16	20	49	10	$3 \cdot 0$	12	16	46	21	7	$55 \cdot 2$
13	16	22	29	9	58.7	13	16	46	14	7	$51 \cdot 3$
14	16	24	6	9	$54 \cdot 4$	14	16	46	4	7	47•4
15	16	25	40	9	$50 \cdot 2$	15	16	45	51	7	$43 \cdot 5$
16	16	27	11	9	$45 \cdot 9$	16	16	45	34	7	$39 \cdot 6$
17	16	28	38	9	$41 \cdot 7$	17	16	45	14	7	$35 \cdot 7$
18	16	30	2	9	$37 \cdot 4$	18	16	44	50	7	$31 \cdot 8$
19	16	31	22	9	$33 \cdot 2$	19	16	44	23	7	$28 \cdot 0$
20	16	32	40	9	$29 \cdot 0$	20	16	43	52	7	$24 \cdot 1$
21	16	33	54	9	$24 \cdot 8$	21	16	43	18	7	$20 \cdot 3$
22	16	35	4	9	$20 \cdot 6$	22	16	42	41	7	16:5
23	16	36	11	9	$16 \cdot 4$	23	16	42	0	7	$12 \cdot 7$
24	16	37	15	9	$12 \cdot 2$	24	16	41	16	7	$8 \cdot 9$
25	16	38	15	9	8.0	25	16	40	29	7	$5 \cdot 1$
26	16	39	12	9	$3 \cdot 9$	26	16	39	39	7	$1 \cdot 3$
27	16	40	5	8	59.8	27	16	38	45	6	$57 \cdot 5$
28	16	40	55	8	$55 \cdot 6$	28	16			6	53.8
29	16	41	41	8	$51 \cdot 5$	29	16			6	$50 \cdot 0$
30	16	42	24	8	$47 \cdot 4$	30	16	35		6	$46 \cdot 3$
31	16			8	$43 \cdot 3$	31	N. 16	34		6	$42 \cdot 6$
32	N. 16	43			$39 \cdot 2$						

MAY, 1861.						JUNE, 1861.						
mean time.						mean time.						
Day of the Month.	geocentric.					Day of the Month.	grocentric.					
	Apparent Declination.			Meridian Passage.			Apparent Declination.			Meridian		
	Noon.					Noom.	Passage.					
1	N. 16	34	31		$\frac{\mathrm{m}}{42 \cdot 6}$		1	N. 15	35	47	h.	${ }_{52 \cdot}{ }_{5}$
2	16	33	29	6	$38 \cdot 9$	2	-15	33	9	4	$49 \cdot 0$	
3	16	32	16	6	$35 \cdot 2$	3	15	30	30	4	$45 \cdot 6$	
4	16	31	0	6	$31 \cdot 5$	4	15	27	47	4	$42 \cdot 2$	
5	16	29	41	6	$27 \cdot 9$	5	15	25	2	4	$38 \cdot 8$	
6	16	28	19	6	$24 \cdot 2$	6	15	22	15	4	$35 \cdot 4$	
7	16	26	53	6	$20 \cdot 5$	7	15	19	25	4	$32 \cdot 0$	
8	16	25	25	6	$16 \cdot 9$	8	15	16	33	4	$28 \cdot 7$	
9	16	23	54	6	$13 \cdot 3$	9	15	13	39	4	$25 \cdot 3$	
10	16	22	19	6	$9 \cdot 7$	10	15	10	42	4	$21 \cdot 9$	
11	16	20	42	6	$6 \cdot 0$	11	15	7	43	4	$18 \cdot 6$	
12	16	19	1	6	$2 \cdot 4$	12	15	4	41	4	$15 \cdot 2$	
13	16	17	18	5	$58 \cdot 8$	13	15	1	38	4	$11 \cdot 9$	
14	16	15	32	5	55-3	14	14	58	32	4	$8 \cdot 6$	
15	16	13	43	5	$51 \cdot 7$	15	14	55	24	4	$5 \cdot 3$	
16	16	11	51	5	$48 \cdot 1$	16	14	52	13	4	$1 \cdot 9$	
17	16	9	56	5	$44 \cdot 6$	17	14	49	1	3	$58 \cdot 6$	
18	16	7	58	5	$41 \cdot 0$	18	14	45	46	3	$55 \cdot 3$	
19	16	5	57	5	$37 \cdot 5$	19	14	42	30	3	$52 \cdot 0$	
20	16	3	54	5	$34 \cdot 0$	20	14	39	11	3	$48 \cdot 7$	
21	16	1	48	5	$30 \cdot 5$	21	14	35	50	3	$45 \cdot 5$	
22	15	59	39	5	$27 \cdot 0$	22	14	32	27	3	$42 \cdot 2$	
23	15	57	28	5	$23 \cdot 5$	23	14	29	2	3	$38 \cdot 9$	
24	15	55	14	5	$20 \cdot 0$	24	14	25	35	3	$35 \cdot 6$	
25	15	52	57	5	16.5	25	14	22	6		$32 \cdot 4$	
26	15	50	38	5	$13 \cdot 1$	26	14	18.	35	3	$29 \cdot 1$	
27	15	48	16	5	$9 \cdot 6$	27	14	15	2	3	$25 \cdot 8$	
28	15	45	51	5	$6 \cdot 2$	28	14	11	27	3	$22 \cdot 6$	
29	15	43	24	5	$2 \cdot 7$	29	14	7	50	3	$19 \cdot 3$	
30	15	40	54	4	$59 \cdot 3$	30	14	4	11	3	$16 \cdot 1$	
31	15	38	22		$55 \cdot 8$							
32	N. 15	35	47		$52 \cdot 4$	31	N. 14	0	31	3	$12 \cdot 9$	

JUKY, $\mathbf{1} 86 \mathrm{~L}$						AUGUST, 1861.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	GEOCENTRIC.					Day of the Month.	GEOCENTRIC.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1	N. 14	0	31		m. 12.9	1	N. 11	53			m.
2	N. 14 13	56			12.6	2	N. 11	48	36		31.1
3	13	53	4	3	$6 \cdot 4$	3	11	44	7		28.0
4	13	49	18	3	$3 \cdot 2$	4		39	36		$24 \cdot 8$
5	13	45	30	3	$0 \cdot 0$	5	11	35	4		$21 \cdot 7$
6		41	40	2	$56 \cdot 7$	6	11	30	32		$18 \cdot 6$
7	13	37	49	2	$53 \cdot 5$	7	11	25	58		$15 \cdot 4$
8	13	33	55	2	$50 \cdot 3$	8	11	21	23		$12 \cdot 3$
9	13	30	0	2	$47 \cdot 1$	9	11	16	47	1	$9 \cdot 2$
10	13	26	4	2	$43 \cdot 9$	10	11	12	11	1	$6 \cdot 1$
11	13	22	5	2	$40 \cdot 7$	- 11	11	7	33	1	$2 \cdot 9$
12	13	18	6	2	$37 \cdot 5$	12	11	2	55		$59 \cdot 8$
13	13	14	4	2	$34 \cdot 3$	13	10	58	16		$56 \cdot 7$
14	13	10	1	2	$31 \cdot 2$	14	10	53	36		$53 \cdot 6$
15	13	5	56	2	$28 \cdot 0$	15	10	48	56		$50 \cdot 5$
16	13	1	50	2	24.8	16	10	44	14	0	$47 \cdot 3$
17	12	57	43	2	$21 \cdot 6$	17	10	39	32		$44^{\cdot 2}$
18	12	53	34	2	$18 \cdot 4$	18	10	34	50	0	$41 \cdot 1$
19	12	49	23	2	15.2	19	10	30	6	0	$38 \cdot 0$
20	12	45	11	2	$12 \cdot 1$	20	10	25	22		$34 \cdot 9$
21	12	40	58	2	$8 \cdot 9$	21	10	20	37		$31 \cdot 7$
22	12	36	43	2	$5 \cdot 8$	22	10	15	52	0	$28 \cdot 6$
23	12	32	27	2	$2 \cdot 6$	23	10	11	6	0	$25 \cdot 5$
24	12	28	10	1	$59 \cdot 4$	24	10	6	20	0	$22 \cdot 4$
25	12	23	51	1	$56 \cdot 3$	25	10	1	33	0	$19 \cdot 3$
26	12	19	31	1	$53 \cdot 1$	26	9	56	46	0	$16 \cdot 1$
27	12	15	10	1	$50 \cdot 0$	27	9	51	58	0	$13 \cdot 0$
28	12	10	47	1	46.8	28	9	47	10	0	$9 \cdot 9$
29	12	6	24	1	$43 \cdot 7$	29	9	42	22	0	$6 \cdot 8$
30	12	1	59	1	$40 \cdot 5$	30	9	37		0	$3 \cdot 7$ $0 \cdot 6\}$
31	11	57	32	1	37.4	31	9			$\left\{{ }^{0}\right.$	${ }_{57} \mathbf{0} \cdot 6.8$
32	N. 11	53	5	1	34*3	32	N. 9	27			$54 \cdot 3$

SEPTHMEERES61.						OCTOEELE, 1861.					
MEAN TIME.						MEAN TIME.					
Day of the Month.	geocentric.					Day of the Month.	geocentric.				
	Apparent Declination.			Meridian			Apparent Declination.			Meridian	
	Noon.			Passage.			Noon.			Passage.	
1 2 3	N. $\begin{array}{r}\circ \\ 9 \\ 9 \\ 9\end{array}$	17 23 18		h. 23 23 23	$\begin{aligned} & \mathrm{m} . \\ & 54 \cdot 3 \\ & 51 \cdot 2 \\ & 48 \cdot 1 \end{aligned}$	1 2 3	N. $\begin{array}{r}7 \\ 7 \\ 6 \\ 6\end{array}$	1 3 58 54	$\prime \prime$ 38 56 15	h. 22 22 22	$\begin{aligned} & \mathrm{m} . \\ & 20 \cdot 2 \\ & 17 \cdot 1 \\ & 13 \cdot 9 \end{aligned}$
4	9	13	24	23	45.0	4	6	49	35	22	10.7
5	9	8	33	23	41.9	5	6	44	55	22	$7 \cdot 6$
6	9	3		23	$38 \cdot 7$	6	6	40		22	$4 \cdot 4$
7	8	58	52	23	$35 \cdot 6$	7	6	35	39	22	$1 \cdot 2$
8	8	54	2	23	$32 \cdot 5$	8	6	31	3	21	$58 \cdot 0$
9	8	49	11	23	$29 \cdot 4$	9	6	26	27	21	$54 \cdot 8$
10	8	44	20	23	$26 \cdot 2$	10	6	21	53	21	51.6
11	8	39	30	23	$23 \cdot 1$	11	6	17	20	21	$48 \cdot 4$
12	8	34	39	23	$20 \cdot 0$	12	6	12	48	21	$45 \cdot 3$
13	8	29	49	23	16.9	13	6	8	17	21	$42 \cdot 1$
14	8	24	59	23	$13 \cdot 7$	14	6	3	48	21	$38 \cdot 8$
15	8	20	9		$10 \cdot 6$	15	5	59	19	21	$35 \cdot 6$
16	8	15	19	23	$7 \cdot 5$	16	5	54	52	21	$32 \cdot 4$
17	8	10	29	23	$4 \cdot 4$	17	5	50	27	21	$29 \cdot 2$
18	8	5	40	23	$1 \cdot 2$	18	5	46	3	21	$26 \cdot 0$
19	8	0	51	22	58.1	19	5	41	40	21	$22 \cdot 8$
20	7	56	2	22	$54 \cdot 9$	20	5	37	19	21	$19 \cdot 6$
21	7	51	14	22	$51 \cdot 8$	21	5	32	59	21	16.3
22	7	46	26	22	$48 \cdot 6$	22	5	28	41	21	$13 \cdot 1$
23	7	41	39	22	$45 \cdot 5$	23	5	24	25	21	$9 \cdot 8$
24	7	36	52	22	$42 \cdot 3$	24	5	20	10	21	$6 \cdot 6$
25	7	32	5	22	$39 \cdot 2$	25	5	15	56	21	3.3
26	7	27	19	22	$36 \cdot 0$	26	5	11	45	21	$0 \cdot 1$
27	7	22	33	22	$32 \cdot 9$	27	5	7	35	20	$56 \cdot 8$
28	7	17	49	22	$29 \cdot 7$	28	5	3	27	20	$53 \cdot 5$
29	7	13	4	22	$26 \cdot 6$	29	4	59	21	20	$50 \cdot 3$
30	7	8	21	22	$23 \cdot 4$	30	4	55	17	20	$47 \cdot 0$
31	N. 7	8			$20 \cdot 2$	31	4		15	20	$43 \cdot 7$
						32	N. 4	47	15	20	$40 \cdot 4$

NOVEMEER, 1861.						DECEMEER, 1861.						
mean time.						mean time.						
Day of the Month.	geocentric.					Day of the Month:	geocentric.					
	Apparent Declinatinn.			Meridian Passage.			Apparent Declination.			Meridian		
	Noon.					Noon.	Passage. .					
1	N. ${ }^{\circ}$	47	15		$\begin{aligned} & \mathrm{m} . \\ & 40 \cdot 4 \end{aligned}$		1	N. ${ }^{3}$	6	${ }_{30}^{11}$	h. 18	$m_{58 \cdot 9}$
2	4	43	17	20	$37 \cdot 1$	2	3	3	55	18	$55 \cdot 4$	
3	4	39	21	20	$33 \cdot 9$	3	3	1	23	18	$51 \cdot 9$	
4	4	35	27	20	$30 \cdot 6$	4	2	58	55	18	$48 \cdot 4$	
5	4	31	35	20	$27 \cdot 3$	5	2	56	30	18	$44 \cdot 8$	
6	4	27	46	20	$24 \cdot 0$	6	2	54	9	18	41-3	
7	4	23	59	20	$20 \cdot 6$	7	2	51	61	18	$37 \cdot 7$	
8	4	20	14	20	$17 \cdot 3$		2	49	38	18	$34 \cdot 2$	
9	4	16	32	20	$14 \cdot 0$	9	2	47	27	18	$30 \cdot 6$	
10	4	1.2	52	20	$10 \cdot 6$	10	2	45	21	18	$27 \cdot 0$	
11	4	9	. 15	20	$7 \cdot 3$	11	2	43	19	18	$23 \cdot 5$	
12	4	5	40	20	$3 \cdot 9$	12	2	41	20	18	$19 \cdot 9$	
13	4	2	7	20	0.5	13	2	39	25	18	$16 \cdot 3$	
14	3	58	37	19	57.2	14	2	37	34	18	$12 \cdot 6$	
15	3	55	10	19	$53 \cdot 8$	15	2	35	47	18	$9 \cdot 0$	
16	3	51	46	19	$50 \cdot 4$	16	2	34	4	18	$5 \cdot 4$	
17	3	48	24	19	$47 \cdot 0$	17	2	32	25	18	$1 \cdot 7$	
18	3	45	5	19	$43 \cdot 7$	18	2	30	50	17	58.1	
19	3	41	49	19	$40 \cdot 3$	19	2	29	19	17	54.4	
20	3	38	36	19	$36 \cdot 8$	20	2	27	52	17	$50 \cdot 7$	
21		35	25		$33 \cdot 4$	21	2	26	29	17	$47 \cdot 1$	
22	3	32	17	19	30.0	22	2	25	11	17	$43 \cdot 4$	
23	3	29	13	19	$26 \cdot 6$	23	2	23	57	17	$39 \cdot 7$	
24	3	26	11		$23 \cdot 1$	24	2	22	47	17	36.0	
25	3	23	13	19	$19 \cdot 7$	25	2	21	41	17	32-2	
26	3	20	18	19	$16 \cdot 3$	26	2	20	40	17	$28 \cdot 5$	
2 \%	3	17	26	19	$12 \cdot 8$	27	2	19	43	17	$24 \cdot 7$	
28		14	37	19	$9 \cdot 3$	28	2	18	50	17	21.0	
29	3	11	51	19	$5 \cdot 9$	29	2	18	2	17	17.2	
30		9	9	19	$2 \cdot 4$	30	2	17	19	17	$13 \cdot 4$	
						31	2	16		17	$9 \cdot 6$	
31	N. 3	6			58.9	32	N. 2	16	5	17	5•8	

1861.

AT GREENWICH MEAN TIME.
1861.

SEPTEMEER.			OCTOEPER.			NOVEMEERE.			DECEMERER.		
Day of the Month.	GEOCENTRTC.		Day of the Month.	geocentrio.		Day of the Month.	GEOcentric.		Day of the Month.	GEOCENTRIC.	
	Meridian Passage.			Meridian Passage.			Meridian Passage.			Meridian - Passage.	
1		m. $15 \cdot 1$	1		$\mathrm{m}_{27 \cdot 5}$	1		$\begin{aligned} & \mathrm{m} . \\ & 38 \cdot 2 \end{aligned}$	1	h.	$\frac{\mathrm{m}}{48 \cdot 7}$
2	0	11.7	2		$24 \cdot 0$	2	20	$34 \cdot 6$	2	18	$45 \cdot 0$
3	0	$8 \cdot 2$	3		$20 \cdot 5$	3	. 20	$31 \cdot 0$	3	18	$41 \cdot 3$
4	0	$4 \cdot 7$	4		$17 \cdot 0$	4	20	$27 \cdot 4$	4	18	37.5
5	$\left\{{ }_{23}^{0}\right.$	${ }_{57}^{1 \cdot 3} 8$	5		$13 \cdot 5$	5	20	$23 \cdot 8$	5	18	33-8
6	23	$54 \cdot 3$	6		$10 \cdot 0$	6	20	$20 \cdot 2$	6	18	$30 \cdot 0$
7	23	$50 \cdot 9$	7		$6 \cdot 6$	7	20	$16 \cdot 6$	7	18	$26 \cdot 3$
8	23	47-4	8	22	3•1	8	20	$13 \cdot 0$	8	18	$22 \cdot 5$
9	23	$43 \cdot 9$	9		$59 \cdot 6$	9	20	$9 \cdot 4$	9	18	$18 \cdot 7$
10	23	$40 \cdot 5$	10	21	$56 \cdot 0$	10	20	$5 \cdot 8$	10	18	15.0
11	23	$37 \cdot 0$	11	21	$52 \cdot 5$	11	20	$2 \cdot 2$	11	18	$11 \cdot 2$
12	23	$33 \cdot 5$	12	21	$49 \cdot 0$	12	19	$58 \cdot 6$	12	18	$7 \cdot 4$
13	23	$30 \cdot 1$	13	21	$45 \cdot 5$	13	19	$54 \cdot 9$	13	18	$3 \cdot 6$
14	23	$26 \cdot 6$	14	21	$42 \cdot 0$	14	19	$51 \cdot 3$	14	17	$59 \cdot 8$
15	23	$23 \cdot 2$	15	21	$38 \cdot 5$	15	19	$47 \cdot 7$	15	17	$56 \cdot 0$
16	23	$19 \cdot 7$	16	21	$35 \cdot 0$	16	19	$44 \cdot 0$	16	17	52:2
17	23	$16 \cdot 2$	17	21	$31 \cdot 4$	17	19	$40 \cdot 4$	17	17	$48 \cdot 4$
18		$12 \cdot 7$	18	21	$27 \cdot 9$	18	19	$36 \cdot 7$	18	17	$44 \cdot 5$
19	23	$9 \cdot 3$	19	21	$24 \cdot 4$	19	19	$33 \cdot 1$	19	17	$40 \cdot 7$
20	23	$5 \cdot 8$	20	21	$20 \cdot 8$	20	19	$29 \cdot 4$	20	17	$36 \cdot 9$
21	23	$2 \cdot 3$	21	21	$17 \cdot 3$	21	19	$25 \cdot 7$	21	17	$33 \cdot 0$
22	22	$58 \cdot 9$	22	21	$13 \cdot 8$	22	19	$22 \cdot 1$	22	17	$29 \cdot 1$
23	22	$55 \cdot 4$	23	21	$10 \cdot 2$	23	19	$18 \cdot 4$	23	17	$25 \cdot 3$
24	22	$51 \cdot 9$	24	21	$6 \cdot 7$	24	19	$14 \cdot 7$	24	17	$21 \cdot 4$
25	22	$48 \cdot 4$	25	21	$3 \cdot 1$	25	19	$11 \cdot 0$	25	17	$17 \cdot 5$
26	22	$44 \cdot 9$	26	20	$59 \cdot 6$	26	19	$7 \cdot 3$	26	17	$13 \cdot 6$
27	22	$41 \cdot 5$	27	20	$56 \cdot 0$	27	19	$3 \cdot 6$	27	17	$9 \cdot 8$
28	22	$38 \cdot 0$	28	20	$52 \cdot 4$	28	18	$59 \cdot 9$	28	17	$5 \cdot 9$
29	22	$34 \cdot 5$	29	20	$48 \cdot 9$	29	18	$56 \cdot 2$	29	17	$2 \cdot 0$
30	22	$31 \cdot 0$	30	20	$45 \cdot 3$	30	18	$52 \cdot 5$	30	16	$58 \cdot 0$
			31		$41 \cdot 7$				31	16	$54 \cdot 1$
31		$27 \cdot 5$	32	20	$38 \cdot 2$	31		$48 \cdot 7$	32	16	$50 \cdot 2$

LATITUDES AND LONGITUDES 0F PUBLIC OBSERVATORIES.

$$
{ }^{*}{ }^{*} \text { The Longitudes are reckoned from the Meridian of Greenwich. }
$$

Altona Lat. $53^{\circ} 32^{\prime} 45^{\prime \prime} \cdot 3$ N. Gauss on the Latitudes of Göttingen and Altona, page 71. (Göttingen, 1828.)
Long. $0^{\mathrm{h}} 39^{\mathrm{m}} 46^{\mathrm{s}} \cdot 14 \mathrm{E}$. Exppédition Chronométrique exécutée entre Altona et Greenwich, \&cc. (St. Petersburg, 1845.)

Athens Lat. $37^{\circ} 58^{\prime} 20^{\prime \prime}$ N. Ast. Nach. vol. xxxiii. page 197.
Long. $1^{\mathrm{h}} 34^{\mathrm{m}} 55^{\mathrm{s}} \cdot 7 \mathrm{E}$. Ergänzungs-Heft zu den Ast. Nach. 1849, page 151.
Berlin Lat. $52^{\circ} 30^{\prime} 16^{\prime \prime \cdot} 7$ N. $\}$ Berliner Astron. Jahrbuch, 1852, page . Long. $0^{\text {b }} 53^{\mathrm{m}} 35^{\mathrm{a}} \cdot 5$ E. $\} \quad 289$.

Bilk
$\left.\begin{array}{llll}\text { Lat. } \quad 51^{\circ} 12^{\prime} & 25^{\prime \prime} & \text { N. } \\ \text { Long. } 0^{\mathrm{h}} & 27^{\mathrm{m}} & 5^{\mathrm{s}} \cdot 5 & \mathrm{E} .\end{array}\right\}$ Ast. Nach. vol. xxvii. page 300.
Bonn $\left.\begin{array}{llll}\text { Lat. } 50^{\circ} 44^{\prime} & 9^{\prime \prime} \cdot 1 & \mathrm{~N} . \\ \text { Long. } 0^{\text {b }} 28^{\mathrm{m}} & 27^{s} \cdot 0 & \mathrm{E} .\end{array}\right\}$ Ast. Nach. vol. xviii. page 135.

Breslau Lat. $51^{\circ} 6^{\prime} 56^{\prime \prime} \cdot 0$ N. $\}^{\prime}$ Berliner Astron. Jahrbuch, 1852, page Long. $1^{\text {b }} 8^{\mathrm{m}} 10^{\circ} \cdot 0$ E. $\} \quad 289$.

Bressels . . . Lat. $50^{\circ} 51^{\prime} 10^{\prime \prime} \cdot 7$ N. Annuaire de C^{\prime} Observatoire de Bruxelles, pour $l^{\prime} A n 1837$, pages 264 and 265. Long. $0^{\mathrm{h}} 17^{\mathrm{m}} 28^{\mathrm{b}} \cdot 90 \mathrm{E}$. Communicated by G. B. Airy, Esq.

Buda
(Ofen.) ${ }_{\text {Lat. }}{ }^{\circ} 27^{\prime} 29^{\prime} 12^{\prime \prime} .2$ N. Mem. Ast. Soc. vol. i. page 280. Long. $1^{\mathrm{h}} 16^{\mathrm{m}} 12^{\circ} \cdot 7$ E. Zach's Corresp. Astron. vol. vii. p. 263.
Cambridge Lat. $52^{\circ} 12^{\prime} 51^{\prime \prime} \cdot 8$ N. Camb. Phil. Trans. vol. v. p. 279. Long. $0^{\mathrm{h}} \quad 0^{\mathrm{m}} 23^{\mathrm{s}} \cdot 54 \mathrm{E}$. Camb. Phil. Trans. vol. iii. p. 168.
Cambridge, U. S. . . Lat. $42^{\circ} 22^{\prime} 49^{\prime \prime}$ N. $\}$ Monthly Notices of the Royal Ast. Soc. Long. $4^{\text {b }} 44^{\mathrm{m}} 32^{\text {a }} \quad$ W. $\} \quad$ vol. vii. p. 157.
Cape of Goon Hope . Lat. $33^{\circ} 56^{\prime} 3^{\prime \prime}$ S. Mem. Roy. Ast. Soc. vol. vi. p. 130. Long. $1^{\mathrm{h}} 13^{\mathrm{m}} 55^{\mathrm{a}} \cdot 0$ E. Communicated by Mr. Henderson.
Christiania . . . Lat. $59^{\circ} 54^{\prime} 42^{\prime \prime} \cdot 4$ N. Ast. Nach. vol. xii. p. 283. Long. $0^{\text {h }} 42^{\mathrm{m}} 53^{\text {® }} \cdot 9$ E. Berliner Astron. Jahrbuch, 1852, p. 289.

Coptninagen (University.)
Lat. $55^{\circ} 40^{\prime} 53^{\prime \prime} \cdot 0$ N. Ast. Nach. vol. v. page 366.
Long. $0^{\mathrm{h}} 50^{\mathrm{m}} 19^{\circ} \cdot 8 \mathrm{E}$. Ast. Nach. vol. xix. page 120.
Cracow Lat. $50^{\circ} 3^{\prime} 50^{\prime \prime} \cdot 0$ N. Ast. Nach. vol. xvi. page 256. Long. $1^{\text {h }} 19^{\mathrm{m}} 51^{\mathrm{g}} \cdot 1$ E. Ast. Nach. vol. xvi. page 352; and vol. xviii. page 392.

Dorpat Lat. $58^{\circ} 22^{\prime}, 47^{\prime \prime} \cdot 1$ N. Struve's Astronom. Observations, vol. vi. page 60.

Long. $1^{\text {h }} 46^{\mathrm{m}} 55^{\mathrm{s}} \cdot 0$ E. Bessel's Tabulce Regiomontanae, p. 2.
Dublin Lat. $\left.\begin{array}{lll}53^{\circ} 23^{\prime} & 13^{\prime \prime} & \mathrm{N} . \\ \text { Long. } \\ 0^{\text {b }} 25^{\mathrm{m}} 22^{\prime \prime} & \mathrm{W} .\end{array}\right\}$ Ast. Nach. vol. x. page 274.
Durham Lat. $\left.54^{\circ} 46^{\prime \prime} \begin{array}{l}6^{\prime \prime} \cdot 2 \mathrm{~N} . \\ \text { Long. } 0^{\mathrm{h}} \\ 6^{\mathrm{m}} 19^{\mathrm{s}} \cdot 75 \mathrm{~W} \text {. }\end{array}\right\}$ Communicated by Prof. Chevallier.
Edinburge Lat. $55^{\circ} 57^{\prime} 23^{\prime \prime} \cdot 2$ N. Ast. Soc. Not. vol. iii. page 201.
Long. $0^{\text {h }} 12^{\mathrm{m}} 43^{a} \cdot 6$ W. Mem. Ast. Soc. vol. iv. page 568.
Geneva Lat. $46^{\circ} 11^{\prime} 59^{\prime \prime} \cdot 4 \mathrm{~N}$. Mémoire sur une nouvelle détermination sur la Latitude de Genève. By M. Gautier. (Genève, 1830.)
Long. $0^{\mathrm{h}} 24^{\mathrm{m}} 37^{\mathrm{t}} \cdot 7 \mathrm{E}$. Ast. Nach. vol. xx. page 7.
Georamtown College, D. C. (U. S.)
Lat. $38^{\circ} 54^{\prime} 26^{\prime \prime} \cdot 1$ N. Annals of the Astronomical Observatory of Georgetown College,D.C. No.I.p. 215.
Long. $5^{\text {h }} 8^{\mathrm{m}} 18^{\mathrm{a}} \cdot 15 \mathrm{~W}$. Do. Do. p.186.
Gotha
$\begin{array}{ll}\text { (Seeberg.) } \\ \text { Lat. } 50^{\circ} & 56^{\prime} \\ 5^{\prime \prime}\end{array}$
N. Gauss on the Latitudes of Göttingen and Altona, p. 80.
Long. $0^{\mathrm{h}} 42^{\mathrm{m}} 56^{\mathrm{s}} \cdot 4 \mathrm{E} . \quad$ Bessel's Tabula Regiomontanoe, p. 2.
Götringen Lat. $51^{\circ} 31^{\prime} 48^{\prime \prime}$ N. Gauss on the Latitudes of Göttingen and
Long. $0^{\mathrm{h}} 39^{\mathrm{m}} 46^{\mathrm{s}} \cdot 5$ E. $\quad \begin{gathered}\text { Altona, p. }{ }^{711} . \\ \text { Bessel's Tabulce Regiomontance, p. } 2 .\end{gathered}$
Greenwich Lat. $51^{\circ} 28^{\prime} 38^{\prime \prime} \cdot 2$ N. Greenwich Observations, 1843, p. lvii. Long. $0^{\text {h }} 0^{\text {mi }} 0^{6}$
Hamburgh Lat. $53^{\circ} 33^{\prime} \quad 5^{\prime \prime} \cdot 0$ N. Ast. Nach. vol. vii. page 379.
Long. $0^{\mathrm{h}} 39^{\mathrm{m}} 54^{\mathrm{A}} \cdot 1 \mathrm{E}$. Berliner Astron. Jahrbuch, 1852, page 289.

Kazan Lat. $55^{\circ} 47^{\prime} 23^{\prime \prime} \cdot 1$ N. Ast. Nach. vol. xxviii. page 47.
Long. $3^{\text {b }} 16^{\mathrm{m}} 26^{8} \cdot 3$ E. Conn. des Temps, 1855, page 376.
Königsberg . . . Lat. $54^{\circ} 42^{\prime} 50^{\prime \prime} \cdot 7$ N. Ast. Nach. vol. xxix. p. 72.
Long. $1^{\mathrm{h}} 22^{\mathrm{m}} 0^{\mathrm{p}} \cdot 5 \mathrm{E} . \quad$ Bessel's Tab. Regiomontanae, p. 2.
Kremsmunster . . Lat. $48^{\circ} 3^{\prime} 23^{\prime \prime} \cdot 8$ N. Ast. Nach. vol. xxxvii. p. 271.
Long. $0^{\mathrm{h}} 56^{\mathrm{m}} 32^{\mathrm{s}} \cdot 8$ E. Ast. Nach. vol. xxxvii. p. 269.
Leipsic Lat. $\left.51^{\circ} 20^{\prime} 20^{\prime \prime} \cdot 1 \mathrm{~N}.\right\}$ Berliner Astron. Jahrbuch, 1852, page
Long. $0^{\text {b }} 49^{\text {m }} 28^{9} \cdot 5$ E. $\} \quad 289$.
Lexden Lat. $52^{\circ} 9^{\prime} 28^{\prime \prime} \cdot 2$ N.
Long. $0^{\mathrm{L}} 17^{\mathrm{m}} 57^{\mathrm{E}} \cdot 5 \mathrm{E}$. $\}$. Ast. Nach. vol. xvii. page 100.
Liverpool Lat. $5324^{\prime} 47^{\prime \prime} \cdot 8$ N. Communicated by J. Hartnup, Esq.
Long. $0^{\mathrm{h}} 12^{\mathrm{m}} 0^{\mathrm{s}} \cdot 11$ W. — G. B. Airy, Esq.

LATITUDES AND LONGTIUDES OF PUBLIC OBSERVATORIES.

latitudes and longitudes of publio observatories.

Prague. Lat. $50^{\circ} 5^{\prime} 18^{\prime \prime} .5$ N. Ast. Nach. vol. viii. p. 198. Long. $0^{\mathrm{h}} 57^{\mathrm{m}} 41^{\mathrm{s}} \cdot 9$ E. Ast. Nach. vol. iii. page 264.

Pulsows Lat. $59^{\circ} 46^{\prime} 18^{\prime \prime} \cdot 7$ N. $)^{\text {Description de l'Observatoire Astron. }}$ Long. $2^{\mathrm{h}} 1^{\mathrm{m}} 18^{\mathrm{a}} \cdot 66 \mathrm{E}$: $\}_{\text {, Central de Poulkova, p. } 290 .}$

Rome (Roman College.)
Lat. $\left.41^{\circ} 53^{\prime} 52^{\prime \prime} \cdot 2^{\prime} \mathrm{N}.\right\}^{(1)}$ Mem. dell' Osserv. dell' Universita Long. $\left.0^{\mathrm{b}} 49^{\mathrm{m}} 54^{\mathrm{s}} \cdot 7 \mathrm{E}.\right\}$ Gregoriana del Collegio Romano, 1851, p. 17

St. Fernando, near Lat. $36^{\circ} 27^{\prime} 45^{\prime \prime}$ N. Zach's Corresp. Astron. vol. xiv. pp. Capiz. Long. $0^{\text {b }} 24^{\mathrm{m}} 49^{\mathrm{s}} \cdot 1 \mathrm{~W}$. Ast. Nach. vol. ix. p. 358.

Stоскногм Lat. $59^{\circ} 20^{\prime} 31^{\prime \prime}, 0$ N. Conn. des Temps, 1840 , page 344. Long. $1^{\mathrm{h}} 12^{\mathrm{m}} 14^{\mathrm{s}} \cdot 8$ E. Ast. Nach. vol. xi. p. 408.

Turin (New Observatory.) \quad Lat. $45^{\circ} 4^{\prime} 6^{\prime \prime}$ N. Communicated by M. Plana to Capt. Long. $\left.0^{\mathrm{h}} 30^{\mathrm{m}} 48^{\mathrm{a}} \cdot 4 \mathrm{E}.\right\} \quad$ B. Hall, R.N.

Upsala Lat. $59^{\circ} 51^{\prime} 50^{\prime \prime} \cdot 0$ N. Conn des Temps, 1840, p. 344. Long. $1^{\text {b }} 10^{\mathrm{m}} 34^{\mathrm{s}} \cdot 8$ E. Ast. Nach. vol. xi. p. 409.
$\nabla_{\text {enice }}$. Lat. $45^{\circ} 25^{\prime} 49^{\prime \prime} \cdot 5$ N. $\}$ Berliner Astron. Jaihrbuch, 1852, page Long. $\left.0^{\text {b }} 49^{\mathrm{m}} 25^{\mathrm{s}} \cdot 4 \mathrm{E}.\right\} \quad 290$.

Vienna Lat. $48^{\circ} 12^{\prime} 35^{\prime \prime}$ N. Littrow's Astronomical Observations, Part viii. p. 124.
Long. $1^{\text {b }} \quad 5^{\mathrm{m}} 31^{\mathrm{s}} \cdot 9$ E. Ast. Nach. vol. iii. p. 64.
 Long. $1^{\text {b }} 24^{\mathrm{m}} \quad 8^{\circ} \cdot 5$ E. $\} \quad$ pp. 30, 31.

Washington . . . (National Observatory.)
Lat. $38^{\circ} 53^{\prime} 38^{\prime \prime} \cdot 6$ N. $\}$ Roy. Ast. Soc. Monthly Notices, vol. x. Long. $5^{\mathrm{h}} 8^{\mathrm{m}} 12^{\mathrm{s}} \cdot 0 \mathrm{~W}$. $\}$ page 180.

Wilna Lat. $54^{\circ} 41^{\prime} 0^{\prime \prime}$. N. Ast. Nach. vol. iv. page 562. Long. $1^{\mathrm{h}} 41^{\mathrm{m}} 11^{\mathrm{s}} \cdot 9 \mathrm{E}$. Ast. Nach. vol. viii. p. 96.

LATITUDES AND LONGITUDES OF PRIVATE OBSERVATORIES.

DIRECTIONS

FOR DEFINING THE POSITION OF SOME OF THE FIXED STARS and CONSTELLATIONS,

 1FOR THE
PURPOSES OF LATITUDE AND LONGITUDE.

Ursa Major, the Great Bear, is the most eonspicuous Northern Constellation. There are seven bright stars in it between the first and third magnitndes. The two stars in the body most distant from the tail, are usually called the Pointers, from their pointing to the Pole Star, whieh is distant 29°. About 46° south from the Pole Star, and about 48° west of the northern pointer, bearing a little to the south, is Capella, and a line from the Pole Star through Capella will pass through Rigtl, which is distant from Capolla 54°. A line running S . W. from Capella will pass through the Pleiades, at the distance of about 28°, and nearly through Menkar, whieh is 23° distant from that nebulous eluster. About $7 \frac{1}{2}^{\circ}$ E. b. S. from Capella is β Auriga, and nearly S. E. b. E., in a line between Benetnasch (the star in the point of the tail of the Great Bear) and Deneb (in the tail of the Lion), is Cor Caroli, distant from the latter 28°, and from the former $14 \frac{1}{2}^{\circ}$; a line S. W. from Cor Caroli will nearly pass through Arcturus, at the distanee of 25°. About $19^{\circ} \mathrm{E}$. N. E. of Arcturus is Alphacca, the brightest star in the Northern Crown. A line from Arcturus, through the northern part of the Crown, will point out Vega in Lyra, at the distance of 59°. E. N. E. of $V_{e g a}$ is a Cygnï; these two latter stars, with the bright star a Aquiloe, or Altair in the Eagle, form a long triangle. The middle bright star is Altair or a Aquilo, which is distant from Vega $34 \frac{1}{2}^{\circ}$, and from a Cygni $37 \frac{1}{2}^{\circ}$. From a Cygni, in a N. E. direction, and at the distance of 33°, is β Cassiopeia, and sonthward of both stars, nearly at the same distance from both, is Scheat, in Pegasus; these three stars forming a large triangle in the heavens. A little to the south of Scheat is Markab, or a Pegasi, in the constellation Pegasus; the four bright stars, Scheat, Algenib, Alpheratz, and Markab, which is the most southerly, forming nearly a square. Cassiopcia is a remarkable constellation, five bright stars in it forming a kind of W, nearly at the same distance from the Pole Star as the Great Bear on the opposite side.

A line from β Cassiopeia, and passing a Cassiopeia or Schedir, distant 5°, and forming the most sonthern angle of the W, and throngh Almaach, distant from Schedir $19 \frac{1}{2}^{\circ}$, will lead to the little nebulons cluster Mnsca. About $13^{\circ} \mathrm{W} . \mathrm{S}$. W. of Almaach is Mirach, both in Andromeda; nearly E. from Almaach, at the distanee of 12°, is Algol. N. N. E. of Algol, at $9 \frac{1}{2}^{\circ}$ distance, is Algenib; a line from Algenib through Algol will interseet Musca; Algenib, Musca, and the Pleiades, which are a little to the E. of Musca, will form a long triangle.

Flxed Stars in or near the Zodiac.

Nearly S. E. b. E. from the Pleiades, at the distance of 14°, is the bright red-looking star Aldebaran, in the constellation Taurus; the large star on the left is Aldebaran. 16° in a S. E. direction from this star is the beautiful constellation Orion. The two principal stars in Orion's shoulders are Bellatrix, which is 16° from Aldebaran, and

Betelgeux, which is $7 \frac{1}{2}^{\circ}$ from Bellatrix. In a S. W. direction, at 10° distance, are three stars of the second magnitude, nearly in a line with each other, called Orion's Belt; a line from Betelgeux through the middle star in the belt, will pass close to Rigel, which is 19° distant from Betelgeux. A line S. E. through the three stars in the belt, will cross Sirius, the Dog Star, one of the most brilliant in the heavens; at 23° distance from the centre star in the belt, N. E. of Sirius, at the distance of 23°, is Procyon. Sirius, Procyon, and Betelgeux form an equilateral triangle, and the two first being of the first magnitude, are easily recognized. A line from Pracyan nearly N. will intersect Pollux, distant 222°; and 5° N. W. of Pallux is Castor. As you look N. W. is Castor on the left, and Pollux on the right. 37° E. b. N. from Procyon is Regulus, in the constellation Leo; the large star on the left is Regulus, and that on the right is Deneb. A line from Pracyon through Regulus will pass through Deneb, or β Leonis, and nearly in the same line is Arcturus, 35° from Deneb; S. E. 35° from Deneb is Spica, in the constellation Virgo; the great star on the right hand is Spica; this bright star, Arcturus, and Deneb, are nearly equidistant from each other, and form a large triangle. A line from Regulus through Spica will pass to the sonth of Antares, distant from the latter $45 \frac{1}{2}^{\circ}$. Antares is the largest star in the constellation Scorpio, which appears in the heavens under this figure. About 14° N. E. b. E. from a Aquiloe, already mentioned, is the constellation ${ }^{*}$ Delphinus, known by four bright stars close together.

Nearly S. E. from a Aquile, and at the distance of $58 \frac{1}{2}^{\circ}$, is Fomalhaut, in the constellation called Pisces, or the Sonthern Fish. A line from a Aquiloe through Delphinus will nearly cross Scheat, at the distance of $481^{\circ} .13^{\circ} \mathrm{S}$. from Scheat is Markab; 14° due E. from Scheat is Alpheratz; and nearly directly S. of Alpheratz, distant 14°, is Algenib; these four bright stars forming nearly a square. Nearly in a line between Menkar and Pleiades is Arietis, in the constellation Aries.

Southern Fixed Stars.

A line from Aldebaran through Rigel will nearly cross a Colombor, distant from the latter $26 \frac{1}{2}^{\circ}$, and, carried a little further, will pass Canopus, distant from Rigel 46°. Canopus is likewise nearly S. of Sirius, at the distance of $36 \frac{1}{2}^{\circ}$. A line from Betelgeux through Sirius, at 73° distance from the latter star, is the beautiful Southern Cross, consisting of four bright stars, and well known to all who have navigated to the south. $10^{\circ} \mathrm{E}$. from the centre of the Cross is β Centauri, and a few degrees further E. is a Centauri, both stars of the first magnitnde, and easily mistaken for one another. To the E. of a Centauri, at the distance of about 42°, is Pavo, in the constellation Pavo; and about $40^{\circ} \mathrm{E}$. of Pavo is Achernar.

As the earth, besides its annual revolution around the sun, makes a daily rotation upon its axis, the same alteration in the aspect of the heavens which may be observed in the period of a year, also takes place in the course of every twenty-four hours.

The Planets.

The planets for obtaining the Latitude and Longitude are easily distinguished from the fixed stars by their steady light, as they never, like the latter, twinkle, except when near the horizon. Mars may be known by ruddy complexion; Jupiter commonly appearing larger and refulgent; Saturn of a pale cast and feeble light, and sometimes resembling a star of the first or second magnitude.
Stars in distance for Lunar observations, will be perpendicular with the moon's horns, and their names can be ascertained by the lunar distances in our Almanac W. standing for west, and E. for east-then those stars or planets marked W. (for the day of the month you are on) are to the west of the moon, and those with an E. to the east.
Pegasi, Aldebaran, Pollux, Regulus, Fomalhaut, and Arietis are Lunar Stars.

DEFINITIONS.

The Horzoon.-The visible horizon is that which is seen while the eye is elevated above the surface; and the sensible is that which is seen when the eye is on a level with the water. The depression of the former below the latter is called the dip of the visible horizon.

Terrestrial and Celestial Equators.-The Terrestrial Equator is a great circle supposed to be described around the earth, at an equal distance, or 90 degrees from the poles, dividing the globe into two equal parts; the part to the southward of the equator being called the southern hemisphere, and that to the northward the northern hemisphere.

The Celestial Equator, commonly called the Equinoctial, is an imaginary circle described in the heavens, corresponding to and coinciding with the sun's equator and poles.

Declination of a Celestial Object.-The declination of any celestial object is its distance north or south from the Equator, and is measured by that portion of the celestial meridian which is intercepted between the center of the object and the equator.

Zenith and Nudir.-The Zenith is that point in the heavens which is directly over the observer's head; and the Nadir that which is opposite to it-under his feet.

Vertical Circles.-Vertical Circles are circles supposed to be described in the heavens perpendicular to the horizon, and meeting at the Zenith. They are sometimes called circles of altitudes, circles of azimuths, and prime vertical circles.
Altitudes.-The Altitude of an object is that portion of a vertical circle which is intercepted between the center of the celestial object and the horizon.

Zenith Distance.-The Zenith Distance of a celestial object is equal to that portion of the vertical circle which is intercepted between the center of the object and the observer's zenith. It is always equal to the complement of the altitude, or 90 degrees.

Azimuths.-The Azimuth of an object is its true bearing, east or west, of its nearest meridian. It is always equal to that portion of the horizon which is intercepted between the vertical circle passing through the center of the object and the meridian of the place of observatien.

Prime Vertical Circle.-The Prime Vertical Circle is the circle which passes from the zenith due east or west, having 90 degrees of the horizon intercepted betweeu it and the meridian. All objects on this circle are said to be on the prime vertical.

Tropics.-The Tropics are two circles supposed to be described parallel to the equator, at the distance of about $23^{\circ} 27^{\prime} 30^{\prime \prime}$, equal to the bighest declination. The northernmost is called the Tropic of Cancer, and the southern the Tropic of Capricorn, or the sun's north and south hemispleres.

Right Ascension.-The Right Ascension of a celestial body is that portion of the equinoctial which is intercepted by a celestial meridian passing through the center of the body and the first point of the ecliptic. It is generally given in time.

Right Ascension of the Meridian.-The Right Ascension of the Meridian is that part of the equinoctial that comes to the meridian with the object, measured from the first point of Aries.

Twilight.-Twilight is before and after sunrise and setting.
Refraction.-Refraction is a quantity by which a body appears above its true place in the heavens.

Parallax.-Parallax is the difference between an altitude taken at the surface of the earth, and that taken at the center at the same time. When the object is on the horizon, it is called the horizontal parallax; but in any other case it is called the parallax in altitude.

Time.-Time is measured by the apparent motion of a celestial body over the surface of the globe, and is called Solar, Lunar, or Sidereal, according to the body with which it is referred; a full revolution of either of these objects is called its apparent day, and begins when the object comes to the meridian; but for the convenience of civil and commercial business, that of the sun, called solar or civil time, is from midnight to midnight, the first twelve hours of which are marked A. m., signifying ante meridian, and the last twelve hours P. m., signifying post meridian. In this and the following mode of keeping time, the day is dated as soon as it commences.

Astronomical Day.-This day is also measured by the apparent motion of the sun; but for the convenience of astronomical computations, it is taken to begin at noonthat is, twelve hours after the beginning of the civil day-and end at noon of the following day. Astronomers generally reckon the hours of this day up to twenty-four hours, withont any distinction of ante or post meridian, which they call astronomical time; hence the first twelve hours of which are the $\mathbf{\rho}$. m. hours of the civil day on which it begins, and the last twelve hours of it are the A. m. hours of the day on which it ends.

The Nautical Day.-This day, as well as the civil and astronomical day, is measured by the apparent motion of the sun. It begins just with the astronomical day, but it is dated with the noon on which it ends; hence it is twenty-four hours in date later than the astronomical day-the first twelve hours of which are marked in the journal with f. м., and the last twelve hours with A. м., so that occurrences which happen on the afternoon of the civil day on which it begins, come in the journal under the date of the civil day in which it ends. The Log-Book is generally kept in Nautical or Sea Time, but it may be kept in Common or Civil Time.*

Equation of Time.-From the eccentricity of the earth's orbit, and the course of the earth round the sun, the meridians are not the same throughout the year; hence the apparent time deduced by observations or sun-dial is irregular, and requires to be corrected.

When time is deduced from observations of the sun, moon, or star, the immediate result is apparent time; to convert it into mean time, the equation of time is necessary, and it is to be applied to the apparent time according to the direction at the head of its column.

At page 106, for the month of August, we ohserved at the head of the column, $\frac{\text { added } 10}{\text { mabt. fom }}$, which signifies that a change of declination occurs at the end of the month; and between the equations opposite the 31st of that month and the 1 st of September, a

[^5]black line indicates that the change occurs between the apparent noons of those days. The upper direction applies to all the quantities above the black line, and the lower direction to all the quantities below it.

Polar Distance of any celestial object, is an arch of a meridian, contained between the center of that object and the pole of the equinoctial; or, in other words, it is the distance of the object from the elevated pole.

Aberration.-An apparent change of place in the fixed stars, which arises from the motion of the earth combined with the motion of light.

Aphelion.-That point in the orbit of a planet in which it is at its greatest distance from the sun.

Apogeon.-That point in the orbit of a planet in which it is at its greatest distance from the earth.

Disk of the Sun or Moon is its round face, which, on account of the great distance of the object, appears flat, like a plane surface.

Diurnal.-Diurnal motions of the planets are the spaces they move through in a day.

Elongation.-The angular distance of a planet from the sun, as it appears to us upon the earth.

Emersion.-The time when any planet which is eclipsed begins to recover its light again.

Immersion.-The moment when an eclipse begins, or when a planet enters into a dark shadow.

Libration.-An apparent irregularity of the moon's motion, which makes her appear to librate about her axis in such a manner that parts of her eastern and western limbs becomes visible and invisible alternately.

Penumbra.-A faint shadow which accompanies an eclipse, and occasions a partial obscurity of the body to that part of the earth on which it falls.

Perigeon.-That point of a planet's orbit in which it is at its least distance from the earth.

Perihelion.-That point of a planet's orbit in which it is at its least distance from the sun.

Phases.-The several appearances of the moon and planets, according as a greater or less part of their illuminated hemispheres are presented to our sight.

To know whether the Time by Chronometer is P. M. or A. M. at Greenwich.

To the time of observation by watch, add the longitade of the ship in time if west, and subtract it if east, and the sum or difference will be the mean time at Greenwich. This, if less than twelve hours, will show the chronometer to be P. M. at Greenwich; but if more than twelve hours, the hours on the chronometer will be A. M. at Greenwich.

EXAMPLES.

February 22, 1858, when the time by chronometer was 1 h .30 m .35 s ., and in longitude 140° west, at 4 h .10 m .35 s . P. m. by watch; required whether it be A. M. or P. m. at Greenwich.

Longitude of ship $140^{\circ} *$

July 4,1858 , time by chronometer 9 h .40 m .15 s ., in longitude 160° east, at 8 h .20 m . 15 s . A. M. by watch ; required whether it is A. M. or f. M. at Greenwich.

Observe, that as only twelve hours are given on the face of a chronometer, it shows only the time after noon or after midnight; therefore, when it shows A. m. at Greenwich, add 12 hours to it, and you will have the time since the preceding noon. If it shows p. M. at Greenwich, the noon of the present day will be the preceding noon at Greenwich; for which the sulis declination must be found, and corrected for the hour at Greenwich after that noon, when finding the longitude by chronometer.
N.B.-This method of reckoning time is out of place with common sense. A uniform method of reckoning time should be adapted for all purposes.

To find the Longitude by Chronometer from an Observed Alutitude of the Sun.

RULES.

Take an altitude, or several altitudes of the sun, when it bears as nearly east or west as possible, but generally not less than three hours distant from the meridian, \dagger noting by chronometer the corresponding times; of these altitudes and times take their means.

[^6]To the mean of the times of observation, apply the original error-that is, add what the chronometer was too slow, and subtract what it was too fast for Greenwich timegives the time by chronometer corrected for the original error.

Multiply the daily rate by the number of days and parts of a day that have elapsed since the rate was ascertained, gives the whole accumulated rate; which add to the above corrected time, if the chronometer be losing, and subtract it, if gaining, gives the true Greenwich time by chronometer.

Take out the sun's declination and the equation of time for the preceding noon from this Almanac, and reduce them to mean time by the "Diff. for 1 hour," in the next column to them;* also find the sun's polar distance. \dagger Then, with the true altitude of the sun, the true latitude of the ship, and the sun's polar distance, the true time at ship is readily ascertained; the difference between which and the true time at Greenwich is the longitude of the shipt at the time of observation (in tine), which will be cast, if the time at ship be greater than the Greenwich time, and west, if it be less.

EXAMPLES.

August 19, 1858, the following altitudes of the sum and corresponding time was observed. Required the mean of each ?

	Altitudes.		Times.		
	40°	07'		58	$40^{\prime \prime}$ P. M.
		57	6	59	36
	43	44	7	00	1
Number of observations	3) 131	48	3) 20	58	17
Mean of altitudes	43	56	6	59	25 Mean

April 5,1858 , in latitude $48^{\circ} 45^{\prime}$ N., at p. m., the mean of several obs. altitudes of the sun's lower limb was $9^{\circ} 5^{\prime} 42^{\prime \prime}$, and that of the corresponding times 9 h .38 m .54 s . p. м. by a chronometer, whose error and rate had been detcrmined at noon, January 1, when it was found to be 4 m .40 s . too fast for Greenwich time, and gaining 1s. 8 -tenths daily; height of the eye above the level of the sea 20 fect. Required the longitade of the ship?

[^7]

Apparent time at ship 5h 32m 39s P. m. $=9.64391$
Equation of time . 238 to add, as directed in the N. A.
Mean ship time at ols. $5 \quad 35 \quad 17$ р. м.
Mean time at Greenwich at obs. 9 h 31 m 24 s P. M.
$\begin{array}{llllllll}\text { Mean time at the ship do. } & 5 & 35 & 17 & \text { P. M. }\end{array}$
Longitude of ship at observation $3 \quad 56 \quad 7=59^{\circ} 1^{\prime 3}$ W. from Greenwich.

[^8]
To find the Longtiude by the Sun's Rising or Setting.

RULE.

Observe the sun to set or rise with a spyglass, and note the time by chronometer.
If the lower limb is observed, subtract 21 minutes from the sum of the latitude and polar distance, and add 21 minutes to the half-sum, and call it the remainder.* For the upper limb subtract 53 minutes from the sum, and add 53 minutes to the half-sum.

EXAMPLES.

Jannary 31, 1858, at p. m., in latitude $49^{\circ} 49^{\prime}$ N., observed the sun's lower limb to set, when the corresponding time by chronometer (corrected for error and rate) was 10 h .58 m .35 s . P. m., the height of the eye being 18 feet. Required the longitude of the ship at the sun's setting?

Sun's declination, January $31.17^{\circ} 22^{\prime} 31^{\prime \prime} \mathrm{S}$.	$\begin{aligned} & \text { "Diff. for } 1 \mathrm{hr} . " \text {. . . . } \\ & \text { Hour of observation } \\ & \hline 2^{\prime \prime \cdot} 4 \\ & \times 11 \end{aligned}$	
Correction. Subtract. . . . $\dagger ~ 746$		
Sun's true declination17 90 14 45 S.		60) 466.4
Sun's polar distance 1071445	Correction $7^{\prime} 46^{\prime \prime} \cdot 4$	
Equation of time, January 31.13 m 44 s	$\begin{array}{llll} \text { " Diff. for } 1 \mathrm{hr} . " & . & . & 0^{\prime \prime} 342 \\ \text { Hour of observation } & . & . & \times 11 \end{array}$	
Correction. Add §4		
True equation of time $\ddagger 1348$	Correction,	
True latitude of ship at the sun's setting . 49°	$49^{\prime} \quad$ Secant	$\text { . } 0.19028$
Sun's polar distance +107	15 Co-secant	- 0.01999

* The correction for the sun's refraction. Semi-diameter and height of the eye above the level of		
the sea.		
Sun's refraction, for alt. ${ }_{\text {Sun's }}$ (emi-diameter, January 1, N. A. Subtract 1617		
1643		33.00*
Height of the eye (18 feet) to add 411		1617
For the sun's lower limb $2054=21 \cdot$	For the sun's upper limb	5328

\dagger For the declinations are decreasing.
\ddagger For the time of the sun's setting.
§ For the equatious are increasing.

Longitude obtained from morning altitudes and brought on to noon, very seldom agrees with the longitude obtained from afternoon sights, and redueed back to noon. This is supposed to be caused by unequal refraetion, together with errors in the observed altitudes, errors in the instruments, and that of an incorrect latitude, used in the computation.* But it not unfrequently happens that the difference in the longitude thus obtained is caused by the omission of the correction for Deelination and Equation of Time. The "Diff. of Dec. ip 1 hour" is sometimes $57^{\prime \prime}$, and "Diff. of Eqna. in 1 hour," 1 second 2 -tenths; this in 8 hours (the time that usually elapses between the A. м. and P. м. sights) would make a difference of 8 miles in the declination, and 10 seconds in equation of time. Now, it is plain that if the same dec. and equa. were used for both observations, it would make a difference of 11 miles at least in the longitude deduced from those sights, and brought on to noon.

Trade Winds.

This rarefaction of the air mostly takes place in the greatest degrce about the equator, the sun's heat being there the greatest; and were the winds from the N . and S . thos occasioned, not diverted from meeting at that place, it would exhibit a continual scene of whirlwinds, hurricanes, rain, lightning, thunder, etc. But fortunately the intervention of another natural power prevents this. The sun in moving over the equatorial regions from E. to W. rarefies the air as it passes, and causes the denser eastern air to flow westward, in order to restore the equilibrium. With this wind the winds from the N . and S. combine about the tropics, and form what are called trade winds. The combination of these two winds N. and E., produces a constant N. E. wind; and that of the two winds S. and E., produces a regular S. E. wind. These winds extend about 30° on each side of the equator.

Limits of the N. E. and S. E. Trade Winds near the Equator, in different Months of the Year.

Months.	Lost N. J. Trade Outward, in		Got N. E. Trade Homeward, in		$\begin{gathered} \text { Mean } \\ \text { out } \\ \text { and } \\ \text { Home } \end{gathered}$	Lost N. E. Trade Homeward, in		Got S. E. Trade Outward, in		Mean out and Home.	Diff.
	Latitude.	Mean.	Latitude.			Latitude.	Mean.	Latitudo.			
January	5 to 10 N .	7 N.	3 to 6 N .	${ }^{\circ} 1 \frac{1}{2} \mathrm{~N}$.	${ }^{\circ} \frac{3}{3} \mathrm{~N}$.	$\frac{0}{2}$ to ${ }^{4} \mathrm{~N}$.	${ }^{\circ} \frac{1}{2} \mathrm{~N}$.	$\stackrel{\circ}{2}$ to ${ }^{4} \mathrm{~N}$.	${ }_{3} \mathrm{~N}$ N.	${ }_{2}{ }^{\circ} \mathrm{N}$ N.	$\stackrel{\square}{3}+$
February	210	7	27	5	6	2 S .3	$1 \frac{1}{2}$	$\frac{1}{2} 1$		11	$4{ }^{3}$
Mareh	$2 \frac{2}{2} 8$	$5 \frac{1}{2}$	27	5	$5 \frac{1}{2}$	12	1	$\frac{1}{2} \quad 2 \frac{1}{2}$	$1 \frac{1}{2}$	$1{ }^{1}$	3
April	49	6	48	$5 \frac{1}{2}$	$5 \frac{3}{2}$	$2{ }^{2}$ 2	1	0 21	$1 \frac{1}{2}$	$1 \frac{1}{4}$	$4 \frac{1}{2}$
May .	$5 \quad 10$	7	$4 \frac{1}{2} 7$	6	$6 \frac{1}{2}$	1 N. 4	21	04		28	$3 \frac{1}{4}$
June	713	9	712	9	9	15	3	05	3	3	-
July .	$8 \frac{1}{2} \quad 15$	12	1114	12	12	16	4	15	3	3	$8 \frac{1}{2}$
August .	$11 \quad 15$	13	$11.14 \frac{1}{2}$	13	13	3	4	14	2줄	$3{ }^{3}$	94
September	$9 \quad 14$	112	1114	12	112	24	31	13	2	.	84
October.	$7 \frac{1}{2} 13$	10	812 14	10	10	25	3	15		3	7
November	$6 \quad 11$	9	70	7	8	34	$3 \frac{1}{2}$	35	4	33	4
December	57	6	36	5	$5 \frac{1}{2}$		$2 \frac{1}{2}$	4, $\frac{1}{2}$		31	24

* If the latitude of the ship is not known in working for the time, the longitude will be far from the truth, and previous to the introduction of "Sumner's Method," the "Chronometer Sights" were considered worthless, unless the latitude could be obtained; but by his method, a ship's position may be found, if two altitudes (within an hour or more of each other) can be observed for the longitude by chronometer, although tbe latitude may be considerably in error. This work will be found a valuable assistant to the navigator, especially in high latitudes, when the observations for latitude are generally uncertain.
\dagger Difference of the two Mean Limits of N. E. and S. E. Trades.

The preceding observations are rather few in number for some months to obtain a correct mean; but the first column, showing the extreme linits of each, will be most useful to refer to, as it marks the situation where the Trades may reasonably be expected to fail or commence.

The numbers in the last column are the space of variable winds, etc., between the limits of the trades. The column of means exhibits the limits experienced by numerous vessels. Calms and variable winds are also experienced during every month in the year in the space between the trades; the former seldom continue long, the vicinity of the N. E. trades being most liable to them. Sudden squalls often follow calms, which must be observed with care, as they give very little warning. They are sometimes accompanied with whirlwinds, in their first resistance against the resisting atmosphere, and will blow strong for one or two hours.

The S. W. and W. S. W. winds, with much rain, often prevail in July and August, and sometimes in June and September, blowing towards the coast of Guinea, and sometimes as far north as the Cape Verd Islands. These are called by the Guinea traders the Western Monsoons.

Great Circle Sailing.

An arc of a great circle is the shortest distance hetween any two places. The parallels of latitude are small circles that divide the globe into two unequal parts. If two places are situated exactly opposite to each other on different sides of the Atiantic, both being on the same parallel of N. latitude, the shortest way to go from one to the other, is not to sail due E. or W., but to direct your course from the first half a little N. of E. or W., and then again curving down to the S., describing the are of a great circle, uniting the two places, and the further N. or S. the two places are, the greater will be the gain by sailing in a great circle. Between New York and England it makes a difference of one hundred miles, if N. of 45°; if S . of 45°, no saving, but a loss of distance.

Lattiude by the Polar Star.

Of all the heavenly bodies, the Polar Star is best calculated for finding the latitude in the northern hemisphere; because a single altitude, taken at any hour of the night by a careful observer, will give the latitude to a sufficient degree of accuracy. This is true if you measure the altitude where it is without horizou by the altimeter.

The Barometer.

This useful instrument being of leading importance to the mariner for measuring the weight of the air, and the variations of its pressure, in order to determine the changes in the weather, the heights of mountains, etc., we insert the following valuable directions by Mr. Patrick:

The changes of the weather seldom produce a variation in the height of the mercury which passes the limits of 28 and 31 inches, which is therefore a sufficient length for the graduated scale, but to use the barometer as a weather-glass, several particulars must be attended to :

1st. The rising of the mercury presages, in general, fair weather, and its falling, the contrary-as rain, snow, high winds, and storms.

2d. In very hot weather, the falling of the mercury indicates thunder.

3d. In winter, the rising presages frost; and in frosty weather, if the mercury falls three or four divisions (tenths of an inch), there certainly will follow a thaw; but in a continued frost, if the mercury rises, there will be snow. "

4th. When foul weather happens soon after the fall of the mercury, expect but little of it; and, on the other hand, little fair weather may be expected, when it becomes quickly fair after the rising of the mercury.

5 th. In foul weather, when the mercury rises much and high, and so continues two or three days before the foul weather has gone away, then a continuance of fair weather may be expected.

6th. In fair weather, when the mercury falls much and low, and continues so for two or three days before the rain comes, then a great deal of wet and high winds may be expected.

7th. The unsettled motion, or frequent rising and falling of the mercury, denotes changeable weather.

8th. The words on the plates are not so strictly to be observed as the rising and falling of the mercary, for if it stand at "Much Rain," and then rise to "Changeable," it presages fair weather, though not to continue so long as though the mercury had risen higher; and so, on the contrary, if the mercury stand at "Fair," then fall to "Changeable," it presages foul weather, though not so much as if it had sunk lower.

From this it appears that it is not from the point at which the mercury may stand that we are to form a judgment of the state of the weather, but from its being in a state of rising or falling; therefore it is necessary to attend to the following directions:

1st. If the mercury is in a rising state, it stands higher in the middle of the tube than at the sides.

2d. If the middle is hollow, it indicates its fall.
3d. If level, it is steady.
4th. Before observation, gently tap the barometer near the top, as the mercury will occasionally, where the tubes are small, slightly hang to the sides of the glass, and prevent its predicting any very delicate change which may bave taken place in the air.

The following explanation of the scale and vernier, and examples to show the manner of reading them, may be of use:

The scale is divided into inches and tenths, and again, by means of the vernier, subdivided into hundredths of an inch; the observations are, therefore, better made from the figures than the words.

Example 1.-Suppose the mercury to stand nearly a tenth above 30, turn up the vernier till the top stands even with the surface of the mercury, and observe which of its divisions or figures exactly coincides with any one of the divisions on the barometer scale ; suppose 9 on the vernier to agree with one of the lines, the height of the mercury as then shown will be 30 in . 09 -that is, 30 inches and 9 -hundredths of an inch from the level of its surface in the cistern.

Example 2.-Suppose the mercury to stand a little below the 30 , but not a tenth below, set the top of the vernier level with the mercury, and suppose 6 on the vernier to coincide with one of the lines on the barometrical scale, the height of the mercury will then be 29 in .96 (hundredths), or rather more than $9 \frac{1}{2}$-tenths above 29 inches.

The greatest height of the mercury is observed when an easterly or northerly wind prevails. Within the tropics and near them, it does not vary more than from 1 to 3 tenths; this being the case, greater care should be taken in noticing the observations.

- Mars.

The Sum Mrri/itu" 11 $\stackrel{-}{-}$

 -phitude un wẹv part of the Glohe

'.Lm\&

[^0]: * The number of days in each month may be remembered by the following lines:
 "Thirty days hath Septernber, April, June, and November;

 All the rest have thirty-one, Saving February alone."

[^1]: * A small difference will be seen between the statement of Dr. Rees and that of Professor Vince respecting the obliquity, as observed by some of these authors. But as the general principle is not affected, it may be useless to attempt a reconciliation.

[^2]: * The peritelion is that point in the orbit of any planet or comet which is nearest to the sun. It is also called the loozer apsis. The aphelion is that point in the orbit which is furthest from the sun; called, also, the higher apsis.

[^3]: * Memoirs of the Academy of Sciences for 1744.

[^4]: * In viewing comets, telescopes with large apertures and comparatively low magnifying powers should generally be nsed, as the faint light emitted by comets, whether it be inherent or reflected, will not permit the use of so high magnifying powers as may be applied to the planets.

[^5]: * There is no reason why this absurd system of keeping Sea Time should be continued, because it is just as easy to keep Civil Time, commencing the day at midnight, and the day's work could still be reckoned from noon to noon, as before. The only difference would be, that one half of it would appear in the preceding day's log (where it really belongs), and the other half in the following. Many logs are now kept on this principle.

[^6]: * To turn longitude into time, multiply degrees by 4 and divide by 60 (if above), will give hours and minutes; multiply miles by 4 will give seconds.
 \dagger When the latitude and declination are of contrary names, the best time to observe is when the object is between 6° and 10° high.

[^7]: * This method of correcting the declination and equation for the Greenwich time by the "Diff. for 1 hour," from the Nautical Almanac, is much easier and more correct than the old method of correcting by tables. If it is near noon at Greenwich, or the "Diff. for 1 hour" is small, we see at once that no correction is required.
 + If the latitude of the ship and sun's declination be both north or both south, subtract the declination from 90° gives the polar distance; and if one be north and the other south, add the declination to 90° gives the polar distance.
 \ddagger Observe that if one be P. M. and the other A. m. the same day, you must add 24 hours to that at P. M. and subtract them; and if the P. M. and A. M. times fall on different dates, their difference, counting from their preceding noons, is the longitude of the ship.

[^8]: * When the tenths are over five, add one second; and when the seconds are over thirty, add one minute; and when the hundredths are over forty-nine, add one second.
 \dagger Add the corrections when the declinations are increasing, and subtract when decreasing.
 \ddagger Add the correction for equation of time when it is increasing, and subtract it when decreasing.
 Shen the tenths are over five, add one second; when the hundredths are over forty-nine, add one second; and when the seconds are over thirty, add one minute.

